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Astronomical and physical constants
Physical constants are constant, but the values we assign to them improve with

the quality of measuring apparatus. That is why the date must be given at which
the value one uses is taken. The National Institute of Standards and Technology
in Maryland, U.S.A., keeps track of new measurements of physical constants, and
every few years updates the list of recommended values. The information is collected
on a website: http://physics.nist.gov/cuu/Constants This site also gives the
paper in which the (updates of) the constants are described. From the December
2007 preprint of this paper we copy Table XLIX below, which is based on the 2006
adjustment.

based on the 2006 adjustment.

Relative std.
Quantity Symbol Numerical value Unit uncert. ur

speed of light in vacuum c, c0 299 792 458 m s−1 (exact)
magnetic constant µ0 4π × 10−7 N A−2

= 12.566 370 614... × 10−7 N A−2 (exact)
electric constant 1/µ0c

2 ǫ0 8.854 187 817... × 10−12 F m−1 (exact)
Newtonian constant
of gravitation G 6.674 28(67) × 10−11 m3 kg−1 s−2 1.0× 10−4

Planck constant h 6.626 068 96(33) × 10−34 J s 5.0× 10−8

h/2π h̄ 1.054 571 628(53) × 10−34 J s 5.0× 10−8

elementary charge e 1.602 176 487(40) × 10−19 C 2.5× 10−8

magnetic flux quantum h/2e Φ0 2.067 833 667(52) × 10−15 Wb 2.5× 10−8

conductance quantum 2e2/h G0 7.748 091 7004(53) × 10−5 S 6.8× 10−10

electron mass me 9.109 382 15(45) × 10−31 kg 5.0× 10−8

proton mass mp 1.672 621 637(83) × 10−27 kg 5.0× 10−8

proton-electron mass ratio mp/me 1836.152 672 47(80) 4.3× 10−10

fine-structure constant e2/4πǫ0h̄c α 7.297 352 5376(50) × 10−3 6.8× 10−10

inverse fine-structure constant α−1 137.035 999 679(94) 6.8× 10−10

Rydberg constant α2mec/2h R∞ 10 973 731.568 527(73) m−1 6.6× 10−12

Avogadro constant NA, L 6.022 141 79(30) × 1023 mol−1 5.0× 10−8

Faraday constant NAe F 96 485.3399(24) C mol−1 2.5× 10−8

molar gas constant R 8.314 472(15) J mol−1 K−1 1.7× 10−6

Boltzmann constant R/NA k 1.380 6504(24) × 10−23 J K−1 1.7× 10−6

Stefan-Boltzmann constant
(π2/60)k4/h̄3c2 σ 5.670 400(40) × 10−8 W m−2 K−4 7.0× 10−6

Non-SI units accepted for use with the SI
electron volt: (e/C) J eV 1.602 176 487(40) × 10−19 J 2.5× 10−8

(unified) atomic mass unit
1 u = mu = 1

12
m(12C) u 1.660 538 782(83) × 10−27 kg 5.0× 10−8

= 10−3 kg mol−1/NA

Table C.1 Physical Constants, from http://physics.nist.gov/cuu/Constants

Note that the first three constants are defined and therefore have no measurement
errors!
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In addition to the constants given in Table C.1, we list in Table C.2 some derived
physical constants (from the same source, Table L), and also some astronomical
constants, taken from Section K6 of the Astronomical Almanac for the year 2006.
The astronomical constants are defined by the Interational Astronomical Union at
values close to the actual value, and therefore have no errors, unlike the measured
values.

In the exercises throughout this lecture, use 3 digits; except in the
computer exercises, where the full accuracy is used.

quantity symbol numerical value (w. error)

Additional physical constants
neutron mass mn 1.674927211(84)× 10−27 kg

= 1.00866491597(43) amu
a ≡ 4σ/c a 7.56591(25)× 10−1? J cm−3K−4

electron radius re = e2/4πεomec
2 2.817940325(28)×10−15 m

e Compton wavelength ~/mec = re/α 3.861592678(26)×10−13 m
Bohr radius a∞ = 4πεo~2/mec

2 = re/α
2 0.5291772108(18)×10−10 m

wavelength at 1 keV hc/keV 12.3984191(11) Å keV−1

Rydberg energy mec
2α2/2 13.6056923(12) eV

Thomson cross section σT = 8πre
2/3 0.665245873(13) barn

a a ≡ 4σ/c 7.56577(5)×10−16 J m−3 K−4

Wien constant b = λmaxT 2.8977685(51)×10−3 m K

Astronomical constants
solar mass GM� 1.32712442076×1020 m3 s−2

solar mass M� 1.9884× 1030 kg
solar radius R� 6.96× 108 m
astronomical unit A.U. 1.49597871× 1011 m
Julian year yr 365.25× 86400 s

unofficial:
solar luminosity L� ' 3.85× 1026 J s−1

parsec pc ' 3.086× 1016 m
Solar temperature Teff '5780 K
Hubble constant Ho 70 km s−1 Mpc−1

Table C.2 Additional physical constants
from http://physics.nist.gov/cuu/Constants Table L

and astronomical constants, from Astronomical Almanac for 2006, K6

Some remarks on angles
A circle is divided in 360 degrees (◦), each degree in 60 minutes (′), and minute

in 60 arcseconds (′′). 2π radians thus correspond to 360 × 60 × 60 arcseconds, i.e.
1′′ corresponds to ' 4.848 × 10−6radians. The circle of right ascension is divided
into 24 hours (h), each hour in 60 minutes (m), each minutes in 60 seconds (s). The
arcsecond (′′) has a fixed size on the celestial dome, whereas the second (s) has an
extent which depends on the declination. At the equator 1h corresponds to 15◦, at
declination δ, 1h corresponds to 15◦ cos δ.
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Chapter 1

Historical Introduction

This chapter gives a brief historical overview of the study of binaries in general and
compact binaries in particular, and in doing so explains some of the terminology
that is still used.

1.1 History until 19001

It has been noted long ago that stars as seen on the sky sometimes occur in pairs.
Thus, the star list in the Almagest of Ptolemaios, which dates from ±150 AD, de-
scribes the 8th star in the constellation Sagittarius as ‘the nebulous and double
(διπλου̃ς) star at the eye’. After the invention of the telescope (around 1610) it
was very quickly found that some stars that appear single to the naked eye, are
resolved into a pair of stars by the telescope. The first known instance is in a let-
ter by Benedetto Castelli to Galileo Galilei on January 7, 1617, where it is noted
that Mizar is double.2 Galileo observed Mizar himself and determined the distance
between the two stars as 15′′. The discovery made its way into print in the ‘New
Almagest’ by Giovanni Battista Riccioli in 1650, and as a result Riccioli is often
credited with this discovery. In a similar way, Huygens made a drawing showing
that θOrionis is a triple star (Figure 1.1), but the presence of multiple stars in the
Orion nebula had already been noted by Johann Baptist Cysat SJ3 1618.

The list of well-known stars known to be double when viewed in the telescope
includes the following:

year star published by comment
1650 Mizar (ζ UMa) Riccioli found earlier by Castelli
1656 θOri Huygens triple, found earlier by Cysat
1685 αCru Fontenay SJ
1689 αCen Richaud SJ
1718 γVir Bradley
1719 Castor (αGem) Pound
1753 61 Cygni Bradley

1This Section borrows extensively from Aitken 1935
2see the article on Mizar by the Czech amateur astronomer Leos Ondra on leo.astronomy.cz
3SJ, Societatis Jesu, i.e. from the Society of Jesus: a Jesuit. Jesuits attached great importance

to education and science, and during the counter-reformation trained good astronomers. Examples
are the first European astronomers in China: Ricci (1552-1610) and Verbiest (1623-1688); and the
rediscoverers of ancient Babylonian astronomy: Epping (1835-1894) and Kugler (1862-1929)
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Figure 1.1: Drawing of the Orion nebula made by Huygens (left) compared with a
modern photograph (from www.integram.com/astro/Trapezium.html, right).

All these doubles were not considered to be anything else than two stars whose
apparent positions on the sky happened to be close. Then in 1767 the British
astronomer John Michell noted and proved that this closeness is not due to chance,
in other words that most pairs are real physical pairs. An important consequence is visual

binary
statistical

that stars may have very different intrinsic brightnesses. Michell argues as follows
(for brevity, I modernize his notation). Take one star. The probability p that a single
other star placed on an arbitrary position in the sky is within x◦ (=0.01745x rad)
from the first star is given by the ratio of the surface of a circle with radius of x
degrees to the surface of the whole sphere: π × (0.01745x)2/(4π) ' 7.615× 10−5x2,
for p � 1. The probability that it is not in the circle is 1 − p. If there are n stars
with a brightness as high as the faintest in the pair considered, the probability that
none of them is within x degrees is (1 − p)n ' 1 − np, provided np � 1. Since for
the first star we also have n choices, the probability of no close pair anywhere in
the sky is (1− p)n×n ' 1−n2p. As an example, Michell considers β Capricorni, two
stars at 3′20′′ from one another, i.e. x = 0.0555, with n = 230. The probability of
one such a pair in the sky due to chance is 1 against 80.4. With a similar reasoning,
Michell showed that the Pleiades form a real star cluster.

As an aside, we consider the Bright Star Catalogue. For each star in this cata-
logue, we compute the distance to the nearest (in angular distance) other star, and
then show the cumulative distribution of nearest distances in Figure 1.2. (Stars in
the catalogue with the exact position of another star, or without a position, have
been removed from this sample.) We then use a random generator to distribute
the same number of stars randomly over the sky, and for these plot the cumulative
nearest-distance distribution in the same Figure. It is seen that the real sky has an
excess of pairs with distances less than about 0.1◦.

Starting in 1779 William Herschel compiled a list of close binaries. In doing so
he was following an idea of Galileo: if all stars are equally bright, then a very faint
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Figure 1.2: Cumulative distribution of the angular distance to the nearest star for
the stars in the Bright Star Catalogue (only stars with an independent catalogued
position are included), and for the same number of stars distributed randomly over
the sky.

Figure 1.3: Illustration of Galileo’s idea of measuring the parallax from a close pair
of stars. If all stars are equally bright intrinsically, the fainter star is much further
than the bright star, and its change in direction as the Earth (E) moves around the
Sun (S) negligible with respect to that of the bright star. The figure shows the change
in relative position as the Earth moves from E1 to E2 half a year later.

star next to a bright one must be much further away. From the annual variation
in angular distance between the two stars, one can then accurately determine the
parallax of the nearer, brighter star (Figure 1.3). Herschel found many such pairs,
which he published in catalogues. He notes that close pairs can be used to test the
quality of a telescope and of the weather (Herschel 1803).

Herschel first assumed that the double stars are not physical, but soon realised
that most must be physical pairs, and then defined single and double stars (Herschel
1802):

When stars are situated at such immense distances from each other as
our sun, Arcturus, Capella, Sirius, Canobus (sic), Markab, Bellatrix,
Menkar, Shedir, Algorah, Propus, and numerous others probably are, we
may then look upon them as sufficiently out of reach of mutual attrac-
tions, to deserve the name of insulated stars.

If a certain star should be situated at any, perhaps immense, distance
behind another, and but very little deviating from the line in which we see
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the first, we should then have the appearance of a double star. But these
stars, being totally unconnected, would not form a binary system. If, on
the contrary, two stars should really be situated very near each other,
and at the same time so far insulated as not to be materially affected by
the attraction of neighbouring stars, they will then compose a separate
system, and remain united by the bond of their own mutual gravitation
towards each other. This should be called a real double star; and any two
stars that are thus mutually connected, form the binary system which we
are now to consider.
It is easy to prove, from the doctrine of gravitation, that two stars may Chapter 2.1

be so connected together as to perform circles, or similar ellipses, round
their common centre of gravity. In this case, they will always move in
directions opposite and parallel to each other; and their system, if not
destroyed by some foreign cause, will remain permanent.

Apparently unaware of Michell’s earlier work, Herschel computed the probability
of getting a pair of stars with magnitudes 5 and 7, respectively, within 5′′ of one
another, given the numbers of stars with magnitudes 5 and 7. He concluded that
such close pairs are real binaries.

Herschel observed αGeminorum, also known as Castor, between November 1779
and March 1803. The less luminous of the two stars was to the North, and preceding visual

binary
individual

(i.e. with smaller right ascension) during this time, and to the accuracy of Herschel’s
measurements always at the same distance of the brighter star. By taking multiple
observations on the same day, he obtained an estimate of the error with which he
determined the positional angle: under ideal circumstances somewhat less than a
degree. He used an observation by Bradley in 1759, confirmed by Maskelyne in
1760, that the two stars of Castor were in line with the direction between Castor
and Pollux, to extend his time range. Herschel gives his data only in tabular form;
plots of his values are given in Figure 1.4. For a circular orbit, Herschel concludes
from the change between 1759 and 1803 that the binary period is about 342 years
and two months (a modern estimate is 467 yrs; see Table 3.1). Herschel argues that it
is virtually impossible that three independent rectilinear motions of the sun and the
two stars of Castor produce the observed apparent circular orbit. He strenghtens the
argument by considering five other binaries, viz. γ Leonis, εBootis (‘This beautiful
double star, on account of the different colours of the stars of which it is composed’),
ζ Herculis, δ Serpentis and γVirginis.

The list of close pairs of stars increased with time, and some astronomers spe-
cialised in finding them. In Dorpat (modern Tartu in Estonia) Frederich Struve sys-
tematically scanned the sky between the North pole and −15◦, examining 120 000
stars in 129 nights between November 1824 and February 1827. With bigger tele-
scopes, close pairs were increasingly found. Therefore the lists of binaries became
longer and longer, especially after John Herschel’s suggestion was followed to in-
clude individual measurements of angular distance and position angle with the date
of observation. Flammarion’s selection of only those pairs where orbital motion had
been observed was very helpful.
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Figure 1.4: William Herschel observed the position angle of the two stars in Cas-
tor between 1779 and 1803; and added a measurement by Bradley from 1759, and
discovered the motion of the two stars in the binary orbit.

year astronomer Nbin comment
1779 Mayer 80 faint companions to bright stars
1784 W. Herschel 703
1823 J. Herschel & J. South 380 southern sky
1827 Struve 3110
1874 J. Herschel 10 300 published postumously
1878 Flammarion 819 only pairs with observed binary motion

The micrometer, invented by W. Herschel, was continously improved so that
measurements of angular distances and position angles became increasingly accurate.
Further improvements came with photography, which, as Hertzsprung remarked,
provides a ‘permanent document’. The first binary to be photographed, in 1857 by
Bond, was. . . Mizar.

Methods to derive the orbital parameters from a minimum of 4 observations
were developed by Savary (1830), Encke (1832), and J. Herschel (1833), and many
others. In these methods, an important consideration is to minimize the number of
computations; as a result they are now only of historic interest.

Meanwhile another binary phenomenon had gradually been understood. In 1670
Geminiano Montanari had discovered that the star β Persei varies in brightness.
β Persei is also called Algol, ‘the Demon’, the Arabic translation of Ptolemy’s
Medusa, whose severed head Perseus is holding4. John Goodricke discovered in
1782 that the variation is periodic, with about two-and-a-half days (modern value:
2.867 d), and suggested as one possibility that the darkening was due to the passage eclipsing

binaryof a giant planet in front of the star.
This suggestion was spectacularly confirmed when a third method of studying

4Contrary to what has been asserted, therefore, the name Algol does not suggest that the Arabic
astronomers already knew about the variability.
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binaries was implemented: the measurement of radial velocity variations. In 1889
Pickering showed that the spectral lines of. . . Mizar doubled periodically, reflecting spectroscopic

binaryDoppler variations due to the orbital motion. In the same year Vogel showed that
the spectral lines of Algol were shifted to the red before the eclipse, and to the blue
after the eclipse, and thereby confirmed the eclipse interpretation of Goodricke. A
binary in which the orbital variation is observed in the spectral lines of both stars,
like Mizar, is called a double-lined spectroscopic binary, if the spectral lines of only single- or

doublelinedone star are visible in the spectrum, we speak of a single-lined spectroscopic binary.
It is now known that the spectroscopic period of Mizar is 20.5 d, much too short

for the two stars that Castelli and Galileo observed through their telescopes and that
Bond photographed. In a visual binary, the brighter star is usually (but confusingly
not always) referred to as star A, the fainter one as star B. The 20.5 d period shows
that Mizar A is itself a binary. Mizar B is also a binary, with a 175.6 d period.

The first catalogue of spectroscopic binaries was published in 1905 by Campbell,
with 124 entries. The catalogue that Moore published in 1924 already had 1054
entries. Methods for deriving the binary parameters were devised by Rambaut in
1891, and by Lehman-Filhés in 1894. Soon the number of orbits determined from
spectroscopy surpassed the number of visually determined orbits. The reason is
straightforward: spectroscopic orbits must be short to be measurable, a visual orbit
long. Therefore a spectroscopic orbit can be found in a shorter time span. Equally
important is that a spectroscopic binary can be detected no matter what its distance
is, whereas the detection of visual orbits requires nearby binaries.

1.2 Lightcurves and nomenclature

As the number of eclipsing binaries grew, different types were discriminated. The
simplest type, often called the Algol type, shows two eclipses per orbit, of which the
deeper one is called the primary eclipse. To interpret this, consider a binary of a primary

eclipsehot and a cold star. When the cold star moves in front of the hot star, the eclipse is
deep, and when the hot star moves in front of the cool star, the eclipse is shallow.

When the two stars in a binary are far apart and non-rotating, they are spherical,
and thus the lightcurve is flat between the eclipses. When the stars are closer they
are deformed under the influence of one another, elongated along the line connecting
the centers of the two stars. Thus the surface area that we observe on earth is largest
when the line of sight to the Earth is perpendicular to the line connecting the two
stars, and this is reflected in a lightcurve that changes throughout the orbit. Such
variations are called ellipsoidal variations. When both stars touch, their deformation ellipsoidal

variationscauses large variations throughout the orbit. To describe the form of the stars under
the influence of one another’s gravity, we must compute the equilibrium surfaces in
the potential of two stars: the Roche geometry. Chapter 3.4

The study of lightcurves showed up more and more details, or complications,
depending on your point of view. . . .

Thus, if one small star disappears for a time behind a bigger star, the minimum
of its eclipse is flat (i.e. of constant flux). Clearly, the length of ingress and egress,
and of the bottom of the eclipse, contain information on the relative sizes of the two Chapter 4.3.1

binary stars. Rapidly rotating stars are flattened, leading to different eclipse forms. rotation
Stars can have variable spots on them, leading to variable lightcurves. Gas can flow spots
from one star to the other, leading to asymmetric lightcurves, and in fact also to gas streams
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Figure 1.5: Various examples of lightcurves, taken from the Hipparcos Catalogue.
One-and-a-half orbital period is shown for each star. The top curve shows two
eclipses per orbit, separated by half the orbital period; the curve of AR Cas shows
two eclipses asymmetrically located over the orbital period. TV Cas shows ellipsoidal
variations, and the contact binary W UMa even more so.

asymmetric radial velocity curves, even in circular orbits. A hot star may heat the heating
facing surface of its companion, thus reducing or even inverting the light changes
when the companion is eclipsed. In the course of the 20th century observations and
interpretation of radial velocity curves and lightcurves were continuously improved.
The variation in interpretation also led to a proliferation of names for various binary
types, usually after a prototype.

So one can encounter statements like ‘AR Lac is an RS CVn variable’, or ‘AR
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Cas is an Algol type variable’. To understand this we make a short digression into
nomenclature. To designate variable stars, Argelander introduced the following, alas nomenclature

variable
stars

rather convoluted, system. The first variable discovered in a constellation Con is
called R Con, the second one S, the third one T and so on to Z. Argelander thought
that variability was so rare, that this would be enough. It isn’t! and one continues
with RR, RS, . . . RZ, SS, ST, . . . SZ to ZZ. After that follows AA, AB, . . . AZ, BB,
BC, . . . BZ, etc. until QZ. The letter J is not used (probably for fear of confusion
with I). After this, one starts enumerating: V335 Con, V336 Con, etc., where V
stands for variable. So we now know that AR Lac is the 71th variable discovered in
the constellation Lacerta.5

Thus, eclipsing binaries often have a designation as a variable star. It should
be noted, however, that many variable stars are not binaries; most are pulsating
variables, like RR Lyrae, some are magnetically active stars, like the flare star UV
Ceti, and some are young stars with the forming disk still present, like T Tau.

The number of prototypes after which a class of objects is named is rather large;
in general the World Wide Web is the best place to start finding out what type
of star the prototype is. We will encounter designations of particular classes of
binaries throughout these lecture notes, but two may be mentioned here. A short-
period binary in which one star has evolved into a subgiant or giant, whereas the
other is still on the main sequence, is called an RS CVn type variable. Such binaries RS CVn

typeare often eclipsing, and further stand out through magnetic activity that causes
stellar spots and X-ray emission. When the giant expands, it may at some point
start transferring mass to its companion: it has then become an Algol system. Algol type

The maximum size that a star can have before gas flows over from its surface to
the other star is called the Roche lobe (Roche 18596). When a star fills its Roche Roche-lobe

overflowlobe, one expects in most cases that tidal forces have circularized the orbit.
The relatively recent physical classification of a binary does not always agree with

the old lightcurve nomenclature. The statement ‘AR Cas is an Algol type variable’ is
a good example. From Figure 1.5 we see that the orbit of AR Cas is eccentric: thus,
the giant presumably does not fill its Roche lobe in this system, as also indicated by
the absence of ellipsoidal variations, and AR Cas is better classified as an RS CVn
system.

An often used classification of binaries refers to the sizes of the stars with respect
to their Roche lobes. If both stars are smaller than their Roche lobe, the binary is detached,

semi-
detached,
contact

detached. If one star fills its Roche lobe, the binary is semi-detached; if both stars
fill or over-fill their Roche lobes, i.e. the stars touch, the binary is a contact binary,
also called a W UMa system, after its prototype.

It is very difficult to determine from the lightcurve alone whether a star is just
close to filling its Roche lobe, or actually fills it. For this reason, a classification of
lightcurves based on this distinction, i.e. EA for detached, EB for semidetached, and EA,EB,EW
EW for contact, is becoming obsolete. Nonetheless, clearly separated stars are easily
recognisable from the absence of ellipsoidal variations and from the eccentricity of
the orbit (as derived from the unequal time intervals between the primary and
secondary eclipse), e.g. AR Cas in Figure 1.5; and contact binaries from the strong
variation of the lightcurve throughout the orbit, e.g. W UMa in Figure 1.5.

5For an amusing description on the origins of this convoluted system, see Townley 1915
6Roche computed the maximum size of the atmosphere of a comet before the Sun disrupts it!
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Figure 1.6: Lightcurves and radial–velocity curves of the binary GG Lup (B7 V +
B9 V). The orbital period is 1.85 d. In the lightcurves the changes of V and B−V
with respect to a constant comparison star are plotted. In the radial-velocity plot the
theoretical curves have been added to the observed data points for the more massive
star (•, solid line), and for the lighter star (◦, dashed line). After Clausen et al.
(1993) and Andersen et al. (1993).

1.3 The development of modern binary research

In the 20th century more and more data were gathered from binaries, in studies
of the orbits of visual binaries, the velocities of spectroscopic binaries, and the flux
variations of eclipsing binaries. An important development in the 1970s followed
the design of the velocity correlator by Griffin. The standard way to measure a
stellar velocity is to obtain a high-quality, high-resolution spectrum, and then fit the
spectral lines. This requires large amounts of observing time on large telescopes.
The velocity correlator works as follows (Griffin 1967): velocity

correlator
Suppose a widened spectrogram is obtained, through the optics of a spec-
trometer, of, say, a bright K star; and that it is returned after processing
to the focal surface where it was exposed, the telescope being turned to
the same star. If the spectrogram is replaced accurately in register with
the stellar spectrum, all the bright parts of the spectrum will be systemat-
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ically obstructed by heavily exposed emulsion, and rather little light will
pass through the spectrogram. If it is not in register, the obstruction of
the spectrum will not be systematic and the total transmission will be
greater.

The spectrum can be used for the measurement of velocities of other stars, simply
by measuring the transmitted light as a function of the position, regulated with a
screw. With this instrument, radial velocities with an accuracy as good as 1 km/s
can be obtained in relatively short observing times. Slightly modified versions of the
velocity correlator were made for a number of telescopes, and became the work horses
for long-term studies of spectroscopic binaries. For the first time, systematic studies
of the binary frequency in stars near the Sun, and of stars in selected stellar clusters,
became possible. In particular Mayor and his collaborators of the Observatoire de
Genève contributed to these studies with the CORAVEL.

The work horse of choice for many years for the fitting of lightcurves and radial Chapter 3.4.1

Wilson &
Devinney
code

velocities was the computer code developed by Wilson & Devinney. It computed
which surface elements of the two stars in a binary were visible at each orbital phase,
and added the fluxes from these elements. Often, the spectrum of each element was
taken to be a black body spectrum, and colour corrections to stellar spectra were
made only for the summed flux and colours. For spherical stars the analysis is
relatively straightforward, but for a deformed star one must take into account that Chapter 3.3

the measured radial velocity may not reflect the velocity of the centre of mass. An
example of data of high quality, allowing the determination of masses, radii and
luminosities to within a few percent, is given in Figure 1.6.

The theory of binaries came into being with the understanding of the evolution
of stars, the first ideas of which were developed in the 1920s by Eddington. Main
sequence stars evolve into giants, and giants leave white dwarfs upon shedding their
envelope. Massive giants can shed their envelope in a supernovae explosion and leave
a neutron star or a black hole. The study of binaries is an important aspect of the
study of stellar evolution, as it provides accurate masses and radii, for comparison Chapter 4

with stellar evolution. It also may pose questions that stellar evolution has to
answer. A nice example is the Algol paradox.

From stellar evolution, we know that the more massive star in a binary evolves
first. It was therefore a nasty surprise when it was discovered that the giant in Algol
systems is usually less massive than its unevolved companion! This ‘Algol paradox’
was solved by Kuiper (1941), when he realized that mass is being transferred from Algol para-

doxthe giant to its main-sequence companion: apparently enough mass has already
been transferred that the initially more massive star has become the less massive
star by now. The evolution of such binaries under the influence of mass transfer has
been described in the 1960s in a number of classical papers by Paczyński and by
Kippenhahn & Weigert. Our understanding of stellar evolution, and by extension,
of the evolution of binaries continues to increase as our understanding of for example
opacities, the equation of state, and nuclear reactions continues to be improved.

From the observational point of view the end of the 20th century saw a number
of very large changes, which have completely transformed astronomy in general, and
the studies of binaries in particular.

Space research made it possible to study stars at previously inaccessible wave-
lengths: ultraviolet and X-rays, and more recently infrared. The shorter wavelengths
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Figure 1.7: Left: orbital motion of Sirius A with respect to a fixed point on the
sky (+, after correction for proper motion). The orbital period is 50.09 yr. Right:
the 13.8 d orbit of 64 Piscium with respect to its companion (•) is resolved with the
Palomar Testbed Optical Interferometer. After Gatewood & Gatewood (1978) and
Boden et al. (1999).

started the wholly new topic of the study of binaries with neutron stars and black
holes, and greatly extended the research of binaries with white dwarfs. Chapter 12

Larger telescopes became possible with the technology of supporting thin mirrors
with a honeycomb structure, thus allowing mirrors of 8 m diameter.

Optical interferometers became possible when technology allowed distances be-
tween mirrors to be regulated with an accuracy better than one-tenth of the wave-
length of observation: i.e. first in the infrared. The technique has been pioneered by
Michelson in the beginning of the 20th century, and allowed Pease (1927) to make
the first interferometric resolution of a binary, viz.. . . Mizar A. In the last decades of
the 20th century, routine interferometric measurements became possible, allowing
milliarcsecond resolution (e.g. Figure 1.7).

Infrared detectors opened up the field of pre-main-sequence stars (Figure 1.8).
CCD cameras allow much more rapid observations, which can be calibrated much

more easily than photographic plates. This allows standard photometry with an
accuracy of 1% or better, and rapid spectroscopy. It also makes the data immediately
available in digital format

Computers allow the handling of much larger data sets, and the correct handling
of them. In earlier studies, fitting of radial velocity data and of visual orbits had
to be done in an approximate fashion, often not allowing realistic error estimates.
With computers, a much more correct way of data analysis and fitting is possible.
The development of software is an important aspect of this. For many instruments,
an automatic data reduction is provided to the users: the pipeline reduction. If
one considers the pipeline not good enough, there are software pacakages which
allow inter-active data reduction. However, as instruments become more and more
complicated, the pipeline written by the experts is more often the best option.
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Figure 1.8: Visual orbit and radial velocity curve of the T Tau star 045251+3016 in
the Taurus Auriga star forming region. After Steffen et al. (2001)

Computers also allow much more detailed computation of the evolution of single
stars, and by extension of binaries. They also allow more accurate computation of
stellar atmosphere models, for comparison with light curves.

The combination of these developments leads to other advances:
Data bases can be constructed much more easily now that the data are often digi-

tal from the start. They require much storage space, and thus large computers. The
World Wide Web allows access to many of these data bases, including standardized
analysis software.

Velocity Correlation for CCD spectra can be done on the computer: the spec-
trum of the object can be compared to a whole library of (observed or theoretical)
stellar spectra, allowing not only the determination of the velocity, but also of stellar
spectrum parameters as temperature, gravity, and metallicity. Radial velocities can
now be measured with an accuracy better than 10 m/s, depending on the stellar
type.

Lightcurve fitting. With the faster computers today it is possible to fit a stel-
lar spectrum directly to each surface element; this is important because it allows
correct application of limb-darkening. With the more accurate CCD data, more
orbital phases can be studied. With genetic algorithms, all parameters can be fitted
simultaneously.

Visibility fitting. An interferometer measures the interference pattern between
different sources of light, e.g. the two stars in a binary, combined from several aper-
tures, i.e. the separate mirrors of the interferometer. The strength of the interference
is expressed as the visibility and depends on the angular distance between the two
stars, and on the distances between the mirrors of the interferometer. Rather than
first derive the angular distance and position angle of the stars, and then fit these,
one can now directly fit the observed visibilities.

Automated or semi-automated observations have led to an important role of small
telescopes. Typically, a small telescope surveys the sky, and discovered an object
with interesting variability or colour. A followup with a 1 m telescope then may give
a better lightcurve, and if the system is still deemed interesting a radial velocity

12



Figure 1.9: Left: the brightness of the Novae Stellae of Tycho and Kepler were
expressed by comparison with planets or nearby stars: this enables us to reconstruct
the brightness variations of these stars. Right: the lightcurves of the ‘nova’ in the
Andromeda Nebula, S And, compared to that of nova Aquilae 1918, and of several
fainter variables, viz. ordinary novae, in M 31.

curve is obtained with an 8 m telescope. This type of observations has led to the
determination of accurate masses and radii of very-low-mass stars and of brown
dwarfs. Chapter 4.3

1.4 Compact binaries

The discovery of compact binaries is closely related to the study of stars with irreg-
ular variability and of X-ray sources.

The placid and seemingly constant sky is occasionally perturbed by the appear-
ance of what appears to be a new star. In Europe such a star was Nova Stella,
or briefly: Nova. The plural is Novae (Stellae). Some of these new stars were so
bright that they were visible even during day time. Examples studied in Europe
are those of 1572 (Tycho’s Nova) and 1604 (Kepler’s Nova). When ancient Chinese,
Japanese and Korean chronicles were excerpted and translated (in 1846, more in
1871), several older examples were found, inclding those in the years 185, 1006 (the
brightest of all, also seen in the Middle East and Europe), 1054 and 1181. Several
hundred other novae, less bright and only visible at night, are also mentioned in the
chronicles. An early-modern European new star was the one discovered by Blaeu in
Cygnus: Nova Cygni, also known as P Cygni.

Gradually it became clear that one should discriminate supernovae and novae.
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In 1885 a nova had been discovered in the Andromeda nebula, M 31. This nova
was about 10−4 times as bright as the nova in Aquila of 1918, called S Aquilae. It
was concluded that M 31 is about 100 times further away that Nova Aquilae, and
thus a nebula in our own galaxy. Starting in 1910, however, photographs taken with
the new telescope at Lick Observatory showed fainter variables in M 31, at 10−3 of
the brightness level of S Aquilae. If these fainter variables were ordinary novae, two
conclusions followed: The Andromeda Nebula is much further away, and thus much
bigger, than previously thought: it is a true ‘Island in the Universe’, just like our
own Milky Way. Also, S Aquilae must have been extremely bright: not a nova, not
a supernova.

In the 1920s the structure of white dwarfs was described by Chandrasekhar, on
the basis of the assumption that the pressure in these stars is that of a degenerate
electron gas. When the neutron was discovered, it was soon realized that a star
in which the pressure is that of a degenerate neutron gas, that the radius of such
a neutron star would be some thousand times smaller than that of a white dwarf,
i.e. on the order of 10 km. Baade and Zwicke then understood that the collapse
of a star (or its core) to such a small size releases an enormous amount of energy,
∆E ∼ GM2/R, enough to provide the energy of the supernovae.

The nature of novae became clear when it was discovered in the 1940s that they
arose in binaries, in which a white dwarf accretes mass from a companion. This
matter piles up on the surface of the white dwarf, and concists mainly of hydrogen
and helium. When the layer is sufficiently deep, the pressure and temperature at its
bottom are high enough for hydrogen-fusion to start. The energy released is enough
to lift the surface layer and let it expand to the size of a giant, causing a rise in
luminosity by a factor ∼10 000. As the outer layer disperses, the surface shrinks to
its original level and accretion resumes, until the next outburst. Most novae have
been seen in outburst just once, but a number of novae has shown several outbursts:
these are called recurrent novae.

Dwarf novae show small outbursts, in which the luminosity rises by a factor∼100.
For most dwarf novae many outbursts have been observed. A typical outburst can
last a few days to two weeks, and the intervals between the outbursts range from
weeks to months. In the 1960s it was discovered that dwarf novae are binaries in
which a white dwarf accretes matter from a low-mass (< M�) companion. The dwarf
novae arise when the mass transport through the disk changes. In the related class
of nova-like variables the accretion disk does not show such large variations, but only
small, but continuous flickering. The orbital periods of these systems range from
80 mins to 8-9 hours. In some cases the donor of the white dwarf is also a white
dwarf: the orbital periods of these ultracompact binaries range from the current
record holder of 5 min to some 40-60 mins.

These compact binaries with white dwarfs were discovered to have counterparts
with a neutron star after the study of the sky in X-rays, which started from 1967.
Several hundred very bright X-ray sources were discovered, concentrated towards
the galactic plane, and on this plane toward the center of the galaxy. Most of these
were found to be binaries in which a low-mass star transfers mass to a neutron star.
These systems are called low-mass X-ray binaries. A dozen is now known to house
a black hole: all of these are transient, i.e. they are faint most of the time and only
become (very) bright at intervals, often of many years. Some transients contain a
neutron star.
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When mass transfer is a low-mass X-ray binary with a neutron star stops, the
neutron star may turn on as a (recycled) radio pulsar. (Pulsar is short for: pulsating
source of radio emission.) Most such pulsars have low-mass white-dwarfs as com-
panions, the cores of giants that tranferred their outer layers to the neutron star.
In some cases, the neutron star is accompanied by another neutron star.

Compact binaries are studied for a variety of reasons. The two most important
are

• the structure of neutron stars is related to their equation of state, and the
maximum possible mass gives information about this equation at nuclear and
supranuclear densities

• compact stars can make compact binaries which emit gravitational waves.
Such binaries can be used to study and test general relativity

Another reason is that many cataclysmic variables have accretion disks, which can
be studied in detail because the time scales of their variability is short, and because
nearby cataclysmic variables are relatively bright. It is hoped that understanding
accretion disks in these systems will help understanding accretion disks around the
supermassive black holes in Active Galactic Nuclei.

1.5 These lecture notes

The first part of this Lecture Course is set up as follows. First we derive the relative
orbit of two stars under the influence of their mutual gravitation (Chapter 2), and
then we derive the visual orbit, the radial velocity curve, and the eclipse lightcurve
for a binary observed from Earth (Chapter 3). We briefly indicate how observations
can be fitted to these theoretical curves. In these chapters we assume perfectly
spherical masses. In Chapter 4 we show how parameters of binaries are derived from
the observations, and discuss a number of interesting cases. Consequence for the
orbit and orbital evolution of non-sphericity are discussed in Chapter 5.

Chapter 6 discusses the structure of degenerate stars, i.e. white dwarfs and neu-
tron stars.

1.6 Exercises

The following sites may be useful:
general information on astronomical objects simbad.u-strasbg.fr this site also
has links to catalogues.
popular site on stars stars.astro.illinois.edu/sow/sowlist.html

reference search cdsads.u-strasbg.fr/abstract service.html adsabs.harvard.edu/abstract service.html

Exercise 1. Use the Web to find the Bayer names for the stars Markab, Algorah
and Propus mentioned in the quotation on page 3 from Herschel.

Exercise 2. Use SIMBAD and the Hipparcos Catalogue to find the distance to
Mizar. Noting that Galileo measured the distance between Mizar A and B as 15′′,
give a rough estimate of the orbital period.

Exercise 3. Get the pdf-file of the paper in which Herschel gives his measure-
ments of the orbit of Castor AB; and of the paper in which Griffin explains the
velocity correlation method.
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Figure 1.10: Distribution of orbital periods (left) and mass ratios (right) of O stars as
observed (i.e. not corrected for selection effects). Spectroscopic binaries are indicated
with gray, visual binaries with white, and speckle binaries with black histograms.
After Mason et al. (1998)

Exercise 4. Confirm from the lightcurves of GG Lup (Figure 1.6) that the pri-
mary eclipse is the eclipse of the hotter star.

Exercise 5. Consider a binary of two O stars, each with a mass of 20M�.
The nearest O stars are at about 250 pc. With an angular resolution of 0.1′′ and a
radial velocity accuracy of 5 km/s, determine the minimum period for studying this
binary as a visual binary, and the maximum period for studying its radial-velocity
curve. Assume that a reliable study requires an amplitude 5 times bigger than the
measurement accuracy. Compare the results with Figure 1.10. How do the limits
change when the accuracy is improved by a factor 100 (as has happened since 1980)?

1.7 References with the Historical Introduction

this list is as yet incomplete.

1. R.G. Aitken. The binary stars. Reprint in 1964 by Dover Publications, New York,
1935.

2. A. Boden, B. Lane, M. Creech-Eakman et al. The visual orbit of 64 Piscium ApJ,
527:360–368, 1999.

3. J. Andersen, J. Clausen, A. Gimemez. Absolute dimensions of eclipsing binaries,
XX. GG Lupi: young metal-deficient B stars. AA, 277:439–451, 1993.

4. J. Clausen, J. Garcia, A. Gimemez, B. Helt, L, Vaz. Four colour photometry of
eclipsing binaries, XXXV. Lightcurves of GG Lupi: young metal-deficient B stars.
AAS, 101:563–572, 1993.

5. G. Gatewood and C. Gatewood A study of Sirius ApJ, 225:191–197, 1978.

6. J. Goodricke. On the periods of the changes of light in the star Algol. Philosophical
Transactions, 74:287–292, 1784.

16



7. R.F. Griffin. A photoelectric radial-velocity spectrometer. ApJ, 148:465–476, 1967.

8. W. Herschel. Catalogue of 500 new nebulae, nebulous stars, planetary nebulae, and
clusters of stars; with remarks on the construction of the heavens. Philosophical
Transactions, 92:477–528, 1802.

9. W. Herschel. Account of the changes that have happened, during the last twenty-five
years, in the relative situation of double-stars; with an investigation of the causes
to which they are owing. Philosophical Transactions, 93:339–382, 1803.

10. R. Kippenhahn. Mass exchange in a massive close binary system. A&A, 3:83–87,
1969.

11. R. Kippenhahn and A. Weigert. Entwicklung in engen Doppelsternsystemen. I.
Massen- auschtausch vor und nach Beendigung des zentralen Wasserstoff-Brennens.
Zeitschr. f. Astroph., 65:251–273, 1967.

12. G.P. Kuiper. On the interpretation of β Lyrae and other close binaries. ApJ,
93:133–177, 1941.

13. B. Mason, D. Gies, W. Hartkopf, W. Bagnuolo, Th. ten Brummelaar, and H.McAlister
ICCD speckle observations of binary stars. XIX. An astrometric spectroscopic sur-
vey of O stars. AJ, 115:821–847, 1998.

14. J. Michell. An inquiry into the probable parallax, and magnitude of the fixed stars,
from the quantity of light which they afford us, and the particular circumstances of
their situation. Philosophical Transactions, 57:234–264, 1767.
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Chapter 2

The gravitational two-body
problem

In this chapter we derive the equations that describe the motion of two point masses
under the effect of their mutual gravity, in the classical Newtonian description.

2.1 Separating motion of center of mass and rel-

ative orbit

Suppose we have two masses, M1 at position ~r1 and M2 at position ~r2. The equations
of motion for the two bodies are

M1 ~̈r1 = − GM1M2

|~r1 − ~r2|2
~e12 (2.1)

M2 ~̈r2 = +
GM1M2

|~r1 − ~r2|2
~e12 (2.2)

where a dot · denotes a time derivative, and where ~e12 is a vector of unit length in
the direction from M2 to M1.

We now define two new coordinates, one denoting the center of mass:

~R ≡ M1~r1 +M2~r2

M1 +M2

(2.3)

and one the vector connecting the two masses:

~r ≡ ~r1 − ~r2 (2.4)

Adding equations 2.1 and 2.2 gives

M1 ~̈r1 +M2 ~̈r2 = 0 ⇒ ~̈R = 0 (2.5)

which implies that the center of mass has a constant velocity:

~̇R = constant vector (2.6)

Dividing Eqs. 2.1 and 2.2 byM1 andM2, respectively, and subtracting the results,
one obtains

~̈r1 − ~̈r2 = −
(

1

M1

+
1

M2

)
GM1M2

|~r1 − ~r2|2
~e12 ⇒ µ~̈r = − GM1M2

r3
~r (2.7)
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Figure 2.1: Relation between the relative orbit (left) and absolute orbits (right) of a
binary, in this case Sirius, as expressed by Eq. 2.9.

where we have introduced the reduced mass:

µ =
M1M2

M1 +M2

(2.8)

We have now split the equations of motion 2.1 and 2.2 into an equation 2.6 for
the motion of the center of mass, and an equation 2.8 for the motion of the vector
connecting the masses. To see how the vectors for the masses ~r1 and ~r2 can be
obtained once we have solved Eq. 2.7, we solve Eqs. 2.3 and 2.4 for them:

~r1 = ~R +
M2

M1 +M2

~r ; ~r2 = ~R− M1

M1 +M2

~r (2.9)

From this equation we learn that the orbits of M1 and M2 with respect to the
center of mass have the same form, and that the sizes of the orbits are inversely
proportional to the masses.

Consider the angular momentum of a particle with mass µ:

~L ≡ µ~r × ~̇r = constant vector (2.10)

where× denotes the outer product. That the angular momentum is constant, follows
from its time derivative, noting that the force is along the line connecting the masses,
~r ‖ ~̈r (Eq. 2.7):

~̇L = µ
(
~̇r × ~̇r + ~r × ~̈r

)
= 0 (2.11)

Thus the angular momentum vector ~L is conserved, and has a fixed direction,
perpendicular to both ~r and ~̇r. This implies that the orbital plane of both masses
is fixed, perpendicular to the angular momentum vector. We can therefore describe
the motion of the masses with two coordinates, in this plane. For these coordinates
we choose cylindrical coordinates r and φ, which lead to

~̇r = ṙr̂ + rφ̇φ̂ and ~̇r 2 = ṙ2 + r2φ̇2 (2.12)
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Figure 2.2: Illustration of Eq. 2.12; ~v ≡ ~̇r.

with r̂ the unit vector in the direction of ~r and φ̂ the unit vector perpendicular
to ~r (and in the orbital plane). For the angular momentum we obtain in these
coordinates:

~L = rr̂ × µ
(
ṙr̂ + rφ̇φ̂

)
= µr2φ̇

(
r̂ × φ̂

)
(2.13)

and for its scalar length:
L = µr2φ̇ (2.14)

The total energy of the two masses is given by the sum of the kinetic and potential
energies:

E =
1

2
M1 ~̇r1

2 +
1

2
M2 ~̇r2

2 − GM1M2

r
(2.15)

By substituting the time derivatives of ~r1 and ~r2 after Eq. 2.9 we can rewrite this as

E =
1

2
(M1 +M2) ~̇R 2 +

1

2
µ~̇r 2 − GM1M2

r
(2.16)

Thus the total energy can be written as the kinetic energy derived from the motion
of the center of mass, and the kinetic and potential energy in the relative orbit.

2.2 The relative orbit

To solve the relative orbit, we first write down the energy and angular momentum
of the relative orbit per unit of reduced mass:

ε ≡ Ebin

µ
≡ 1

2
(ṙ2 + r2φ̇2)− G(M1 +M2)

r
(2.17)

l ≡ L

µ
= r2φ̇ (2.18)

Both ε and l are constants of motion. We now use Eq. 2.18 to eliminate φ̇ from
Eq. 2.17, and find

ε =
1

2
ṙ2 − G(M1 +M2)

r
+

1

2

l2

r2
(2.19)

We first investigate this equation qualitatively by defining an effective potential

ε =
1

2
ṙ2 + Veff where Veff ≡ −

G(M1 +M2)

r
+

1

2

l2

r2
(2.20)

The effective potential depends on the angular momentum l. Depending on the total
energy ε we can have various types of orbits (see Figure 2.3).
1) ε > 0: the particle moves from r =∞ to a minimal distance, and back out again.
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Figure 2.3: Possible orbits; the values are for l = 2GM where M ≡M1 +M2

It has a finite radial velocity ṙ at r =∞.
2) ε = 0: idem, with radial velocity equal to zero at r =∞.
3) ε < 0: the orbit is bound, between rmin and rmax

At the minimum of Veff(r), which may be found from ∂Veff/∂r = 0, the orbit is
circular. Thus, for each given angular momentum l, the circular orbit is the orbit
with the smallest total energy. No matter how small the angular momentum l is, a
circular orbit is always possible. Another property of the classical solution is: the
larger the energy, the closer to the origin the particle can come, but it can never
ever reach the origin, as long as l > 0.

To solve the orbit analytically, we write r as a function of φ:

dr

dφ
=
ṙ

φ̇
=
r2

l

(
2ε+

2G(M1 +M2)

r
− l2

r2

)1/2

(2.21)

Next, we substitute u = 1/r to find

(
du

dφ
)2 =

1

l2
(2ε+ 2G(M1 +M2)u− l2u2) (2.22)

the solution of which is given by

u =
1

r
=

1

p
(1 + e cos[φ− φo]) ≡

1

p
(1 + e cos ν) (2.23)

with
1

p
=
G(M1 +M2)

l2
and 2ε =

[G(M1 +M2)]2

l2
(e2 − 1) (2.24)

(verify! by entering the solution in Eq. 2.22). Here φo is an integration constant;
we will see below that it corresponds to periastron. Because φo is constant, we have
ν̇ = φ̇.

Eq. 2.23 is the equation for a conic section: in the Newtonian description of
gravity, the relative orbit of a two masses in their mutual gravitational fields is
always a conic section.
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2.2.1 Some properties of elliptic motion

We will now show that, in the case of a bound orbit, when ε < 0, the orbit corre-
sponds to an ellipse, with eccentricity e < 1. The shortest distance, periastron, is
reached for ν = 0 at r = p/(1 + e), and the longest distance, apastron, for ν = π
at r = p/(1 − e). The sum of the periastron and apastron distances is the major
axis of the ellipse, 2a, and from this we find p = a(1− e2). p is called the semi-latus
rectum, a the semi-major axis of the ellipse. Entering this result in Eqs. 2.24 and
2.23 we obtain

l2 = G(M1 +M2)a(1− e2) and ε = − G(M1 +M2)

2a
(2.25)

and

r =
a(1− e2)

1 + e cos ν
(2.26)

We write the relative velocity as v2 ≡ ṙ2 + r2φ̇2. We combine Eqs. 2.17 and 2.25,
noting that the total orbital energy ε is constant, to find

v2 = G (M1 +M2)

(
2

r
− 1

a

)
(2.27)

For peri- and apastron we get

rp = a(1− e) and ra = a(1 + e) (2.28)

Hence with Eq. 2.27 the velocities vp and va at peri- and apastron are

vp =

√
G(M1 +M2)

a

1 + e

1− e
; va =

√
G(M1 +M2)

a

1− e
1 + e

(2.29)

(These velocities can also be derived directly by comparing the energy Eq. 2.17 and
angular momentum Eq. 2.18 at peri- and apastron.)

Now draw a coordinate system with the origin (C in Fig. 2.4) in the middle of
the major axis of the ellipse, with the X-axis along the major axis, and the Y -axis
along the minor axis. In this coordinate system we have from Eq. 2.26 and 2.28:

X = ea+
a(1− e2) cos ν

1 + e cos ν
=
a(e+ cos ν)

1 + e cos ν
and Y =

a(1− e2) sin ν

1 + e cos ν
(2.30)

For X = 0 we have cos ν = −e, and entering this in the equation for Y , we find the
minor axis b:

b = a
(
1− e2

)1/2
(2.31)

With these results it is now easily shown that(
X

a

)2

+

(
Y

b

)2

= 1 (2.32)

i.e. the relative orbit is an ellipse.
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Figure 2.4: Left: Drawings of ellipse with center C, focus F, periastron P, and
apastron A. Right: Detail to illustrate derivation of equation of Kepler (Eq. 2.36).

2.2.2 The equation of Kepler

Having established the form of the orbit r(ν), we wish to know the position as a
function of time r(t).

We start by deriving the second law of Kepler, that the radius vector ~r covers
equal area in equal times. Consider an infinitesimal time interval ∆t. The area ∆O
covered in this interval is ∆O = (1/2)|~r × ~̇r∆t|. Thus

dO

dt
=

1

2
|~r × ~̇r| = 1

2
|~r × (ṙr̂ + rφ̇φ̂)| = l

2
≡ L

2µ
= constant (2.33)

This is the second law of Kepler, also called the law of equal areas. By integrating
we find that the area covered increases linearly with time:

O(t) = O(0) +
L

2µ
t (2.34)

We define in Figure 2.4 semi-major axis AC=CP= a, and semi-minor axis HC=CK=
b. The foci of the ellipse are F at X = ea and G at X = −ea. The periastron P has
a distance to the focus F given by PF≡ rp = (1− e)a; the apastron A has a distance
to focus F given by AF≡ ra = (1 + e)a. If we have a point S on the ellipse, then
the sum of the distances of this point to the foci is GS + SF = 2a.

The motion of the point S along the ellipse in a Kepler orbit is such that the
area covered by FS, the area FPS shaded grey in Fig. 2.4 left, increases linearly
with time, according to Eq. 2.34. We add to the ellipse a circle around the center
C with radius a (Figure 2.4 right), and note from Eq. 2.32 that this circle can be
found from the ellipse X, Y by multiplying for each X the corresponding Y value
with a/b. Draw a line perpendicular to the semi-major axis through S, and call the
point where this line cuts the semi-major axis T and where it cuts the circle Q. Then
QC= a and QT/ST= a/b. The area FPQ in the circle (indicated grey in Fig. 2.4
right) is a/b times the area FPS in the ellipse (indicated grey in Fig. 2.4 left), and
thus also increases linearly with time. We write this as:

M

2π
≡ Area(FPS)

Area(ellipse)
=

Area(FPQ)

Area(circle)
=

Area(CPQ)− Area(CFQ)

πa2
(2.35)

23



where M increases linearly with time. Now write angle QCF as ε. The area of the
circle sector is Area(CPQ)= 0.5εa2. With QC= a we have QT= a sin ε, and the
area of triangle CFQ= 0.5CF×QT= 0.5ae× a sin ε = 0.5a2e sin ε. The last equality
of Eq. 2.35 can then be written:

M

2π
=

0.5εa2 − 0.5a2e sin ε

πa2
⇒M = ε− e sin ε (2.36)

This is Kepler’s equation. M is called the mean anomaly, and ε the eccentric
anomaly. To express r ≡FS in terms of ε we note that ST= (b/a)QT= b sin ε, thus
ST2 = b2 sin2 ε = a2(1− e2) sin2 ε where we use Eq. 2.31, and therefore

r2 ≡ FS2 = ST2 + TF2 = ST2 + (CF− CT)2 = a2 (1− e cos ε)2 (2.37)

hence
r = a(1− e cos ε) (2.38)

To express ν as a function of ε we combine Eqs. 2.26 and 2.38 into

1− e cos ε =
1− e2

1 + e cos ν
⇒ tan

ν

2
=

√
1 + e

1− e
tan

ε

2
(2.39)

(Since the derivation of the right hand side equation is somewhat convoluted we give
the steps explicitly: From the left equation, we have

cos ν =
cosε− e

1− e cos ε
hence sin ν =

√
1− e2sinε

1− e cos ε
(2.40)

Thus, with Eq. 2.50,

tan
ν

2
=

√
1− cos ν

1 + cos ν
=

√
(1 + e)(1− cos ε)

(1− e)(1 + cos ε)
(2.41)

from which Eq. 2.39 follows.)

2.3 Exercises

Exercise 6. The general definition of the angular momentum is

~L =

∫
V

ρ(~r × ~v)dV (2.42)

In the case of two point masses, this can be written

~L = M1~r1 × ~̇r1 +M2~r2 × ~̇r2 (2.43)

Show that this can be written also as

~L = (M1 +M2)~R× ~̇R + µ~r × ~̇r (2.44)

so that the angular momentum can be split, analogously to the energy, in the angular
momentum of the center of mass and the angular momentum in the binary.
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Exercise 7. Start from the second law of Kepler, Eq. 2.34, to derive his third
law: (

2π

P

)2

=
G(M1 +M2)

a3
(2.45)

Exercise 8a. Geometrical interpretation of the semi-latus rectum. In Figure 2.4
draw a line from the focal point F to the ellipse, perpendicular to the major axis.
This line is called the semi-latus rectum. Show that its length is a(1− e2).
b. Prove the statement that for any point S on the ellipse, the sum of the distances
to the two focal points equals the major axi: GS+SF=2a. (Hint: write GS in terms
of a, e and ε)

Exercise 9: an alternative derivation for the velocities vp and va at peri- and
apastron. The orbital angular momentum and the orbital energy are given by
Eq. 2.25. Use the equality of energy and angular momentum at periastron with
energy and angular momentum at apastron, to write two equations for vp and va,
and then solve for these two velocities.

Mathematical intermezzo: adding angles, half-angles

We reiterate some useful goniometric relations.

eix = cosx+ i sinx

eiy = cos y + i sin y

ei(x+y) = eixeiy

hence (2.46)

cos(x+ y) = cosx cos y − sinx sin y (2.47)

sin(x+ y) = cosx sin y + sinx cos y (2.48)

In the case where x = y we have

cos(2x) = cos2 x− sin2 x = 1− 2 sin2 x = 2 cos2 x− 1 (2.49)

from which we have

2 sin2 x = 1− cos(2x), 2 cos2 x = 1 + cos(2x) ⇒ tan2 x =
1− cos(2x)

1 + cos(2x)
(2.50)
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Mathematical intermezzo: projection and rotation

In general, a vector ~r in a plane can be written as consisting of components along
the X and Y axes: X = r cosφ and Y = r sinφ. If we wish to switch from one
coordinate system X, Y to another one X1, Y1, we construct a rotation matrix, as
follows. Suppose the new coordinate system is at angle −θ from the previous one.
We are looking for a matrix for which(

X1

Y1

)
=

(
R11 R12

R21 R22

)(
X
Y

)
(2.51)

The unit vector along the X axis is projected on the new coordinate axes as
X1 = cos θ and Y1 = sin θ. Therefore we take R11 = cos θ and R21 = sin θ. The unit
vector along the Y axis is projected on the new coordinate axes as X1 = − sin θ and
Y1 = cos θ. Therefore we take R12 = − sin θ and R22 = cos θ. Herewith we have
constructed the rotation matrix R(−θ).

Consider the vector r which we want to express in a new coordinate system,
rotated −θ with respect to the original system. Eq. 2.51 becomes:(

r cosφ1

r sinφ1

)
=

(
cos θ − sin θ
sin θ cos θ

)(
r cosφ
r sinφ

)
(2.52)

executing the multiplications, we have

r cosφ1 = r(cos θ cosφ− sin θ sinφ) = r cos(θ + φ)

and
r sinφ1 = r(sin θ cosφ+ cos θ sinφ) = r sin(θ + φ)

Note that the rotation does not change the length of the vector r. Hence, perhaps
not surprisingly, we see that a rotation of −θ of the coordinate system corresponds
to the addition of θ to the position angle of the original vector.

In 3-d space, we may choose the Z-axis perpendicular to the plane we just
described, and the rotation along −θ now is written as a rotation around the Z
axis:

Rz(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.53)

Thus, we see the close connection between projecting a vector and a rotation of the
coordinate system.

Analogously, a rotation over −θ around the X-axis can be shown to be given in
3-d coordinates by:

Rx(−θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2.54)
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Chapter 3

Observing binaries

In this chapter we first derive the equation for the visual orbit of a binary, and briefly
describe how it can be fitted. We then derive the radial velocities of the binary
members, and describe how they are fitted. The visual orbit and radial velocities
provide information about the masses of the stars. Eclipsing binaries allow us to
obtain observational information on the radii of the stars. If the stars are spherical,
the analysis of the eclipse is relatively straightforward. However, the mutual gravity
of the stars leads to non-sphericity. In the last Section of this chapter we discuss
the Roche geometry which describes the surfaces of stars in a binary, and briefly
explain how this affects the analysis of eclipse observation. The non-sphericity of
the stars also implies that their gravity deviates from the 1/r2-law. The discussion
of this deviation and its effect on the binary orbit are deferred to a later Chapter.

3.1 Projecting the binary orbit

Some angles involved in converting the binary orbit into the observed visual orbit are
illustrated in Figure 3.1. To obtain the position of the star in the plane perpendicular
to the line of sight, we perform two subsequent rotations. The angle ω is the angle
between the long axis of the ellipse, and the line o which is the intersection of the
orbital plane with the plane perpendicular to the line of sight. We project r onto
o (the new X-axis) and l (the new Y axis). As derived in the intermezzo, this
corresponds to adding ω to the position angle ν. We then rotate around o, the new
X axis, over the inclination angle −i.

The coordinate system in the plane of the sky has o as its X-axis and m as its
Y -axis. It is customary to take the X-axis towards the North, and thus we require
a third rotation, over the angle Ω between o and the North-South line, to obtain the
final coordinates. In Equation: x′

y′

z′

 = Rz(−Ω)Rx(−i)Rz(−ω)

 r cos ν
r sin ν

0

 =

Rz(−Ω)Rx(−i)

 cosω − sinω 0
sinω cosω 0

0 0 1

 r cos ν
r sin ν

0

 =
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Figure 3.1: Illustration of the planes involved in observing binary motion. C is the
center around which the star moves. n is the normal to the binary plane, passing
through C; the celestial plane is drawn through C, perpendicular to the line of sight
(�). The angle between n and � is the inclination i, which thus is also the angle
between the two planes. l is the line through C, perpendicular to the intersection o
of the two planes, in the orbital plane. m is the line through C perpendicular to the
intersection, in the celestial plane. Thus, l, �, n and m are all in one plane, the
plane through C perpendicular to the intersection. The vector r connects C with the
location of the star, the projection in the orbital plane of r on l is CP , the projection
of CP on m is CQ, and PQ ≡ z is the distance of the star to the celestial plane.
The angle between r and the semi-major axis is ν (zero at periastron), the angle
between the intersection and the semimajor axis is ω.

Rz(−Ω)Rx(−i)

 r cos(ω + ν)
r sin(ω + ν)

0

 =

Rz(−Ω)

 1 0 0
0 cos i − sin i
0 sin i cos i

 r cos(ω + ν)
r sin(ω + ν)

0

 = Rz(−Ω)

 r cos(ω + ν)
r sin(ω + ν) cos i
r sin(ω + ν) sin i


Computationally, it is easier to write the third rotation on the left hand side of

this equation, i.e. to multiply the last equality left and right with Rz(Ω). This leads
to: cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1

 ρ cos θ
ρ sin θ
z

 =

 ρ cos(θ − Ω)
ρ sin(θ − Ω)

z

 =

 r cos(ω + ν)
r sin(ω + ν) cos i
r sin(ω + ν) sin i


So finally, we can wrap up the computation, by writing the last equations as

x = r cos(ω + ν) (3.1)
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Figure 3.2: Modern computation of the orbit of Castor B relative to Castor A. The
positions in various years are indicated. Compare with Herschel’s observations in
Figure 1.4.

parameter symbol Castor AB
orbital period P 467.0 yr
time of periastron passage T 1958.0
semi-major axis a 6.805′′

eccentricity e 0.343
inclination i 114.5◦

angle periastron/node-line ω 249.5◦

angle North/node-line Ω 41.3◦

Table 3.1: Parameters required to describe a visual orbit, their symbols, and as an
example the values for Castor (from Heintz 1988).

y = r sin(ω + ν) cos i (3.2)

z = r sin(ω + ν) sin i (3.3)

ρ =
√
x2 + y2 (3.4)

θ = Ω + atan
y

x
(3.5)

3.1.1 Computing and fitting the visual orbit

To illustrate the computation of the relative positions of two stars in a binary at
time t, we compute the relative position of Castor B with respect to Castor A at the
time of Herschel’s first observation. We use the orbital parameter as determined by
Heintz (1988), listed in Table 3.1.
Step 1. Herschel’s first observation is from 11 May 1779. Since the period is in
years, we write this as t = 1779.36. We compute the mean anomaly from:

M =
2π

P
(t− T ) (3.6)

and find M = −2.403 radians.
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Step 2. We solve the eccentric anomaly ε from Kepler’s equation Eq. 2.36, to find:
ε = −2.585 radians
Step 3. We compute the radius vector in the orbital plane r and the real anomaly
ν from Eqs. 2.38 and 2.39. Results: r = 8.787′′ and ν = −2.747.
Step 4. We compute the coordinates with respect to the line of nodes, in the plane of
the sky, and from this the radius vector and position angle with respect to the North,
from Eqs. 3.1-3.5. Results: x = −0.324, y = −3.641, ρ = 3.656, θ − Ω = −95.08◦,
hence θ = −53.78◦, equivalent to θ = 306.22◦. The tricky thing here is to obtain
θ −Ω in the right quadrant. If one computes atan(y/x), the answer is the same for
x and y both negative as for x and y both positive, but the quadrant in which the
result lies is not the same!
Step 5. We can now plot the relative position of the two stars. Putting Castor A at
the origin, and noting that the angle θ by definition increases from the North, anti-
clockwise. The relative position can be expressed in the directions of right ascension
and declination, as:

∆α = ρ sin θ and ∆δ = ρ cos θ (3.7)

Note that in the figure, as on the sky, the right ascension increases towards the left.

The inverse problem from plotting a known orbit is to solve the orbital parameter
from a set of observations ∆αi, ∆δi obtained at N times ti. For a set of assumed
values for the orbital parameters listed in Table 3.1 we can compute for each ob-
serving time ti the model values ∆αm(ti) and ∆δm(ti). If the measurement errors in
right ascension and declination at time ti are σα,i and σδ,i respectively, and if these
errors are Gaussian, the quantity to be minimized is:

χ2 =
N∑
i=1

[
(∆αi −∆αm(ti))

2

σα,i2
+

(∆δi −∆δm(ti))
2

σδ,i2

]
(3.8)

In general, this minimization cannot be done directly, but must be done with succes-
sive improvements on an initial trial solution. The solution to the problem consists
of 1) the best parameter values 2) the errors on the parameter values 3) the proba-
bility that the model describes the observed orbit (as given by the probability that
the model would give rise to a χ2 with the observed value or larger).

The minimization provides us with the values for the parameters listed in Ta-
ble 3.1. Of these parameters, T , i, ω and Ω are not essential for the binary itself,
but only indicate relations with the direction to and time measurement on Earth.
Relevant parameters for the binary are the orbital period P , the eccentricity e and
the semi-major axis a. From the visual orbit alone, a is only known in angular units.

If the orbits of both stars can be measured separately with respect to the sky
(after correction for parallax and proper motion), then from Eq. 2.9 we see that the
ratio of the semi-major axes gives the ratio of the masses: a1/a2 = M2/M1.

If the distance to the binary is known, for example because its parallax is mea-
sured, or because it is in a star cluster, we can compute the semi-major axis in cm,
and thus from Kepler’s third law Eq. 2.45 derive the total mass.

If both distance and mass ratio are known we can derive the masses M1 and M2

separately.
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3.2 Radial velocities

From Eq. 3.3 we have the distance z of the star to the plane perpendicular to the line
of sight. The derivative of z corresponds to (a component of) the radial velocity:

ż = ṙ sin(ω + ν) sin i+ rν̇ cos(ω + ν) sin i

To rewrite this, we first use the angular momentum, as expressed in Eq. 2.18, and
then rewrite it, using Eqs. 2.25 and 2.26:

rν̇ = rφ̇ =
l

r
=

√
G(M1 +M2)

a(1− e2)
(1 + e cos ν) (3.9)

Next, we take the time derivative of Eq. 2.26 and rewrite it with Eq. 3.9:

ṙ =
a(1− e2)

(1 + e cos ν)2
e sin ν ν̇ =

a(1− e2)

(1 + e cos ν)2
e sin ν

l

r2
=

√
G(M1 +M2)

a(1− e2)
e sin ν (3.10)

Entering these results Eq 3.9 and 3.10 into the equation for ż, we find

ż =

√
G(M1 +M2)

a(1− e2)
sin i [cos(ω + ν) + e cos ν cos(ω + ν) + e sin ν sin(ω + ν)]

=

√
G(M1 +M2)

a(1− e2)
sin i [cos(ω + ν) + e cosω] ≡ K [cos(ω + ν) + e cosω] (3.11)

where the last equality defines K.
In practive, an observed velocity does not belong to the reduced mass, but to

one of the two stars. Let us for the moment consider that the star whose radial
velocity is measured is labeled 1. We define

K1 ≡
a1

a
K =

√
G(M1 +M2)

a3(1− e2)
a1 sin i⇒ a1 sin i =

(
P

2π

)
(1− e2)1/2K1 (3.12)

where we have further used that a1/a = M2/(M1 + M2) (see Eq. 2.9). With K1 we
derive a useful quantity, called the mass function for star 1. Multiply the third law
of Kepler Eq. 2.45 left and right with (a1 sin i)3/G, and use Eq. 3.12 to find the mass
function f(M1):

f(M1) ≡ M3
2 sin3 i

(M1 +M2)2 =
P

2πG
K3

1

(
1− e2

)3/2
(3.13)

From Eq. 3.11 we see that the parameters K, e and ω define the radial velocity
curve. K defines the amplitude of the velocity curve, and e (through the non-
linearity of ν with time) and ω (as a phase angle) define the form of the curve. In
an observed binary, the motion of the center of mass must be added to the average
velocity. To visualize how the average radial velocity can differ from zero, consider
an eccentric binary with the major axis in the plane of the sky. There are two
possibilities: the maximum velocity away from us is at periastron (or at apastron),
then the maximum velocity towards us is at apastron (or at periastron), and thus
the average of these two is away from us (towards us).
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If both velocity amplitudes K1 and K2 are measured, we have the mass ratio, as
can be seen from dividing the two mass functions Eq. 3.13 and its analogon for star
2: M1/M2 = K2/K1. We also have lower limits to each of the two masses M1 and
M2, from the mass functions. But further than this one cannot go.

If the inclination is known and both amplitudes then we can solve both masses
separately, as well as the semi-major axis.

3.3 Computing eclipses

For the moment we assume that both binary stars are spherical. A spherically
symmetric star gives the same flux no matter from which direction it is observed,
provided it is not eclipsed. For this reason, it is relatively easy to compute its eclipse
by a spherical companion.

Before we do this, we reiterate some basic equations that describe the flux leaving
a stellar surface. We start by considering a unit surface of the star; this is sufficiently
small to be considered flat. The energy flux dFλ(θ) at wavelength λ leaving the
surface under an angle θ with the normal to the surface is given by

dFλ(θ) = Iλ(θ) cos θdω = Iλ(θ) cos θ sin θdθdφ (3.14)

We obtain the flux leaving the unit surface by integrating over the spatial angle dω;
due to symmetry, the integration over φ gives 2π, and we obtain:

Fλ = 2π

∫ π/2

0

Iλ(θ) cos θ sin θdθ ≡ 2π

∫ 1

0

Iλ(µ)µdµ (3.15)

where we have defined µ ≡ cos θ. Integrated over the stellar surface, we obtain the
(monochromatic) luminosity of the star

Lλ = 4πR2Fλ (3.16)

Now consider the star from a large distance, and compute the flux fλ through a
unit surface at that distance. The light reaching us from the center of the star leaves
its surface along the normal, but the light reaching us from positions away from the
center leaves the star at an angle to the surface. A circle at projected distance
r = R sin θ from the star center has a projected surface 2πrdr = 2πR2 sin θ cos θdθ,
and at large distance d subtends a spatial angle dω = 2π(R/d)2 sin θ cos θdθ. The
radiation from this circle leaves the stellar surface under an angle θ. From the
definition of the intensity I according to Eq. 3.14, we can write the flux fλ as

fλ =
2π

d2

∫ R

0

rIλ(r)dr = 2π

(
R

d

)2 ∫ π/2

o

Iλ(θ) cos θ sin θdθ = Fλ

(
R

d

)2

(3.17)

From this we see that energy is conserved as the flux travels from the stellar surface
to distance d:

Lλ = 4πR2Fλ = 4πd2fλ (3.18)

This assumes, of course, that there is no interstellar absorption; for the moment we
will continue to make this assumption.

A stellar atmosphere model provides the flux Fλ leaving a unit surface of the
star. The model depends on 1) the effective temperature 2) the gravity at the
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parameter symbol
radius of star 1 R1

effective temperature of star 1 T1

radius of star 2 R2

effective temperature of star 2 T2

Table 3.2: Parameters added to those of Table 3.1 for the study of an eclipsing binary.
In principle the metallicity of both stars should be added; however, this are usually
determined not from the eclipses, but from the out-of-eclipse spectra.

stellar surface g ≡ GM/R2, usually expressed as log g 3) the abundances of the
elements. If the whole star is observed, this is sufficient for a description of the
stellar spectrum. When part of the surface is blocked, as in an eclipse, we need the
intensity Iλ(θ) as a function of angle with the normal. These intensities are also
provided by a stellar atmosphere model. The drop of intensity with angle θ is called
limb-darkening, and is caused by the fact that the radiation leaving the star at a
large angle originates in a region closer to the stellar surface, and therefore cooler
than the deeper layer which produces the radiation leaving the stellar surface along
the normal. It is best to use these intensities, tabulated as a function of θ; but
when these are not available (as in many old studies), one can take recourse to an
approximate formula. Often an equation was used of the form

Iλ(µ) = Iλ(1) (a0 + a1µ) (3.19)

or higher order approximations. The constants a0 and a1 in general may depend on
wavelength. For quick estimates one may use the Eddington approximation, which
has a0 = 2/5 and a1 = 3/5. The normalization Iλ(1) must be chosen to give the
correct flux Fλ with Eq. 3.15.

With this background we are ready to compute the eclipse lightcurve. In addition
to the orbital parameters listed in Table 3.1 we now have the parameters listed in
Table 3.2

To compute a lightcurve, one first divides the orbit into a number of time inter-
vals. For each time, one proceeds as follows.

Step 1. Compute the projected distance ρ between the two stars, just as in the
case of the visual binary, with the parameters of Table 3.1.

Step 2. Check, with the parameters from Table 3.2, whether R1 + R2 > ρ. If
not, both stars are seen in full, and the total flux is the sum of the fluxes of the two
stars. If R1 +R2 < ρ the eclipse is in progress, and we must continue.

As an example, Figure 3.3 show the apparent orbit on the sky of a recently
discovered eclipsing brown dwarf, and also the projected distance between the stars
as a function of time.

Step 3. Give the eclipsed star index 1, and the eclipser index 2. Compute for
each r = R1 sin θ which fraction of the ring at r is covered. Some rings (e.g. those
with r < ρ − R2) are wholly visible, others are wholly covered, as illustrated in
Figure 3.4. (For details, see Section 3.3.2.)

Step 4. Finally, integrate Iλ(µ) over the visible part of the star. (Alternatively,
integrate Iλ(µ) over the eclipsed part, and subtract the result from the out-of-eclipse
flux.) The intensity Iλ(µ) is found by looking up the appropriate stellar atmosphere
model, characterized by T1 and log g1 = log(GM1/R1

2). The integral can be done
by dividing the stellar surface in a finite number of (projected) surface rings.
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Figure 3.3: Left: apparent orbit on the sky of the binary brown dwarf 2M
J05352184−0546085 as determined from the radial velocities and eclipses; note that
the angle with North is arbitrarily chosen. In the left-low corner the sizes of the two
stars are indicated. Right: projected distance ρ between the centers of the stars as
a function of time. The sum of the radii of both stars is indicated as a horizontal
dotted line. The eclipses occur where ρ < R1 +R2. (See Stassun et al. 2007)

The effect of limb-darkening is to make the eclipse narrower: at the beginning
of the eclipse (called ingress) and at the end (egress), the change in flux is less for a
limb-darkened atmosphere, and when the center of the star is eclipsed the variation
is stronger in a limb-darkened atmosphere.

In fitting lightcurves, one most often uses data from many orbits, which are
averaged into an average lightcurve. This implies that the orbital period is found
from a separate analysis, and known before the eclipse lightcurves are fitted. Thus,
the separation where the eclipse begins (or ends) directly gives the sum of the two
radii, in units of the semi-major axis. Note that the radii of the stars scale with the
distance, so that R1,2 are only known in angular size, i.e. as R1,2/d. The fluxes of
both stars, as observed on earth, scale with (R1,2/d)2. This implies that the solution
of the lightcurve can only deliver the stellar radii in angular units. The only place
where the stellar masses enter is in the choice of log g for the stellar atmosphere
model; this choice also is best made on the basis of the analysis of the out-of-eclipse
spectrum, and is usually not very sensitive to the stellar mass.

3.3.1 Uniform disk

We first consider the case of constant intensity Iλ(θ) = Iλ = constant. From Eq. 3.15
we find the flux at the surface

Fλ = πIλ (3.20)

and from Eq. 3.17 the flux observed at distance d

fλ = 2π

(
R

d

)2

Iλ(θ)

∫ π/2

o

cos θ sin θdθ = πIλ

(
R

d

)2

(3.21)
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The latter equation could also have been derived by combining Eqs. 3.20 and
3.18.

The uniform disk assumption is often made in conjunction with the assumption
that the emitted spectrum is given by the Planck function:

Bλdλ =
2πhc2

λ5

1

ehc/λkT − 1
dλ ≡ C1

eC2/T − 1
(3.22)

where

C1 = 1.10 106

(
806 nm

λ

)5

watt m−2nm−1; C2 =
806 nm

λ
17850.8 K (3.23)

Note that 806 nm is the effective wavelength of the I filter.

Illustration of the computation of
the eclipsed area when a star with
radius R1 covers part of the star
with radius R2, for distance ρ be-
tween the centers.

Now consider two stars, with radii R1, R2 and uniform intensities Iλ1, Iλ2. Away
from the eclipse, when the projected distance ρ between the stars exceeds the sum
of the radii, the flux observed at distance d is

fλ = πIλ1

(
R1

d

)2

+ πIλ2

(
R2

d

)2

(3.24)

We first consider the case where star 1 eclipses part of star 2, i.e. the circles
outlining both stars intersect in two points (P and Q in Figure 3.3.1). The flux
observed from star 2 is diminished by the eclipsed lenticular surface PVQT; the flux
of star 1 is not affected. The intersection points P,Q are connected by a line which
is a chord in both circles, subtended by angles 2α (from center of star 1) and 2β
(from center of star 2) given by the cosine-rule as:

A ≡ cosα =
ρ2 +R2

1 −R2
2

2ρR1

B ≡ cos β =
ρ2 +R2

2 −R2
1

2ρR2

(3.25)

To compute the eclipsed area we first consider the right hand side of the lenticular
surface, i.e. area PSQT, and in particular the upper half PST. The area of PST may
be computed by subtracting triangle CSP from the circle sector CTP. The area of
the triangle is 0.5R1

2 cosα sinα, the area of the sector α/(2π) times the area πR1
2

of the projected area of star 1. Therefore the right hand part of the lenticular area
is given by

PSQT = 2PST = (α− sinα cosα)R1
2 (3.26)
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Figure 3.4: Various eclipse geometries and fluxes. For three ratios of stellar radii
R2/R1, where R1 is the eclipsed star, and the flux of star 2 is ignored. The top
graphs illustrate the geometry, and the lower graphs the non-eclipsed flux. The fluxes
are computed for a homogenous circle (f , for I =constant), and for a sphere with
Eddington limb darkening (fld). The latter are shown in blue, and the difference
with the homogeneous circle, fld − f , is also shown. Note that the fluxes are plotted
as a function of distance between the stars, NOT as a function of time.

Analogously we find for the left hand part

PSQV = 2PSV = (β − sin β cos β)R2
2 (3.27)

Finally we express the eclipsed full lenticular area as a fraction of the projected
surface of star 2, πR2

2,

w ≡ PVQT

πR2
2 =

arccos(A)− A
√

1− A2

π

(
R1

R2

)2

+
arccos(B)−B

√
1−B2

π
(3.28)

and obtain the flux during partial eclipse of star 2 as

fλ = πIλ1

(
R1

d

)2

+ (1− w)πIλ2

(
R2

d

)2

(3.29)

When there is no intersection between the outlines of the stars, even though
ρ < R1 +R2, there are two possibilities: star 2 is wholly covered (w = 1) if R1 > R2,
or maximally covered with w = (R1/R2)2 if R1 < R2.

3.3.2 Eclipse of limb-darkened star

Eq. 3.17 suggests that the integral is most easily computed after conversion to coor-
dinate µ. However, for an eclipse we do need the radius in the computation of the
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eclipsed fraction, and also prefer a more uniform coverage in r rather than in µ. We
therefore define x ≡ r/R to rewite Eq. 3.17 as

fλ =
1

d2

∫ R

0

2πrIλ(r)dr =
2πR2

d2

∫ 1

0

xIλ(x)dx

With the definition Ξ ≡ xI(x), the integral can be written as a sum over rings with
constant r:

fλ =
2πR2

d2
∆x
∑
i

xiIλ(xi) ≡
2πR2

d2
∆x
∑
i

Ξi (3.30)

An eclipse is in progress for each phase at which ρ < R1 + R2. For each such ρ, we
compute the arccos of the eclipsed angle φ for each ring r as by first computing

z ≡ cos(φ) =
r2 + ρ2 −R1

2

2ρr

If −1 < z < 1, we can indeed compute φ = arccos(z), and the eclipsed fraction
of the ring; the fractions covered are given by φ/π. If |z| > 1 the ring does not
intersect the outline of the eclipsing star 2, with radius R2, which means that it is
either fully eclipsed, or not eclipsed at all (see Fig. 3.4). The eclipsed flux is then
computed from

fλ,e =
2R2

d2
∆x
∑
i

φiΞi

and the observed flux from
fλ,o = fλ − fλ,e

The (monochromatic) luminosities of both stars scale with the square of the
distance of the binary, and often the uncertainty is the luminosities is dominated
by the distance uncertainty. In that case, the ratio of the luminosities may be more
accurate than either luminosity separately.

3.4 Roche geometry and the Von Zeipel theorem

A star no longer is spherical when it is rotating and/or when it feels the gravity of
another star. This deviation of spherical symmetry has an effect at various points
in the study of binaries. We briefly investigate the deformation of and limit to the
stellar surface due to the presence of a companion star, and the effect of the defor-
mation on the eclipse and on the radial velocity curve, which requires an adapted
method of fitting observations of a binary when deformations are important (Chap-
ter 3.4.1). Some other processes that affect the lightcurve are briefly mentioned also
(Chapter 3.4.2).

The potential in a binary is determined by the gravitational attraction of the
two stars, and by the motion of the two stars around one another. For simplicity,
we assume that the potential of each star separately, can still be written as that of
a point source; and we discuss a binary with a circular orbit. In the binary frame,
one has

Φ = −GM1

r1

− GM2

r2

− ω2r2
3

2
(3.31)
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Figure 3.5: Roche lobe geometry for a mass ratio M1/M2 = 2. Equipotential surfaces
are shown for different values of −Φ = C. For the largest value of C the surface
consist of two separate lobes, one around each star. The Roche lobe is the surface
around both stars that passes through the inner Lagrangian point. Also shown are
the surfaces containing the two outer Lagrangian points. The vertical line is the
rotation axis.

where r1 and r2 are the distances to the center of the stars with mass M1 and M2,
respectively; ω is is the orbital angular velocity, given by

ω ≡ 2π

Pb
=

√
G(M1 +M2)

a3
(3.32)

and r3 is the distance to the axis of rotation of the binary (see Figure 3.5). Writing
Eq. 3.31 in dimensionless units (mass in units of the total mass, and distances in
units of the semi-major axis a), one sees that the form of the surfaces of constant Φ
depends only on the mass ratio M1/M2.

We can discriminate four types of surfaces of−Φ = C, with C a positive constant.
For large C, the potential surface consists of two closed surfaces, one around each
star. For a critical value of C, the two closed surfaces touch, in the inner Lagrangian
point. The surface at this value of C is called the Roche lobe (see Roche 1859). For
smaller values of C we have a closed surface around both stars, and for very small
values the surfaces become open.

The volume of the Roche lobe can be calculated numerically. A useful approxi-
mate formula for the average radius of the Roche lobe around the most massive star
(with mass M1) is:

RL(M1)

a
' 0.38 + 0.2log

M1

M2

(3.33)
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which is accurate to 2 % for mass ratios 0.2 < M1/M2 < 20. For the average radius
of the Roche lobe around the less massive star, with mass M2, one may use the
approximate formula:

RL(M2)

a
' 0.46

(
M2

M1 +M2

)1/3

(3.34)

which is accurate to 2 % for mass ratios M2/M1 < 0.8. An approximate equation
valid for all mass ratios is

RL1 =
0.49a

0.6 + q−2/3 ln(1 + q1/3)
where q ≡ M1

M2

(3.35)

A particle within the Roche lobe is attached to one star; a particle on the Roche
lobe can move to the other star. Thus, if a star reaches the size of the Roche lobe,
mass transfer may ensue. This can occur because the star expands in the course
of its evolution, or because the binary shrinks. An evolving star in a binary can
fill its Roche lobe for the first time as it expands on the main sequence (Case A),
as it expands after hydrogen exhaustion (Case B), or as it expands after helium
exhaustion (Case C). Which of the three cases applies, depends on the size of the
Roche lobe, which in turn depends on the distance between the two stars and (to a
lesser extent) on the mass ratio (see Eqs. 3.33-3.35).

If star a star has a deformed, but stationary structure, hydrostatic equilibrium
still holds: the gradient of the pressure P is balanced by the gravitational force,
which can be written as the derivative of the gravitational potential Φ:

∇P = −ρ∇Φ (3.36)

Thus, the gradient of the pressure is everywhere parallel with the gradient of the
potential: this implies that surfaces of constant potential are also surfaces of constant
pressure P = P (Φ). In Eq. 3.36, we then find that ρ is a function of the potential
only, since it depends only on P (Φ) and Φ. Thus, equipotential surfaces also have a
constant density ρ = ρ(Φ), and via the equation of state also a constant temperature
T = T (Φ).

The equation of radiative transport is:

∇T = −3κρ

4σ

1

4T 3
Frad (3.37)

where κ is the opacity, σ the Stefan-Boltzmann constant, and Frad the radiative
flux. In a deformed star, the distances between equipotential surfaces are different
in different directions. Since equipotential surfaces have a constant temperature,
the temperature derivative must also be different in different directions: smaller
(larger) when the equipotential surfaces are further apart (closer). With Eq. 3.37
we find that the flux across an equipotential surface, and thus the flux at the stellar
surface, varies. This is called the Von Zeipel theorem (see Von Zeipel 1924). This
theorem was first used in the context of rapidly rotating single stars, to show that
the effective temperatures at the equator are lower than at the poles. Similarly in
a binary, a star that fills its Roche lobe has a lower effective temperature near the
inner Lagrangian point. This effect is called gravity darkening.
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3.4.1 Fitting binary observations in Roche geometry

When a star in a binary is deformed from a sphere, its eclipses will look different,
for two reasons:

• the geometry of the eclipse is different

• the temperature, and therefore the flux and the spectrum, varies over the
stellar surface, due to the Von Zeipel theorem

The center of light of the deformed star no longer necessarily coincides with the
center of mass. This implies that the radial velocity measurements are also affected.
Also, the strength of a spectral line depends on the temperature and the gravity,
and therefore varies over the surface of a deformed star. This also tends to displace
the measured velocity from the velocity of the center of mass of the star.

To really compute these effects, one would require a three-dimensional model of
the stellar interior. In the absence of such models, various simplifications are made,
of which the most important is the assumption that the effective temperature Te of
a stellar surface element scales with the gradient of the potential there according to

Te
Te,pole

=

(
F

Fpole

)0.25

=

(
∇Φ

∇Φpole

)g
(3.38)

where F ≡ σTe
4 is the energy flux leaving the surface. The exponent g depends on

the type of star, and for a star with a radiative envelope has the value g = 0.25,
that follows from simple application of the Von Zeipel theorem Eq. 3.37. For stars
with a convective envelope, the value of g is lower, g = 0.08.

By integrating F over the stellar surface, and equating the result with the stellar
luminosity, one finds the normalization constant Fpole.

It is then straightforward, but computationally expensive, to compute a lightcurve.
First compute the form of the surface of each star, which is an equipotential sur-
face, characterized by Eq. 3.31 with a constant Φ. For the sake of computation,
this surface is divided in small elements. Next assign each surface element of the
star a spectrum with the appropriate effective temperature and gravity, and then
compute for each viewing angle which surface elements are visible, and add their
contributions to the flux, or for the spectrum to the flux distributions taking into
account the Doppler shift due to the velocity of the surface element with respect to
the observer. Thus computing the flux and radial velocity at each orbital phase one
may compare to the observations, and where necessary adapt the binary parameters
to improve the fit.

The main effect of the deformation of a star into a pear shape is the ellipsoidal
variation. At conjunction of the two stars, we see smaller areas than when the stars
are in the plane of the sky. Thus the flux observed from the binary varies throughout
the orbit, with two minima each orbit at conjunction, and two maxima in between.
Figure 1.5 shows several examples, and also illustrates that the amplitude of the
ellipsoidal variation is larger when a star is closer to filling its Roche lobe, i.e. when
it is more deformed. Obviously, the amplitude of the variation also depends on the
inclination, being largest at i = 90◦.

The first widely used code to fit a binary lightcurve is that of Wilson & Devinney
(1971). This early version still had many simplifications. In particular it described
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the radiation emitted by each surface element as a black body, only applying colour
corrections (from black body to stellar atmosphere spectrum) to the integrated flux.
In the course of time, as computers became faster, the code has been improved. An
example of a modern version is given by Orosz & Haushildt (2000), The latter code
takes into account the effects of limb darkening (see discussion near Eq. 3.19). These
codes find the best solution by minimizing a optimization function, in particular the
χ2 function.

It is impossible to find the best parameters of the binary reliably by using a stan-
dard routine for this minimization as the Levenbergh-Marquardt routine (described
in e.g. Numerical Recipes, Chapter 15.5, Press et al. 1992), because the number of
parameters is too large. Orosz has therefore experimented with another method,
the genetic algorithm which cleverly uses random numbers to search the parameter
space for the best solution, and this works very well. An very clear description of
the genetic algorithm and its applications is given by Charbonneau (1995; in par-
ticular the first 9 pages). An interesting extension is the use of black sheep, i.e. bad
descendents from good parents, in the genetic algorithm scheme. This is discussed
by Bobinger (2000).

3.4.2 Further complications of light curve fitting

Apart from the Roche geometry, various other effects are visible in the lightcurve,
and depending on one’s interest can be considered as unnecessary complications or
interesting sources of extra information. . . We mention four of these.

The first is rapid rotation of a star, which leads to a flattened form, and thus to
an altered eclipse lightcurve. It also affects the radial velocity curve: for example,
when the part of the star that rotates away from us (towards us) is eclipsed, the
observed radial velocity is dominated by the rotation towards us (away from us) by
the part of the star that is not eclipsed, and thus shifts the radial velocity to smaller
(bigger) values. This may be a noticable effect.

The second effect is the heating of a star by its companion: the radiation of one
star impinges on the surface of its companion, and if sufficiently strong, heats it.
When a small but hot, luminous star is accompanied by a cool star, the lightcurve
may be completely dominated by the heated side facing the hot star. In this case
there is only one maximum in the lightcurve per orbit, when the heated face is
oriented towards Earth.

A third effect is the presence of spots. This is detectable through a variable
lightcurve: as spots change their intensity and/or position, the lightcurve also
changes. The spots are cooler, and therefore emit a different spectrum; the ef-
fect is largest when the spot faces the Earth, and absent when it is occulted. If a
few large spots are present, their properties can be derived from careful analysis of
the lightcurve and the radial velocities. However, if many weaker spots are present,
they merely add noise to the lightcurve, a unique solution no longer being possible.
A common procedure is such a case is to average the lightcure over many orbits,
hoping that the effects of the spots average out. . . If the Sun is any guidance, spots
may also be accompanied by flares, sudden increases in the luminosity. Again, if
one strong flare occurs, we can study it; if a large number of small flares occur at
each time, they add irreducable noise.

A final important effect is the presence of gas streams from one star to the other,
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Figure 3.6: SMC X-1 is a bright X-ray source in the Small Magellanic Cloud, in
which an O star fills its Roche lobe and transfers mass via an accretion disk to
a neutron star. The observed orbital light curve of SMC X-1 (•) is shown together
with the predicted variations due to ellipsoidal variation only (−−), due to ellipsoidal
variation plus X-ray heating (· · ·), and due to these two effects plus an accretion disc
(—). Not that the disk eclipses part of the heated side of the companion near phase
0.5. After Tjemkes et al. (1986).

in particular when one star fills its Roche lobe. Such a gas stream from a star that
fills its Roche lobe may directly hit the other star, in particular in a close binary, or
it may form a disk around the other star. Theoretically the light produced by such
a stream and/or disk is not well understood. Lightcurve fitting programmes have
very simplified prescriptions for gas streams and disks. In general it must be stated
that the presence of a strong disk complicates the lightcurve analysis, and makes
the solution less secure.

Recently, some observational data have reached a level of accuracy where rela-
tivistic effects become important! In the non-relativistic case, ellipsoidal variations
are symmetric. When the orbital velocities are high, however, Doppler boosting
becomes noticable: when the star moves towards us, it flux is enhanced; when it
moves away from us, its flux is reduced. Thus the flux of one ellipsoidal maximum
is higher than that of the other maximum.

3.5 Exercises

Exercise 10. Pick a year from 1600+n20, with n between 0 and 25, and compute
the position of Castor B relative to Castor A, following the steps outlined above.
Step 2 must be done iteratively. A stable method is to find two values of ε where the
function F (ε) ≡M−ε−e sin ε changes sign, and then half the interval in which this
happens successively until the remaining interval is small enough for the required
accuracy.

Exercise 11. Find the parallax of Castor, from the Hipparcos catalogue. Use
this to compute the total mass of Castor A+B, and the radial velocity difference
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Figure 3.7: The orbital lightcurve of KOI 74, as obtained with the Kepler satellite
may be approximated (away from the eclipses) as the sum of a sine wave with half
the orbital period (the ellipsoidal variation) and a sine wave with the orbital period
(Doppler-boosting). From Van Kerkwijk et al. (2010).

between the two stars at the time of Herschel’s first observation. At that time
ν = −157.4◦.

Exercise 12. Consider the mass funtion Eq. 3.13. a. Show that the measure-
ment of the velocity amplitude of star 1, K1, provides a lower limit to the mass of
the companion M2.
b. What is the most likely value for the inclination?
c. In binaries with a pulsar, the analysis of the pulse arrival times gives the projected
orbital velocity of the pulsar, K1. To estimate the mass of the pulsar companion,
one often assumes a pulsar mass M1 = 1.4M�, and a value for the inclination of
60◦. Explain this chosen value for i.
d. PSR 1953+29 has a mass function f(M) = 0.00272M�. Compute the mass of
the companion under the assumptions listed in c).

Exercise 13. a. Rewrite Eq. 3.31 in dimensionless units, by writing all distances
in units of semi-major axis a and all masses in units of M2, and show that the form
of the Roche surfaces depends only on the mass ratio M1/M2.
b. At the inner Lagrangian point, the net force is zero. Write the equation for this.
Write r2 and r3 for the inner Lagrangian point in terms of a and r1. Finally, make
the equation dimensionless, in the form F(r1/a) = 0. F(x) indicates ’function of x.
c. Note: we can use the Newton-Raphson method on the dimensionless equation of
b) to solve for the inner Lagrangian point. Knowing its place we can calculate its
potential Φ, the potential of the Roche surface. We can derive similar equations as
in b) for the second and third Lagrangian points.

Exercise 14. The radius of a 5 M� star increases on the main sequence from
2.67 R� to 6.52 R�. During hydrogen shell burning the radius increases to 115 R�.
The companion is a 4 M� star. Compute the maximum orbital period at which case
A mass transfer ocurs in this system, and the maximum orbital period for case B.

Computer Exercise 1. Write a computer code to compute the projected orbit
of a visual binary, and check it correctness with your intermediate and final results
in Exercise 10.
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Computer Exercise 2. A binary of two brown dwarfs has he following parame-
ters: orbital period 9.77962,d, semi-major axis 8.8R�, eccentricity 0.333, inclination
89.2◦, angle of priastron ω = 217◦. The brown dwarfs have radii and effective tem-
peratures 0.68R� and 2725 K for dwarf 1, 0.49R� and 2899 K for dwarf 2. (Thus
the smaller dwarf is hotter!) In the following you may assume that the stars are
spherical. The binary has a distance of 460 pc.
a. compute the flux fI near Earth of the binary out-of-eclipse.
b. use your computer code to compute ρ as a function of orbital phase, and deter-
mine the phases during which the binary is eclipsed.
c. compute the eclipse lightcurve
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Chapter 4

Fundamental parameters of stars
derived from binaries

Fundamental parameters as mass, radius, luminosity and effective temperature are
most accurately derived from binaries. In this chapter we discuss some examples
to illustrate the derivation of such parameters, and some uncertainties inherent in
these derivations, on the basis of an article on visual binaries (by Hummel et al.
1995) and an article on double-lined eclipsing binaries (by Andersen 1991). We also
discuss three additional binaries to illustrate various additional methods, and the
application of binary studies in distance determinations of clusters.

4.1 Visual binaries

With this section, read Hummel et al. (1995). In working the examples, we use the
best parameter values; in actual scientific practice one should also propagate the
errors on these parameters to errors in the derived fundamental parameters.

4.1.1 Deriving the masses: πAnd

Dividing the mass function for the primary (Eq. 3.13) by its equivalent for the sec-
ondary, and entering the values of Ki for πAnd from Table 4.1 we obtain the mass

Table 4.1: Parameters of three binaries discussed in the article by Hummel et al .
(1995) and used in the worked examples in this section. The velocity amplitudes Ki

and period P are from spectroscopic observations, the eccentricity e and inclination
i are from the visual orbit.

binary: πAnd βAur θAql
K1 (km/s) 47.5 107.75 51.0
K2 (km/s) 117.4 111.25 63.7
P (d) 143.6065 3.96 17.1243
e 0.552 0. 0.607

i (◦) 103. 76. 143.5
a (′′) 0.00669 0.0033 0.0032

fV (10−12watt m−2nm−1) 0.663 6.81 2.00
fV 1/fV 2 1.45 1.20 4.09
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ratio M1/M2 = K2/K1 = 2.47. We rewrite the mass function of the primary as

f(M1) =
P

2πG
K1

3
(
1− e2

)3/2
= M2 sin3 i

1(
M1

M2
+ 1
)2 (4.1)

and enter the mass ratio and the values from the visual orbit in it, to findM2 ' 12M�
and thus M1 ' 29M�. As discussed by Hummel et al. these masses are much too
high to be compatible with the observed spectral type. The reason for this wrong
result is probably that the value for the velocity of the secondary is spurious.

This serves as a warning that published velocities and velocity amplitudes are not
always as accurate as advertised. It is always advisable to read the observational
article carefully and form an informed opinion on the reliability of the results.

4.1.2 Deriving the distance: β Aur

Eq. 3.12 gives the semi-major axis of the primary; adding to this the equivalent
equation for the secondary we obtain

a sin i = (a1 + a2) sin i =
P

2π

(
1− e2

)1/2
(K1 +K2) (4.2)

Entering the values for Ki from the spectroscopic orbit and the period, eccentricity
and inclination from the visual orbit of βAur (Table 4.1) we immediately obtain the
physical semimajor axis a = 0.082 AU, which we may compare with the semimajor
axis in arcseconds from the fit of the visual orbit (Table 4.1). The combination of
these two values for the semimajor axis gives the distance of the binary. Noting
that 1′′ at 1 pc corresponds to 1 AU, hence that 0.0033′′ at x pc corresponds to
0.0033xAU, we find x = 0.082/0.0033 = 24.8 pc.

4.1.3 Radius and temperature: θAql

The visual flux fV of θAql relates to the added fluxes fV i of both stars1. The visual
flux ratio has been derived from the eclipse depths (see Table 4.1). The total flux of
the binary may be written

fV = fV 1 + fV 2 = fV 1

(
1 +

fV 2

fV 1

)
(4.3)

Entering fV and fV 1/fV 2 from Table 4.1 we obtain fV 1 = 1.61×10−12watt m−2nm−1.
Analogous to the example for βAur, we can derive the distance to θAur as

76.9 pc, and we use this to compue the visual luminosity of the primary, LV 1 =
4πd2fV 1 = 1.14 × 1026 watt nm−1 = 203LV�. We assume here, mainly because of
the small distance, that interstellar absorption may be ignored. Deriving in the
same way the blue flux fB1 we obtain the primary colour fV 1/fB1 = 0.511.

To progress from here, we must obtain the bolometric correction, i.e. the ratio of
bolometric to visual luminosity (L/LV ), and the effective temperature from tabulated
stellar atmosphere model spectra. Stellar atmosphere model spectra depend on the

1We could also have written f550, i.e. the flux at 550 nm; but we prefer fV to indicate that the
flux is a weighted average over the V-filter; we will also write U (for 365 nm), B (440 nm) and I
(806 nm).
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Figure 4.1: Modern relation between colour and temperature (left) and bolometric
correction (right), from Bessell et al. (1998, solid lines). For comparison some old
values are also shown with symbols as indicated, from Mihalas & Binney (1981),
who took their numbers from Allen (1973) and Strand (1963), who in turn compiled
from others. . . . The dotted lines indicate the Planck function.

effective temperature Teff , on the gravitational acceleration g (usually given as log g),
and on the metallicity (or more accurately, the abundances of all relevant elements).
Hummel et al. note that the two stars of θAql have the same colours, and use
logL/LV (L�/LV�) = 0.156 and Teff = 10800 K for both.

Thus one obtains for the primary L1/L� = 100.156LV 1/LV�, hence L1 = 291L�.
With

log
L

L�
= 2 log

R

R�
+ 4 log

Teff

T�
where T� ' 5780 K (4.4)

we obtain R1 = 4.9R�.
In general one will find that the masses are more accurate than the luminosities

or temperatures. The reason for this is one needs models to convert from colours
to bolometric luminosities or effective temperatures, and that this conversion can
have large uncertainty: it changes with author and with time. This is illustrated in
Figure 4.1 where modern values are compared with those from an excellent textbook
from 1981, which in turn based its tables on much older books, which in turn. . . . It
is seen that at some colours, the differences are appreciable. In applying conversions
with use of tables, one must also make sure to use the same calibrations for the
fluxes that were used by the astronomers who compiled the tables.

4.2 Double-lined spectroscopic, eclipsing binaries

With this section, read Andersen, 1991. The extra information provided to a
double-lined spectroscopic orbit by eclipses is the inclination, and through this the
absolute dimensions of the stars and the binary orbit. As Andersen remarks, the
main problem in assessing uncertainties of the derived parameters are systematic
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errors: in practice this implies that the actual errors are rather bigger than the
formal errors given by the fitting procedure.

Velocities can be measured from individual lines of known laboratory wavelength,
by fitting the line profile. Problems that arise with this procedure are the possibility
of blends; and the possibility that different lines arise at different depths in the at-
mosphere, and thus give different velocities! Balmer lines are especially troublesome;
experience shows that errors as large as 30% may arise from the use of Balmer lines
as the main velocity indicators. It is clearly better to use relatively narrow lines.
A consequence is that velocities can be measured much less accurately for O stars
than for G stars.

It is more common nowadays to determine the velocity from a cross-correlation of
the observed spectrum with a template spectrum, as discussed in Chapter 1. For the
template in the cross-correlation, one can use a model spectrum. Troublesome parts
from the spectrum (e.g. with Balmer lines) are excluded from the cross-correlation.
The advantage of this method is that the depth of the cross correlation improves not
only with the correct velocity, but also with the correctness of the spectrum. This
means that the cross-correlation also provides information on the parameters that
set the spectrum: effective temperature, gravitational acceleration, metallicity, and
rotation of the star. If no model spectrum is available, one can determine the average
of all the spectra that one has taken from the object and use this as a template. In
this case iteration is necessary: having determined a preliminary set of velocities,
one constructs a new template by shifting all spectra to the same rest-wavelength,
and then does a new cross-correlation. This procedure already converges after a few
iterations.

To provide information on the temperature of the stars, the photometry must
be obtained for at least two bands. A source of uncertainty is the reddening of
the system. Most systems listed by Andersen are very nearby, and the reddening
is small, so that the uncertainty is also small. With CCDs, photometry is often
very accurate – depending on the flux of the star; the dominant uncertainty in the
monochromatic luminosities is usually the distance. This means that the ratio of the
monochromatic luminosities is generally much more accurate than the luminosities
themselves. In Figure 4.2 the radius and luminosity are shown as a function of mass
for main-sequence stars. The values come from double-lined spectroscopic eclipsing
binaries. The Sun is also shown.

The radii show appreciable spread at each mass; probably mainly due to evolu-
tion. The zero-age main-sequence radius may be approximated as

R

R�
=

(
M

M�

)n
(4.5)

where n = 0.6 for M > M� and n = 1 for M < M�. The theoretical mass-radius
relation for stars of sub-solar mass is still problematic. Baraffe & collaborators have
shown that for low-mass stars on must incorporate full atmosphere models into the
stellar structure equations to obtain a correct model.

The luminosities of main-sequence stars are well-defined as a function of mass;
and may be approximated with

L

L�
=

(
M

M�

)3.8

(4.6)
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Figure 4.2: Radius and luminosity for main sequence stars as a function of mass.
Only values known with an accuracy of ≤ 2% are used in this Figure. Data from
Torres, Andersen & Giménez (2010); Masses and radii for HAT-TR-205-013 are
added (Beatty et al. 2007), the luminosities for these very cool stars are not well-
known. Dashed lines give the ZAMS mass-radius relation according to Eq, 4.5 and
mass-luminosity relation according to Eq. 4.6.

Table 4.2: Parameters of main-sequence stars as function of spectral type. Masses,
radii, luminosities and spectral type from Andersen (1991); from these, log g and
Teff are computed, and the colors for these parameters are found in Bessell et al.
(1998). Some quantities are normalized on solar units; LV� = 5.6× 1023watt nm−1.

SpT M R logL Teff logLV logL/LV log log log
(M�) (R�) (L�) (K) (LV�) (L�/LV�) fB/fU fV /fB fI/fV

Main sequence
O8V 22.0 7.90 5.10 38900 3.71 1.39 -0.68 -0.38 -0.66
B2V 9.0 4.30 3.63 22400 2.77 0.86 -0.57 -0.35 -0.63
B5V 5.0 2.90 2.66 15600 2.16 0.49 -0.46 -0.33 -0.60
A0V 2.5 1.80 1.51 10200 1.42 0.09 -0.25 -0.27 -0.56
A5V 1.9 1.50 1.06 8590 1.08 -0.02 -0.19 -0.22 -0.50
F0V 1.5 1.30 0.67 7420 0.71 -0.04 -0.22 -0.15 -0.41
F5V 1.3 1.20 0.43 6800 0.46 -0.03 -0.23 -0.10 -0.35
G0V 1.2 1.10 0.30 6470 0.33 -0.03 -0.22 -0.07 -0.32
G5V 1.0 1.00 0.00 5780 0.00 0.00 -0.15 0.01 -0.25
K0V 0.9 0.85 -0.33 5180 -0.39 0.06 -0.01 0.08 -0.18
M1V 0.6 0.55 -1.22 3860 -1.64 0.42 0.28 0.29 0.12
M4V 0.4 0.40 -1.87 3110 -2.80 0.92 0.29 0.35 0.56
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From the mass, radius and luminosity one may compute the gravitational ac-
celeration g and effective temperature Teff of the atmosphere; and from atmosphere
models (which are calibrated with accurately measured stars) one may then ob-
tain the absolute monochromatic luminosities and colours. The results are given in
Table 4.2.

For very cool objects, the bolometric corrections are unknown; for very-low-
mass stars and brown dwarfs, observers derive absolute monochromatic luminosities,
rather than effective temperatures or bolometric luminosities. For such stars, instead
of the mass-luminosity relation, one has the mass-monochromatic-luminosity M−Lλ
relation.

4.3 Some interesting binaries

In this section we discuss binary studies that illustrate variants on the analysis meth-
ods discussed above, and that are interesting for a variety of reasons. The binary
HAT-TR-205-013 illustrates the use of rotational velocity in the determination of the
parameters of the lowest-mass main-sequence star. The binary 2MASSJ05352184-
0546085 gives the parameters of two brown dwarfs. The binary HD 23642 gives the
distance to the Pleiades. We give brief descriptions here, and refer to the original
papers for more detail. The variant techniques are flagged in the margin.

4.3.1 The lowest main-sequence mass: HAT-TR-205-013 B

One of the methods to detect planets around other stars is to look for transits of
the planet. If a planet has a radius Rp and passes in front of the star with radius
R, a fraction (Rp/R)2 of the stellar surface is covered, and flux that we detect is
reduced accordingly. Analysis of the transit lightcurve provides information on the
limb darkening of the star.

Interestingly, a Jupiter-like planet has a size comparable to that of low-mass
main-sequence stars, and some candidate planets found from transits turn out to
be stars of spectral type late M. They are easily distinguished from planets because
they cause much larger variations in the radial velocity of the primary.

In the case of HAT-TR-205-013, Beatty et al. (2007) determine the parameters
of the late dwarf, as follows. (HAT stands for Hungary-made Automated Telescope;
to discover transits a network of six 11 cm telescopes is used, see Bakos et al. 2004;
205 is the number of the survey field.) The parameters determined first are a, a1, R2,
R1, and i. The transit lightcurve provides three relations between these parameters.
Roughly speaking, the length of the eclipse in units of the orbital period depends
mostly on R1/a, the eclipse depth on R2/R1, and the lengths of ingress and egress
on s = a cos i, the closest projected distance of the star centers 2. (See Exercise 16
and Figure 4.3.) A fourth relation is given by the radial velocity curve of star 1,
which shows that e = 0, and gives a1 sin i (see discussion leading to Eq. 3.13). If
star 2 contributes significantly to the spectrum, its radial velocity provides the fifth
relation between the parameters. Here, however, star 2 is not seen in the spectrum, rotation

velocityand the required fifth relation is found from the observed (i.e. projected) rotation
velocity vrot,o of star 1. It is assumed that the rotation of star 1 is locked to the orbit,

2Beatty et al. write this in dimensionless form, with b ≡ s/R1
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Figure 4.3: Slightly simplified geometry to show the effect of the impact parameter
s on form of the transit lightcurve. The left graph shows the definition of s: it is
the shortest projected distance of the center of star 2 to the center of star 1. LoS
is the line of sight towards the Earth, and a the distance between the stars. The
middle graph shows the path of star 2 in front of star 1; it is simplified (assuming
R1 � a) because in reality the path between ingress I and egress E should be slightly
curved (part of an ellipse if the orbit is circular), with the pericenter in the middle.
The ingress is shown in more detail in the right graph, where the line through IK
is the edge of the star; the short stretch of the circular edge is approximated with a
straight line (assuming R2 � R1). The resulting lightcurve is shown schematically
in the lower graph. As the center of star 1 moves along BD, ingress starts (ends) at
B (D), where its projected circle first (last) touches the edge of star 1. Mid-ingress
is at I. Since BID is along IE (see middle graph), and BK is parallel to IC, we
have s/R1 = KI/BI =

√
1− (R2/BI)2. This shows that the length of ingress,

proportional to BI, depends on s. For s = 0 BI = R2. (For s close to 1 the
approximation that the edge of the star is a straight line breaks down.)

Table 4.3: Measured quantities and parameters of the binary HAT-TR-205-013, from
Beatty et al. (2007).

a/R1 5.9(1) M1 (M�) 1.04(13)
R2/R1 0.1309(6) M2 (M�) 0.124(10)

s/R1 = a cos i/R1 0.37(5) R1 (R�) 1.28(4)
vrot sin i (km/s) 29(1) R2 (R�) 0.167(6)
K1 (km/s) 18.3(5) a (R�) 7.5(3)
P (d) 2.23074(1)
e 0

hence vrot = ΩR1 = (2π/P )R1, hence

vrot,o = vrot sin i =
2π

P
R1 sin i ⇒ P

2π
vrot,o = R1 sin i (4.7)

Once the parameters a, a1, R2, R1, and i are determined, the total mass and the
individual masses can be found with Kepler’s third law, Eq. 2.45, and from the ratio
a1/a.
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Figure 4.4: Eclipse lightcurve and radial velocity curve of the brown dwarf binary
2MASSJ05352184−0546085. Note the effect of ingress and egress on the theoretical
radial velocity curve of the eclipsed star. From Stassun et al. (2007)

Table 4.4: Parameters of the brown-dwarf binary 2MASSJ05352184−0546085 and
of the Pleiades binary HD 23642 (Stassun et al. 2007, Groenewegen et al. 2007)

2MASS HD 2MASS HD
K1 (km/s) 18.5(7) 99.2(3) M1 (M�) 0.057(5) 2.22(3)
K2 (km/s) 29.3(8) 140.8(3) M2 (M�) 0.036(3) 1.57(2)
P (d) 9.77962(4) 2.4611335(7) R1 (R�) 0.68(2) 1.84(4)
e 0.333(6) <0.002 R2 (R�) 0.49(2) 1.59(4)

i (◦) 89.2(2) 77.6(2) L1 (L�) 0.022(2)
a (R�) 8.8(2) 11.95(2) L2 (L�) 0.015(2)
T2/T1 1.064(4) 0.768(4) T1 (K) 2725 9950

4.3.2 The brown-dwarf binary 2MASSJ05352184−0546085

Cool stars and brown dwarfs are best discovered in the infrared. The 2µ All Sky
Survey is an efficient source for new discoveries of such objects. Stassun et al.
(2007) analyse an eclipsing binary in the Orion Nebula Cluster. Radial velocities
are measured through a technique of Broadening Functions, which is a variant of broadening

functionsthe cross-correlation technique; it works better when the velocity difference between
the stars is comparable to the resolution of the observed spectra (Rucinski 1999).
The broad-band I light curve is analysed assuming that the surfaces of the stars
radiate as black bodies. Radial velocities and lightcurve are analysed with the
Wilson-Devinney code, and give the parameters listed in Table 4.4.

A first remarkable result is that the brown dwarfs are rather large for their mass:
this can be understood by their young age. The Orion Nebula Cluster is thought to
be ∼ 1 Myr old, and in this time brown dwarfs have not relaxed to their equilibrium
radius.

A second remarkable result is that the less massive star is hotter: this follows
immediately from the observation that the eclipse of the less massive star is deeper.
Since the temperatures of both stars are almost equal, it is unlikely that this result is
the consequence of the difference between real brown-dwarf atmosphere spectra and
Planck spectra. Stassun et al. suggest that the lower temperature of the primary
can be explained if it is ∼ 0.5 Myr older than the secondary.
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Membership of the Orion Nebula is in agreement with the systemic radial veloc-
ity (γ) of the binary: 24.1(4) km/s, compared to the velocity 25.0±1.5 km/s of the
cluster. It is also in agreement with the distance derived from the luminosity and
spectrum. The spectral type M6.5 for the primary implies (through measurements
of the M6.5 star LHS 292) a temperature of 2725 K, and a bolometric correction
L/LK = 3800 (the K-band is around 2µm). The temperature of the secondary is
found from T2/T1. The luminosities of the stars derived from their radii and effective
temperatures are given in the Table. The bolometric flux can be derived from the
K-band out-of-eclipse flux fK = 1.59× 10−18watt m−2nm−1 and the bolometric cor-
rection. Comparison of these numbers gives the distance of the binary as 456±34 pc,
compatible with the distance to the Orion nebula of 480±80 pc.

4.3.3 The distance to the Pleiades from binary HD 23642

The distance to the Pleiades determined by the HIPPARCOS mission was a big sur-
prise: it was significantly closer (116(3) pc) than results found from main-sequence
fitting (about 130 pc). If correct, the HIPPARCOS distance implies that the main
sequence of the Pleiades is 37% fainter than the main sequence of stars near the
Sun!

The binary HD 23642 has been studied to resolve this discrepancy: it is a member
of the Pleiades, and by determining its distance one also determines the cluster
distance.

Groenewegen et al. (2007) first use cross-correlation techniques of model spec-
tra with the observed spectra to derive the temperatures and effective gravities of
both stars, and to derive their radial velocities as a function of phase. The fit to
radial velocities and lightcurves then provides the other binary parameters listed in
Table 4.4.

The distance is determined by comparing model fluxes in different filters with
observed fluxes. In general, for a star with radius R at distance d, the flux observed
on Earth fλ is related to the flux leaving 1 m2 of the stellar surface through:

4πR2Fλ = 4πd2fλ (4.8)

We know the observed flux fλ and from the fitting also the radius R, thus if we can
determine Fλ we have the distance. This determination can be done for either star
separately, or for the out-of-eclipse flux of the binary as a whole.

Groenewegen et al. use two methods to determine Fλ. In Method A one uses a
stellar atmosphere model, determined by the stellar temperature, log g and metal-
licity, to compute the flux Fλ at wavelength λ for 1 m2 at the stellar surface. In colour-flux

relationMethod B one uses an empirical relation between the effective temperature and Fλ,
or alternatively between the colour and Fλ. Groenewegen et al. use the colours
fV /fB and fK/fV . In both cases, a correction for interstellar absorption towards
the Pleiades must be made. The distance obtained for HD 23642 is 138.0±1.3 pc.

The consensus nowadays is that the HIPPARCOS distance is not correct.

4.4 Exercises

Exercise 15. Use the Hipparcos catalogue to find the parallaxes of βAur and θAql,
and compare with the distances derived from the visual orbit and observed fluxes.
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Figure 4.5: Below: the X-ray intensity observed from Cen X-3 (dots, upper limits
indicated with arrows); above: the time difference ∆t between the observed pulse
arrival time and the arrival time predicted for a constant pulse period.

Which distances are most accurate?
Exercise 16. Use the measured quantities listed in the left-hand column of the

Table 4.3, to derive the binary parameters given in the right-hand side.
Exercise 17. We use the mass function f(M) for a circular orbit to study the

parameters of the high-mass X-ray binary Cen X-3: a binary in which an X-ray
pulsar is in orbit around a high-mass star. Consider a binary of stars with masses
M1 and M2, and orbital period Pb. The orbit is circular, the orbital inclination (i.e.
the angle between the line of sight from the Earth and a line perpendicular to the
orbital plane) is i. The radial velocity of star 1 has been determined, and it varies
as a sine wave, with amplitude K1. The mass function for a circular orbit is

f(M) ≡ M2
3sin3i

(M1 +M2)2
=

4π2

G

(a1 sin i)3

P 2
b

=
K3

1

2πG
Pb (4.9)

where a1 is the semi-major axis of the orbit of star 1 with respect to the center of
mass.
a. In Figure 4.5 we see some data of Cen X-3. A sine wave describes the time arrival
times well, i.e. the orbit is circular. The orbital period is 2.087 days, the amplitude
of the time-delay curve is 39.7466 s. Compute the mass function of Cen X-3. Show
that the mass function provides a lower limit to the mass of the companion of the
X-ray pulsar.
b. We see that the neutron star is eclipsed by its O star companion. t is the eclipse
length. Assume that the O star is a sphere (i.e. ignore its deformation by tidal
forces) and show that the ratio of the radius of the O star R to the radius of the
orbit a is given by

R

a
=

√
1− cos2

(
πt

Pb

)
sin2 i (4.10)
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c. We can use Eq. 4.10 to determine R/a from t/Pb, as a function of i. Assuming
that the donor fills its Roche-lobe, we can use Eq. 3.33 to determine the mass ratio
M1/M2, and then from Eq. 4.9 both masses separately. Determine t/Pb from Fig. 4.5,
and calculate M1 and M2 for inclinations of 70◦ and 90◦. Note that the masses of the
neutron star are rather small. This is due in part by our neglect of the deformation
of the O star by tidal forces.
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Chapter 5

Tidal forces

Tidal forces lead to a coupling in the binary of the spin of the stars with the orbital
revolution. If energy is dissipated, angular momentum can be exchanged between
the orbit and the spin of the stars.

We discuss some aspects of this with use of three articles

• Hut (1980) shows on the basis of a general analysis that the minimum energy
situation of a binary is reached if the angular momenta of the orbit and of
the two stars are aligned, and if both stars corotate with the orbit, i.e. their
rotation period equals the binary period

• Hut (1981) gives simple analysis of the effect of the deformation of a star on
the evolution of the binary orbit, and provides a good physical insight into the
tidal forces. We examine only the first 5 pages of this article, which give the
outline.

• Verbunt (2007) discusses the evolution of the rotation of the Earth and of the
revolution of the Moon as driven by the spin-orbit coupling.

5.1 Exercises

Exercise 18a. Compute the total angular momentum of a binary consisting of two
stars with masses M1,2 and radii R1,2, and how that it can be separated into the
angular momentum of the orbit and the angular momenta of the two stars around
their own axex of rotation. Start from Eq. 2.42, assume that the stars are perfectly
spherical, and save on computing by clever use of anti-symmetry. The orbital angular
velocity is Ω, the angular velocities of the stars around their own axes are ω1,2.
b. Consider synchronous rotation, Ω = ω1 = ω2 and derive the condition for which
the rotation of the two stars around their own axes can be neglected.

Exercise 19. (After Counselman, C. 1973, ApJ 180, 307.) Two stars with
masses M and m, with M � m, orbit one another in a circular orbit with angular
velocity n. The star with mass M also rotates around its own axis with angular
velocity ω and its moment of inertia is kMR2. We consider the orbital energy and
angular momentum, i.e. ignore the kinetic enery and angular momentum of the
center of mass.
a. Compute the total angular momentum L′ and the total energy E ′ of this binary
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system, expressed in m, M , n and ω. Define:

σ2 ≡ GM

R3
; κ ≡

( m

kM

)1/4 (
1 +

m

M

)1/6

Ω ≡ ω

σ
κ−3; N ≡

(n
σ

)1/3

κ−1

and show

L ≡ L′

kMR2κ3σ
= Ω +N−1; E ≡ E ′

kMR2κ6σ2
=

1

2

(
Ω2 −N2

)
b. sketch lines of constant E in the N -Ω plane for E = 0,0.5,-0.5; and for constant
L for L = 0,1,2,-1,-2. Argue from this sketch that the location where a line of
constant angular momentum is tangent to a line of constant energy corresponds to
an extremum of energy for fixed angular momentum. This implies that the tangent
point is an equilibrium situation. Show that in such a point Ω = N3, i.e. ω = n
(synchronous rotation). Sketch this line in the figure as well.
c. compute in the equilibrium point from b):(

∂E

∂N

)
L=const

and

(
∂2E

∂N2

)
L=const

When is the equilibrium of synchronous rotation stable?
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Chapter 6

Structure of compact stars

The structure of a star is determined by an interplay between the various physical
forces: nuclear forces, electro-magnetic forces, and gravity. Because of the very dif-
ferent strengths of these forces, we can separate the local and global properties of
matter: there is a clear separation in the range of the forces. Gravity is extremely
weak, and only becomes noticeable once we deal with a very large amount of mat-
ter, i.e. at distances that are long compared to the characteristic range of nuclear or
electromagnetic forces. If we consider a small volume, we can therefore derive the
thermodynamic properties of matter – i.e. the relations between pressure, tempera-
ture, density, and composition of the gas – while ignoring gravity. The structure of
the star as a whole then follows from the interplay between these local properties of
matter and the global mass distribution in the star.

In stellar matter, shear forces and viscosity are usually not important. The
pressure is therefore isotropic, and can be described as a scalar quantity. In general,
pressure depends on the composition of the gas (the kinds of particles present), on
the density, and on the temperature. As we will see, the pressure P in neutron stars
depends on the density ρ alone, P = P (ρ). The matter in white dwarfs and neutron
stars is degenerate, i.e. quantum mechanical effects are important.

Let us start by looking at the equations for a degenerate gas.

6.1 The equation of state for a degenerate gas1

At very high densities or very low temperatures, the classical description of matter
breaks down, and a quantum mechanical description is required. A gas for which
quantum mechanical effects are important is called a degenerate gas. The most
important difference from the classical description is that in quantum mechanics
the number of available slots in momentum-space is limited, as follows: for a unit-
volume in ~r-space the volume in ~p-space is divided into boxes with volume h3, where
h is the Planck constant. For Fermions we have Pauli’s exclusion principle which
tells us that each box is allowed to contain g particles, where g is the degeneration
factor (or statistical weight), given by twice the spin number plus one. For electrons,
protons and neutrons g = 2.

We can illustrate this quantization of momentum-space as follows. Consider a
dense gas, with average distance in the x-direction between the particles of ∆x.
According to Heisenberg’s uncertainty principle, the accurracy with which position

1This Section is based on Lecture Notes ‘Neutron Stars’ by John Heise, 1972
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Figure 6.1: For parti-
cles with distances ∆x, ∆y
and ∆z in space (left),
the momentum space is di-
vided in boxes with size
h3/(∆x∆y∆z) (right).

and momentum of a single particle can be determined simultaneously is limited
by ∆x∆px ∼> h. Pauli’s exclusion principle now says that within this accuracy no
two particles may be in the same state, i.e. that the minimal allowed difference in
momentum for identical particles is given by ∆px ∼> h/∆x. An analogous reasoning
can be made for the y and z directions. We then get a picture as Figure 6.1.

The volume occupied by one grid point in momentum-space is h3/(∆x∆y∆z). In
a volume Vp in momentum space, we can therefore locate gVp∆x∆y∆z/h3 particles.
One particle occupies a volume ∆x∆y∆z in ~r-space, so that per unit volume of
~r-space a number of gVp/h

3 particles can be located in a volume Vp of momentum
space.

Another illustration may be derived from the Schrödinger equation for the wave
function ψ for a particle of mass m

i~
∂ψ

∂t
= − ~2

2m
∇2ψ (6.1)

where ~ ≡ h/(2π), which has the solution

ψ(~r, ~p) = const× exp(
i

~
(~p · ~r − Et)) where E =

p2

2m
(6.2)

Again consider particles with distances ∆x in the x-direction. To avoid destruc-
tive interference of the wave functions of different particles with one another, their
momenta must be multiples of h/∆x: pn = nh/∆x. Analogous reasoning may be
applied to the y and z directions, and the above picture is obtained again, with the
same way of counting available slots in momentum space.

Thus, while the number of particles in a given volume Vp of momentum space may
be infinitely large in the classical description, we must take into account an upper
limit to the number of fermion particles in this volume in the quantum mechanical
description. This limitation leads to the Fermi-Dirac distribution f , as a function
of energy ε, valid for fermions:

f(ε) =
1

e−α+βε + 1
(6.3)

The meaning of the constants α and β will be discussed below. We give a brief
derivation of the Fermi-Dirac distribution.
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6.1.1 Derivation of the Fermi-Dirac distribution

Consider a volume Vp in momentum space, chosen so that all particles in this volume
have the same energy εi. The number of available positions in this volume is Zi =
gVp/h

3. The number of possible ways to choose ni positions from Zi is given by the

binomial coefficients

(
Zi
ni

)
. The number of ways to locate ni particles in Zi, nj

particles in Zj, nk particles in Zk, etc., then follows as

W = Πi
Zi!

ni!(Zi − ni)!
(6.4)

By colliding with one another, the particles continuously redistribute themselves over
the different locations in momentum space, i.e. the different ni vary by an amount
δni. The most probable distribution is therefore that distribution which can be
realized in most ways, i.e. for which W has a maximum. Because the number of
particles is so large, the actual distribution of the particles will lie very close to the
most probable distribution. W reaches its maximum when its variation is zero, i.e.
δW = 0. For convenience, we determine the equivalent condition δ lnW = 0. In
doing so, we use Stirling’s equation lnn! ' n lnn − n, which is very accurate for
very high n.

δ lnW = δ [Σi(lnZi!− lnni!− ln(Zi − ni)!)] = Σiδni [− lnni + ln(Zi − ni)] (6.5)

Before continuing, we must take into account that the collisions which redistribute
the particles, i.e. which cause the ni to vary, must conserve the total number of
particles per unit volume, and must conserve the total energy per unit volume.
These conditions can be written

Σini = N and Σi(niεi) = E (6.6)

With Lagrange’s multiplicator method, we rewrite these conditions as αΣi(δni) = 0
and −βΣi(εiδni) = 0 and add them to Eq.6.5 to find

δ lnW = Σiδni (− lnni + ln(Zi − ni) + α− βεi) (6.7)

This is zero for all δni if Eq.6.3 is satisfied, where f(εi) ≡ ni/Zi is the occupation
fraction, i.e. the fraction of the total number of available positions with energy εi that
is occupied. The parameters α and β can be determined by entering the solution
Eq.6.3 into conditions Eq.6.6. We will do this below for the classical limit, and
note for now that α is mainly dependent on the particle number density, whereas
β ≡ 1/(kT ) depends on the energy.

6.1.2 Relation between Fermi-Dirac, Bose-Einstein and Planck

We make a little detour here to show the relation between the various distribu-
tion equations in quantum mechanics. First, note that in deriving the Fermi-Dirac
equation, we have used four statements:

1. phase space is quantized, i.e. at each energy εi there is a finite number Zi of
boxes in momentum space
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2. the exclusion principle holds, i.e. each box can only contain g particles

3. the number of particles is conserved

4. the total energy is conserved

That is all the physics we need to derive the Fermi-Dirac equation! The remainder
is mathematics.

The exclusion principle does not apply to bosons, which may share a box. The
number of ways to distribute ni bosons in Zi boxes is therefore (ni+Zi−1)!/[ni!(Zi−
1)!]. (Think of this as the number of ways to arrange in a row ni indistinguishable
particles and Zi − 1 indistinguishable boundaries between the Zi boxes.) Starting
from this, but otherwise following the derivation of the Fermi-Dirac equation, we
find the Bose-Einstein distribution:

ni
Zi − 1

' ni
Zi

=
1

e−α+βε − 1
(6.8)

Thus, to derive the Bose-Einstein function, we only use numbers 1,3 and 4 of
the list above. What about the Planck function? The difference between the Planck
function and the Bose-Einstein function arises because the number of photons need
not be conserved. (For example, if an electron in an atom absorbs a photon to jump
from orbit 1 to orbit 3, it can emit two photons by returning to orbit 1 via orbit 2.)
Thus, the derivation of the Planck function does not contain a Lagrange condition
for the conservation of particles, i.e. the term with α drops out. The Planck function
is simply the Bose-Einstein function with the α dropped:

ni
Zi − 1

' ni
Zi

=
1

eβε − 1
(6.9)

In other words, to derive the Planck function, we only need numbers 1 and 4 of
the list above, i.e. energy is conserved and phase space is quantized. This was
how Bose derived the Planck function, and it illustrates how the Planck function
immediately implies quantization. (The extension of Bose’s equation to the Bose-
Einstein equation was found by Einstein after he added conservation of number of
particles; the Fermi-Dirac equation had to wait for the exclusion principle to be
formulated.)

6.1.3 Limits of the Fermi-Dirac equation

Let us look at the Fermi-Dirac equation in some more detail. To understand the
physical meaning of α and β, we start with the classical limit of the equation, which
is the limit for which the exponent in the denominator is much bigger than one, so
that we may write

f(ε) = eα−βε (6.10)

The energy ε of a particle depends only on its momentum p; for example in the
non-relativistic case we have ε = p2/(2m). We may therefore write the number of
particles in a unit volume of ~r-space with momentum p as

n(p)dp =
g

h3
4πp2eα−βp

2/(2m)dp (6.11)
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Figure 6.2: The Fermi-
Dirac function for various
values of α.

Comparing this with the Maxwell-Boltzmann equation, we see that β = 1/(kT ).
For the total number of particles in a unit volume in ~r-space we find

n =

∫ ∞
0

n(p)dp =
g

h3
(2πmkT )3/2eα (6.12)

This tells us that α ∝ ln(n/T 3/2). α is very small, i.e. α � −1, for small density,
or for high temperature. A different notation which is often used has µ ≡ α/β; µ is
called the chemical potential of the gas. Thus, the classical limit applies for a gas in
which the density is very small, or which has a very high temperature. Intuitively,
we understand that low density allows a classical description, because at low density
the particles are far from filling all available positions in momentum space, and are
not constrained by the quantum mechanical limitation to the number of available
positions.

For a number of higher values of α, the Fermi-Dirac function is plotted in Fig-
ure 6.2. It can be seen that for high values of α, the Fermi-Dirac equation can be
well approximated with

f(ε) = 1 for βε ∼< α and f(ε) = 0 for βε > α (6.13)

A gas for which this approximation holds is called a fully degenerate gas. For such
a gas, all possible states up to an energy εF are occupied, and no states at higher
energy are occupied. Correspondingly, in momentum space all positions up to a
limiting momentum pF are filled. εF and pF are called the Fermi energy and Fermi
momentum. The number of positions in the sphere with radius pF , and hence the
number density for a fully degenerate gas in ~r-space is

n =
4π

3
p3
F

g

h3
(6.14)

and for the pressure we use P =
∫

2pzvzf(~p)d~p to find

P =

∫ ∞
0

∫ π/2

0

∫ 2π

0

2p cos θv cos θ
g

h3
dφ sin θdθp2dp =

4πg

3h3

∫ pF

0

p3vdp (6.15)
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6.1.4 Non-relativistic fully degenerate gas

For a non-relativistic gas we substitute v = p/m in Eq.6.15 and use g = 2 to find

P =
8π

15mh3
p5
F =

1

5m

(
3h3

8π

)2/3

n5/3 (6.16)

where we used Eq.6.14 to eliminate pF .
In a white dwarf the gas is a mixture of ions (e.g. carbon and oxygen ions) and

electrons. For each component of the gas we can roughly determine the particle
density at which that component becomes degenerate from

1

5m

(
3h3

8π

)2/3

n5/3 ∼ nkT ⇒ n ∼ 8π

3h3
(5mkT )3/2 (6.17)

i.e. the transition between ideal and degenerate occurs near a number density that
scales with m3/2. For electrons, the transition occurs therefore at much lower number
density, i.e. if we increase the gas density, the electrons become degenerate long
before the ions become degenerate. At these densities the electron pressure Pe
dominates completely over the pressure from the ions (Eq.6.16), but the mass density
ρ is still dominated by the ions. For the total pressure in such a mixture we use
Eq. 6.16 to write

P ' Pe =
1

5me

(
3h3

8π

)2/3(
ρ

µemp

)5/3

(6.18)

where µe is the mass per electron of the gas mixture, in units of the proton mass
mp.

In a neutron star, the number density of neutrons dominates, nn � np = ne,
and the total pressure is

P ' Pn =
1

5mn

(
3h3

8π

)2/3(
ρ

mn

)5/3

(6.19)

6.1.5 Fully relativistic fully degenerate gas

For a relativistic gas we may write v = c so that

P =
8πc

12h3
p4
F =

c

4

(
3h3

8π

)1/3

n4/3 (6.20)

Note that the mass of the degenerate particle doesn’t enter the equation of pressure
in the fully relativistic case.

In a white dwarf we have

P ' Pe =
c

4

(
3h3

8π

)1/3(
ρ

µemp

)4/3

(6.21)

and in a neutron star

P ' Pn =
c

4

(
3h3

8π

)1/3(
ρ

mn

)4/3

(6.22)
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6.1.6 General fully degenerate gas

In general the relation between energy E and momentum p may be written

E = mc2

(
1 +

p2

m2c2

)1/2

(6.23)

and the relation between velocity and momentum is

v =
p

m

(
1 +

p2

m2c2

)−1/2

(6.24)

We now cannot find an explicit solution any more, but we can construct a parametrized
solution. To do this we solve the integral for the pressure

P =
8π

3mh3

∫ pF

0

p4dp

(1 + p2

m2c2
)1/2

(6.25)

by substituting
p

mc
≡ sinh

t

4
(6.26)

so that

pF = mc sinh
t

4
(6.27)

EF = mc2 cosh
t

4
(6.28)

P =
πm4c5

12h3
(sinh t− 8 sinh

t

2
+ 3t) (6.29)

n =
8πm3c3

3h3
sinh3 t

4
(6.30)

The relation between pressure P and density n (or ρ) is found by calculating P and
n (or ρ) for a series of values of the parameter t.

6.1.7 A mixture of electrons, neutrons and protons

At densities ρ ∼> 1011 g cm−3, as in neutron stars, matter consists mainly of electrons
e−, neutrons n and protons p. To derive the properties of such a mixture, we consider
the reactions

p+ e− → n+ ν and n→ p+ e− + ν̄ (6.31)

where ν and ν̄ are the electron neutrino and anti-neutrino, respectively. In equilib-
rium, the minimum energy is reached, so that no energy can be gained by further
reactions. This means

Ep + Ee = En + Eν (6.32)

In a fully degenerate gas, the energies are dominated by the Fermi–energies, and
thermal energy may be ignored. Because neutrinos escape from the neutron star,
their number density and hence their Fermi energy is zero, so that

Ep + Ee = En (6.33)

This is called neutrino neutrality.
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The total charge is zero, hence the number density of electrons equals that of
protons. With Eq.6.30 this may be written

mec sinh
te
4

= mpc sinh
tp
4

(6.34)

whereas for the Fermi energies we may write with Eq.6.28

mec
2 cosh

te
4

+mpc
2 cosh

tp
4

= mnc
2 cosh

tn
4

(6.35)

To find the equation of state in parametrized form, we take a series of values of,
for example, te. With Eq.6.34 we calculate tp, and then with Eq.6.35 tn. This
then allows us to determine the partial pressures of the electrons, neutrons and
protons, as well as the number densities of each type of particle. By adding the
separate densities, we find the total density. For densities ρ ∼> 1012 g cm−3 we find
that neutrons dominate the number densities (see Exercise 3.7). Hence the name
neutron star!

6.1.8 The equation of state for fully catalysed matter

What we considered above are the equations of state for an ideal gas, in which no
forces are present. In a real gas, the particles exert forces on one another, and this
affects the equation of state. We consider the equation of state for fully catalysed
matter, i.e. matter in which the nuclear abundances Zi, Zj, ........Zn have adapted
so that the internal energy per baryon is minimal. For temperatures T ∼< 109K the
thermal energy of such matter is negligible with respect to the Fermi-energies, and
we call such matter cold catalysed matter.

Suppose we compress a ball of matter to ever larger densities. At low densities,
ρ ∼< 105 g cm−3, Fe56 is the most stable form. At increasing densities the pressure at
first is determined by the repelling Coulomb forces of the electron shells surround-
ing the iron cores. Such forces determine the structure of planets. We define the
compression modulus as

γ =

(
∂ lnP

∂ ln ρ

)
ad

(6.36)

where ad stands for adiabatic, i.e.no energy is added or lost. For a polytrope γ =
1 + 1/n. At small densities γ is very large: it is difficult to compress matter.

As densities increase further, the distances between the Fe cores becomes com-
parable to the Bohr radii of ever smaller electron shells. The electrons of those shells
therefore detach from the individual nuclei: this is called pressure ionization. At
densities with distances between the Fe cores less than the innermost Bohr radius,
the matter is fully ionized. This happens at about ρ ' 105 g cm−3. The pressure
is thus determined by the increasing number of electrons, where the electrons are
fully degenerate: γ = 5/3. At densities up to 107 g cm−3 the electrons become
relativistically degenerate, and γ drops to 4/3.

At a density in excess of 1.4 × 107 g cm−3 the electrons become sufficiently en-
ergetic to be captured by the Fe56

26 cores, transforming these into Ni62
28 cores. As

density increases further, similar electron capture leads to more and more neutron-
rich cores. Because of the disappearance of electrons, the pressure increases less
fast, and γ drops to 1.26. The neutron-rich cores are loosely bound, and at a den-
sity ∼ 2 × 1011 g cm−3 the neutrons start ’dripping’ from the cores. Because of the
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Figure 6.3: The equation of state for fully catalysed matter, and the compression
modulus derived from it.

rapid disappearance of electrons the pressure remains almost constant between 3 and
4×1011 g cm−3, and γ approaches 0. Above 4×1011 g cm−3 all protons and neutrons
have detached from the cores, and matter consists only of electrons, neutrons and
protons. The degenerate neutron pressure increases γ to 5/3. At densities above
1013 g cm−3 the neutrons become relativistic. Nuclear interactions become impor-
tant at these densities. As these interactions are poorly understood, the equation
of state at these high densities is poorly known.

In Figure 6.3 the equation of state and the accompanying γ is shown as a function
of density. At low densities the Coulomb repulsion causes the radius to increase
with mass. This applies to planets. When most atoms are ionized, and the electrons
become degenerate, the radius decreases with mass. This applies to the white dwarfs.
A maximum mass is reached at a central density of about 2.4×108 g cm−3. Between
this density and about 2.7× 1013 g cm−3 solutions can be found for smaller masses,
but these solutions are unstable, and any perturbation leads to collapse. Stable
solutions are possible again at densities between 2.7×1013 g cm−3 and 6×1015 g cm−3:
these are the neutron stars. For higher densities the solutions are unstable again.
At these densities collapse to a black hole is unavoidable.

6.2 Equations for the structure of a degenerate

star

Amongst the equations for stellar structure are the equation of hydrostatic equilib-
rium

dP

dr
= − GM(r)

r2
ρ (6.37)

where M(r) is the mass within a sphere of radius r, and the equation of mass
conservation

dM(r)

dr
= 4πr2ρ (6.38)

These two first order differential equations may be combined into a single second
order differential equation:

1

4πr2

d

dr

(
r2

Gρ

dP

dr

)
= −ρ (6.39)
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In general the pressure is a function of both density and temperature, P = P (ρ, T ),
so that we need equations describing the temperature structure of the star. For de-
generate objects, however, the pressure is a function of density only, P = P (ρ), and
the structure of the star can be solved without information about the temperature.

6.2.1 The polytrope equation

To see this, we write the pressure as

P = Kρ1+ 1
n (6.40)

where K is a constant, and n is called the polytrope index. The density is written
with a dimensionless variable θ as

ρ = ρcθ
n (6.41)

We may then combine the last three equations into[
(n+ 1)K

4πG
ρ

1
n
−1

c

]
1

r2

d

dr

(
r2dθ

dr

)
= −θn (6.42)

We now transform to a dimensionless radius by substituting

r ≡ aξ a ≡
[

(n+ 1)K

4πG
ρ

1
n
−1

c

]1/2

(6.43)

to obtain the polytrope equation

1

ξ2

d

dξ

(
ξ2dθ

dξ

)
= −θn (6.44)

This equation may be solved numerically, for various values of n, where we use the
boundary conditions at the center of the star ξ = 0

θ(0) = 1,

(
dθ

dξ

)
ξ=0

= 0. (6.45)

The first condition uses the freedom to scale θ (see Eq.6.41) and the second condition
follows from symmetry with respect to r = 0, so that dP/dr = 0 at r = 0. The
solutions for n = 1.5 and for n = 3 are shown in Figure 6.4.

The function θ drops monotonically to zero, and the position where θ reaches
zero corresponds to the radius of the stellar surface. For a polytrope with n = 1.5
the value for ξ at which θ is zero is ξ1 ' 3.65375; for a polytrope of n = 3 at
ξ1 ' 6.89685. The mass M(ξ) of a polytrope within radius ξ can be found by
rewriting Eq.6.38 in terms of the polytrope function, and by integrating the result,
which gives (see Exercise 4.5).

M(ξ) = −4π

[
(n+ 1)K

4πG

]3/2

ρ(3−n)/(2n)
c ξ2dθ

dξ
(6.46)

The mass of the whole star is found by using this equation at ξ = ξ1. The numerical
solution provides the value for −(ξ2dθ/dξ)ξ=ξ1 = 2.714 for the n = 1.5 polytrope,
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Figure 6.4: The solutions
for n = 1.5 and n =
3.0 of the polytrope equation
Eq.6.44.

and = 1.89 for the n = 3 polytrope. By elimination of ρc from Eq.6.46, using
Eq.6.43, we obtain the mass–radius relation for a polytrope.

Consider for example a white dwarf with central density ρc = 105 g cm−3. In
such a white dwarf, the pressure is non-relativistically degenerate, so that we have
a polytrope with n = 1.5. Eq.6.18 gives K. This immediately gives us the radius
of the white dwarf with Eq.6.43 and ξ1 = 3.65675. The mass follows from Eq.6.46.
In general, the mass-radius relation for non-relativistically fully degenerate white
dwarfs is R ∝ M−1/3. Analogously we may consider a non-relativistically fully
degenerate neutron star.

In the case of fully relativistic fully degenerate matter Eqs.6.43-6.46 show that
the mass is a constant! For white dwarfs

MCh = 1.457

(
2

µe

)2

M� (6.47)

How should we interpret this mass, which is called the Chandrasekhar limit? Con-
sider first a low-mass white dwarf, which is non-relativistically fully degenerate. If
we increase the mass, the core will become more dense, and at some point the core
will become relativistically degenerate. If we continue to increase the mass, a larger
and larger fraction of the star becomes relativistically degenerate, until at the mass
given by Eq.6.47 the whole star is relativistically degenerate. If we then add more
mass, Eqs.6.37,6.38 no longer have a solution, i.e. no equilibrium between gravity
and pressure is possible: the star collapses.

In principle, we could apply a similar reasoning to the neutron star; as a first
approach, this gives a reasonable impression of its structure. We note immediately
from Eq. 6.47 that the Chandrasekhar limit for a neutron star is about 5.6 M�. In
detail, we must be more accurate, due to two complications.

6.2.2 Realistic structure computation of a neutron star

The first complication is that at the compactness of a neutron star, we can no longer
use the classical equations 6.37 and 6.38, but we must use their general-relativistic
equivalents. This is quite doable, as general relativity is well understood. In fact,
all that has to be done is to replace Eqs. 6.37 and 6.38 with the general relativistic
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Figure 6.5: Left: the approximate equation of state of a mixture of neutrons, pro-
tons and electrons as found by combining the non-relativistic and relativistic limits
(Eqs. 6.16, 6.20; dashed line) lies close to the full solution (Eqs. 6.29, 6.30 and
6.34, 6.35; solid line). A more realistic equation of state, which includes the effect
of nuclear forces, has a higher pressure for the central density of a neutron star.
Right: different models for a neutron star with the same central density, obtained by
numerically integrating the structure equations with different equations of state. The
line styles indicate the equation of state used, as in left panel. The upper dashed line
is a solution based on Newtonian gravity (Eqs.6.37, 6.38), the other three are based
on general relativity (Eqs.6.48,6.49). The masses of these models are 2.4 M� and
1.0 M� for the dashed lines, 0.8 M� for the solid line, and 2.1 M� for the dotted
line.

equivalents. Hydrostatic equilibrium becomes

dP

dr
= −

G(M∗(r) + 4πr3 P
c2

)(ρ∗ + P
c2

)

r2(1− 2GM∗(r)
rc2

)
(6.48)

where the equivalence of energy (hence pressure) and mass is taken into account both
in the mass M(r) and in the density ρ, which now consist of rest mass terms M∗ and
ρ∗ and pressure terms. The r2 in the denominator is multiplied with a correction
term which takes into account the curvature of space. These terms will be (partially)
explained in the chapter on general relativity. The rest mass is conserved

dM∗(r)

dr
= 4πr2ρ∗ (6.49)

Equations 6.48 and 6.49 are called the Tolman Oppenheimer Volkov equations.
As shown in Figure 6.5 the general relativistic equations lead to a star which is

smaller in radius and mass – for the same central density and equation of state –
than the Newtonian equations of gravity.

The second complication is that we cannot use a polytrope throughout the star,
because the ratio of the numbers of electrons, protons and neutrons depends on the
density (as explained in discussing Eqs.6.34,6.35), so that K in the polytropic pres-
sure relation Eq.6.40 is no longer a constant. We can solve the full set of Eqs. 6.25-
6.30; this gives an equation of state close to the approximate equation found by
combining the two polytropic equations 6.37,6.38. The neutron stars based on these
equations of state for a free gas of neutrons, protons and electrons have a mass
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less than 1 M� when computed from the general relativistic structure equations. A
more massive neutron star, like those observed near 1.4 M�, requires an equation
of state with higher pressure at the same central density. A more realistic equation
of state, such as the one shown in Figure 6.3, takes account of nuclear forces. As
shown in Figure 6.5, such an equation indeed can explain neutron stars with masses
as observed.

6.3 Temperature structure of a degenerate star

In a gas with a temperature gradient, heat is transported until the temperature
difference is erased. Fourier discovered empirically that the energy flux Q is propor-
tional to the temperature gradient:

Q = −κ∇T (6.50)

The minus sign in the right hand side indicates that the energy flows from the high
temperature to the low temperature regions. The heat-conduction coefficient κ is
proportional to the free path length of the particles, to their average velocity, and
to their density.

To derive this, we first consider more generally a gas in which a quantity G
varies. We choose the z-axis along the gradient. Consider a particle that moves a
distance equal to the free path length l in a direction that makes an angle θ with
the z-axis, and then collides with another particle. The difference in G between the
particle and its surroundings then is equal to dG = −l cos θ(∂G/∂z). The number of
particles with velocity v in direction θ passing per unit of time through a unit surface
perpendicular to the z-axis is (n/4π)v cos θ sin θdθdφ. To obtain the transport of G
through the unit surface element we integrate over θ and φ:

Q =

∫ π

0

∫ 2π

0

l cos θ
∂G

∂z

n

4π
v cos θ sin θdθdφ =

lnv

3

∂G

∂z
(6.51)

We also have to integrate over the velocity distribution. If the free path length l
does not depend on v, this integration simply leads to replacing v in Eq.6.51 with
the average velocity v̄.

We apply this to the temperature derivative and the heat flow. For G we write
the energy per particle 3kT/2 and find

Q = − lnkv̄
2

∂T

∂z
(6.52)

and thus we have theoretically derived the empirical relation of Fourier.
In a degenerate gas, the conduction coefficient is very high. The first reason for

this is that most particles have the Fermi momentum, and thus a high velocity, so
that v̄ is high. Secondly, all those collisions are forbidden which would bring par-
ticles into a momentum position which is already filled: thus the free path length
is very high. This high conduction coefficient causes the interior of white dwarfs
(degenerate electron gas) and of neutron stars (degenerate neutron gas) to be virtu-
ally isothermal. A temperature gradient only exists in a thin atmosphere near the
surface, as we will discuss in a moment.
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6.3.1 Atmospheres and cooling of white dwarfs

How thick is the atmosphere? Its pressure scale height Hp is given by

Hp =
kT

µmpg
=

kTR2

µmpGM
(6.53)

where g is the gravitational acceleration. For a neutron star with mass 1.4M�
and radius R = 10 km, with an atmosphere of pure iron, µ = 56, and a surface
temperature of 106K, we find that the atmospheric scale height is less than 0.01 cm!

A simple derivation for the cooling time, given by Mestel, goes as follows. The
equation relating the luminosity of a star to the temperature derivative is

dT

dr
= − 3κρL(r)

4acT 34πr2
(6.54)

We combine this equation with Eq.6.37, and apply the result to the surface layer of
the star, where luminosity and mass have reached the surface value, i.e.L(r) = L
and M(r) = M . We further use the Kramers opacity law approximation:

κ = κoρT
−3.5 where κo = 4.34× 1024Z(1 +X) cm2 g−1 (6.55)

to find
dP

dT
=

4ac4πGMT 6.5

3κoLρ
(6.56)

We eliminate the density from this equation by applying the equation of state. Near
the surface of a star, even a white dwarf or a neutron star, this is the equation of
state for non-degenerate matter. We find

PdP =
4ac4πGM

3κoL

k

µmp

T 7.5dT (6.57)

We integrate this equation over the atmosphere of the star, using the boundary
conditions T (R) = P (R) = 0. Using the equation of state once more, we find

ρ =

(
32acπGMµmp

25.5κoLk

)1/2

T 3.25 (6.58)

This equation describes the density in the atmosphere of any star (within the ap-
proximation of Kramer’s law). We now apply it to the atmosphere of a degenerate
white dwarf, and in particular to the layer where the electrons are just becoming
degenerate, i.e.the point where the atmosphere connects to the isothermal interior.
We denote quantities in this layer with index ∗. By equating the degenerate electron
pressure to the non-degenerate electron pressure we have for the density ρ∗

ρ∗kT∗
µemp

= C

(
ρ∗
µe

)5/3

⇒ ρ∗ =

(
k

mpC

)3/2

µeT
3/2
∗ = 2.4× 10−8 g cm−3µeT

3/2
∗ (6.59)

where C is given in Eq. 6.18. Combined with Eq.6.58 this equation relates the
internal temperature of the white dwarf to the luminosity:

L =
32πacGMµ

25.5κoµ2
e

(mp

k

)4

C3T 3.5
∗ = 5.7× 105 erg s−1 µ

µ2
e

1

(1 +X)Z

M

M�
T 3.5
∗ ≡ C1T

3.5
∗

(6.60)
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Figure 6.6: The cooling for a CO white dwarf of 0.6 M� with a helium atmosphere
according to Eq. 6.65 (dashed line), and according to more sophisticated models (solid
line, for the coolest stars •). The simple theory is not too bad, but to obtain accurate
ages for old white dwarfs, the sophisticated models are indispensable.

How long does this luminosity take to drain the internal energy? The internal energy
of a white dwarf is mainly in the non-degenerate ions. Thus the total thermal energy
can be written in terms of the internal temperature

U =
3

2
kT∗

M

Amp

(6.61)

where A is the atomic mass of the nuclei, and this energy leaks away as radiation

L =
dU

dt
(6.62)

We integrate this equation to find the internal energy, and thus via Eq.6.61 the
internal temperature, as a function of time:

t− to =
3kM

5AmpC1

(
T−5/2
∗ − T−5/2

o

)
' 3kM

5AmpC1

T−5/2
∗ (6.63)

where To is the internal temperature at time to, and where the approximation is
valid once significant cooling has taken place: T∗ � To. We now use Eq. 6.60 to
eliminate T∗ from this equation, and enter the constants C1, C and κo to find

τ ' 7.2× 107 yr
1

A

[
Z(1 +X)µ2

e

µ

]2/7(
M/M�
L/L�

)5/7

(6.64)

which tells us that the cooling time increases as the luminosity of the white dwarf
decreases. We may also write the last equation in terms of the effective temper-
ature using L = 4πR2σTeff

4 and the approximate mass-radius relation R/R� '
0.011(M/M�)−1/3 (valid for M ∼< 0.6M�, to find

τ = 9.5× 109 yr
1

A

[
Z(1 +X)µ2

e

µ

]2/7(
M

M�

)25/21(
Teff

104 K

)−20/7

(6.65)

As a numerical example we consider a carbon oxygen white dwarf of 0.6M�,
with an atmosphere consisting mainly of helium. A refers to the core, and for an
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Figure 6.7: Left: theoretical cooling track for young neutron stars (solid line), to-
gether with observed X-ray luminosities for ordinary and recycled radio pulsars (open
and filled circles, respectively; the arrow is an upper limit). The X-rays for some
young pulsars and all recycled X-ray pulsars are too high for pure thermal emis-
sion, and must therefore be magnetospheric. Right: X-ray luminosity of radio pul-
sars as a fraction of the spindown energy Lsd ≡ IΩΩ̇. The dotted line indicates
Lx/Lsd = 0.001. The recycled radio pulsars lie on the same average relation as the
ordinary pulsars.

roughly equal mix of carbon and oxygen we take A = 14. For the values of X, Z,
µe and µ we must take the atmospheric values; we take the hydrogen content zero,
X = 0, and for the metallicity Z = 0.1, thus, µ ' 1.4 and µe = 2. The cooling times
to Teff = 5×104 K, 104 K, and 5000 K are 4.8×106 yr, 4.8×108 yr, and 3.5×109 yr,
respectively. Cool white dwarfs have ages which are a significant fraction of the age
of the Galaxy!

The study of old white dwarfs has received new impulses now that many of
them have been found, in the galactic disk, in globular clusters, and – perhaps
most spectacularly – in the Hubble Deep Field (a very long integration on a field
which with smaller telescopes appears to be empty), i.e. in the galactic halo. The
theory for cooling has also been improved, mainly by using better opacities and
full atmospheric models: interesting in particular is the result that at temperatures
below 5000 K, molecular hydrogen has high opacity at red wavelengths, so that white
dwarfs with pure hydrogen atmospheres become blue again when they cool below
this. Such is the case for the coolest white dwarfs in the Hubble Deep Field. Other
improvements take into account that a cool white dwarf can crystallize, which leads
to an extra energy release of order kT per ion, and that a very low level of nuclear
fusion can still take place in early stages of the cooling.

6.3.2 Cooling of neutron stars

A neutron star is born very hot, but cools rapidly through the emission of neutrinos
in reactions in which protons change into neutrons under emission of a positron and
a neutrino, and neutrons change into protons under emission of an electron and an
anti-neutrino:

n→ p+ e− + ν̄ (6.66)

Once the temperature has dropped considerably, degeneracy sets in, and reaction
Eq.6.66 is no longer possible! The neutrino produced in this reaction carries away
some energy and momentum, so that the proton and electron have to share less
energy and momentum than the neutron had. As a result one of these particles
(because of the mass ratio usually the electron) would end up with a momentum
below its Fermi surface: but there all positions are already filled! Thus the neutron
can no longer decay directly – and the star remains a neutron star....

Cooling is still possible via indirect reactions, in which a neutron borrows energy
from another neutron to be able to decay:

n+ n→ n+ p+ e− + ν̄ followed by p+ e−+→ n+ ν (6.67)

Detailed calculations show that this and similar cooling mechanisms are still more
efficient for a neutron star than the energy leak through the atmosphere near the
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Figure 6.15: RGS spectra of three nearby, thermally emitting neutron stars. The
top panel shows RX J1605.3+3249, for which the spectrum shows clear evidence for
an absorption feature. Overdrawn is the best-fit model, a slightly extincted black
body with two Gaussian absorption features. The second and third panel show the
spectra of RX J0720.4−3125 and J1308.6+2127, with the same model overdrawn
for comparison. Both have similar temperatures, but RX J0720.4−3125 has no
absorption, while RX J1308.6+2127 has much stronger absorption.

surface, until the internal temperature has dropped to ∼ 103K. To compare the
internal temperature with the observed surface temperature, we must calculate an
atmosphere model.

With the gratings on Chandra and XMM the first real spectra of single neutron
stars are now becoming available, and they are quite surprising. The spectrum of the
nearby single neutron star RX J0720.4−3125 shows no absorption or emission lines,
and looks much more like a black body spectrum than like the spectrum expected
from a simple pure hydrogen or pure iron atmosphere at the high-gravity surface of
a neutron star. Other spectra of single neutron stars with similar temperature show
very broad absorption features (Figure 6.15). This is now being investigated, and
it appears that a) the magnetic field play a role in the spectrum – which explains
why stars at (almost) the same temperature have different spectra, and b) vacuum
polarization is important – which explains that the absorption features are very
broad.
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6.4 Exercises

Exercise 20. Estimate the density at which the transition occurs between non-
relativistic and relativistic degenerate matter, for fully degenerate electron pressure
and for fully degenerate neutron pressure.

Exercise 21. Calculate the Fermi momentum and energy for electrons and
protons in a degenerate gas, in which the particle density is 1036 cm−3 for both
electrons and protons. To forgo unnecessary computing, remember that coshx =√

sinh2 x+ 1. Show that the electrons are relativistically degenerate, and that the
protons are still non-relativistic. Express the Fermi energies in terms of the rest
mass mc2, and estimate the temperature at which the thermal energy kT is equal to
the Fermi energy. Argue that such temperatures allow transitions between neutrons
and protons again. These transitions lead to energy loss in the form of neutrinos,
causing a young neutron star to cool rapidly.

Exercise 22. Derive Eq.6.29. In order to do so, first show that

sinh4 x =
cosh 4x

8
− cosh 2x

2
+

3

8
(6.68)

Exercise 23. Show that Eq.6.9 is indeed identical to the Planck function

Bνdν =
2πhν3

c2

1

ehν/kT − 1
dν (6.69)

after insertion of Zi.
Exercise 24. Calculate the constants K of Eq.6.40 for non-relativistic and

relativistic degenerate matter for electron degeneracy and for neutron degeneracy.
Consider non-relativistic polytrope models at the same mass to estimate the ratio
between the radii of a neutron star and of a white dwarf.

Exercise 25. Argue that the integral in Eq.6.51 should indeed have π as an
upper bound, and not π/2.

Computer Exercise 3. a) Write a computer code to compute the structure of a
white dwarf. To do so, we rewrite the differential equations as difference equations.
For the conservation of mass, Eq. 6.37, we write:

∆M(r) = 4πr2ρ(r)∆r A

and for hydrostatic equilibrium Eq. 6.38:

∆P (r) = −GM(r)

r2
ρ(r)∆r B

To solve two first order differential equations, we need two boundary conditions.
We choose for these:

1. in the center, R = 0, the mass is zero: M(0) = 0

2. a value for the central pressure Pc

We see from Eq. B and the boundary condition 1 that the pressure reaches a
maximum in the center: dP/drR=0 = 0. (We can also derive this from the spherical
symmetry: starting from the center, the change in P is the same for a small distance
∆r and for a step −∆r; with Eq. B it then follows that (∆P )R=0 = −(∆P )R=0, i.e.
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(∆P )R=0 = 0.) This implies that a small sphere of constant pressure, and thus,
via Eq. B, constant density surrounds the center. Thus the first two steps for a
numerical solution are:
a) calculate the central density from the central pressure, with Eq. 6.18 or Eq. 6.21
b) calculate the mass of a sphere with constant density ρ(0) and radius ∆r:

M(∆r) =
4π

3
ρ(0)∆r3 (6.70)

The third, fourth and fifth steps are:
c) calculate the change in pressure ∆P and in mass ∆M r = ∆r and r = ∆r+∆r =
2∆r by entering the values for M and ρ at r = ∆r in the right hand sides of Eq. A
and B
d) use the results to compute the values at r = 2∆r:

M(2∆r) = M(∆r) + ∆M (6.71)

P (2∆r) = P (∆r) + ∆P (6.72)

e) calculate the new density from the new pressure, with Eqs. 6.18,6.21.
Because of the minus sign in Eq. B the newly found pressure, and with it the

density, are smaller than the central pressure and density. We can repeat the last
three steps in a loop. Writing the quantities at r = n∆r with index n, we have:
f) (∆P )n and (∆M)n with Eqs. A,B from Mn and ρn
g) Mn+1 = Mn + ∆Mn and Pn+1 = Pn + ∆Pn
h) ρn+1 volgt uit Pn+1

We repeat steps f-h again and again, until the pressure drops below zero: then the
density is zero as well, in other words, we have reached the edge of the star. In
parctice we stop when the pressure is too low for Eq. 6.18 to be valid, i.e. when the
pressure becmes ideal. The last found values for mass and radius are the mass M
and radius R of the whole degenerate star.
b) repeat the calculation above for different central densities, and mae a plot of
radius as a function of mass.

It is important to choose a good value for ∆r in the above calculations: if we
take ∆r too large the result is very inaccurate; if we take ∆r too small rounding off
errors made by the computer will dominate. (To see this consider the limiting case
of a very small step in ∆r, for which the changes in P and M are smaller than the
accuracy with which the computer stores these numbers.)

Computer Exercise 4. In this execrise we adapt the code from the previous
one, to make it compute the structure of a neutron star. We do this in three steps.
a) Compute the polytrope constants in Eqs. 6.19,6.22 and use these to solve the
structure of a neutron star with Eqs.(A) and (B) above. For computational ease it
may help to use P/c2 as a variable, rather than P itself. The maximum mass is near
5.6M� according to these calculations, too high. . .
b) Replace Eq.(B) with its equivalent in General Relativity, with use of Eq. 6.48,
and compute the structure of a neutron star. The maximum mass is near 0.7M�
according to these calculations, too low. . .
c) Use a realistic equation of state, provide in a table on the course website.

Computer Exercise 5. With Exercise 21 in mind, write a computer code to
calculate the ratio of the numbers of neutrons to the numbers of electrons at electron
number densities from ne = 1036 cm−3 to 1039 cm−3.
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6.5 Literature

Thermodynamik und Statistik by A. Sommerfeld is a nice and good book, in which
one may find the derivation of the equations of state, and a clear discussion of the
heat transport. Application to neutron stars may be found in Black Holes, White
Dwarfs and Neutron Stars by S. Shapiro and S. Teukolsky. Polytropes are discussed
in (too much) detail in Stellar Structure by S. Chandrasekhar. A modern discussion
of the cooling of white dwarfs is given by M. Wood 1992 ApJ 386, 539 and by B.
Hansen 1999 ApJ 520, 680; the white dwarfs in the Hubble Deep Field were found
by R. Ibata et al. 1999, ApJ 524, L95. Electromagnetism is lucidly explained in the
book classical electrodynamics by J.D. Jackson.
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Chapter 7

Electromagnetism of neutron
stars1

The model in general use for the magnetic field of a radio pulsar is that of a magnetic
dipole. In this chapter we derive the equations describing a magnetic dipole and the
radiation it emits.

7.1 Energy equation for electromagnetism and po-

tentials

The equations of Maxwell in vacuo are

∇ · ~E = 4πρ (7.1)

∇× ~E = −1

c

∂ ~H

∂t
(7.2)

∇ · ~H = 0 (7.3)

∇× ~H =
4π

c
~J +

1

c

∂ ~E

∂t
(7.4)

Here ~E and ~H are the electric and magnetic field respectively, ρ is the charge density,
and ~J the current. To obtain an energy equation, we take the inner product of ~H
with Eq. 7.2 and of ~E with Eq. 7.4 and subtract the results. Applying the vector
identity ∇ · (~a×~b) = ~b · (∇× ~a)− ~a · (∇×~b) we find:

∂

∂t

E2 +H2

8π
+ ~J · ~E +

c

4π
∇ · ( ~E × ~H) = 0 (7.5)

Now integrate this equation over a volume V and apply the theorem of Gauss to
find

∂

∂t

∫
V

E2 +H2

8π
dV +

∫
V

~J · ~EdV +
c

4π

∫
O

( ~E × ~H) · d~O = 0 (7.6)

The first term is the change in energy density (E2 + H2)/8π, the second term

the change in kinetic energy of the charges (to see this write ~J as the sum of the

individual charges ~J =
∑
e~v, so that ~J · ~E =

∑
e~v · ~E), and the third term is

1This Chapter is copied from Lecture Notes ‘Neutron Stars’ by John Heise, 1972
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the energy flux through the surface of the volume (as will become clear below, at

Eq. 7.38). The vector (c/4π) ~E × ~H is called the Poynting flux.

For applications of Maxwell’s equations it is often convenient to write ~E and
~H in terms of a scalar potential φ and a vector field ~A. Remembering that the
divergence of a rotation is zero, we note from Eq. 7.3 that ~H can be written

~H = ∇× ~A (7.7)

Entering this in Eq. 7.2 we find

~E = −1

c

∂ ~A

∂t
−∇ · φ (7.8)

where φ may be chosen freely, since the rotation of a gradient is zero (∇× (∇φ) = 0
for all φ). We use Equations 7.7 and 7.8 in equations 7.2 and 7.4, and use another
vector identity ∇× (∇× ~a) = ∇(∇ · ~a)−∇2~a, to find

∇2φ+
1

c

∂

∂t
∇ · ~A = −4πρ (7.9)

∇2 ~A− 1

c2

∂2 ~A

∂t2
−∇(∇ · ~A+

1

c

∂φ

∂t
) = −4π

c
~J (7.10)

Now we use the freedom that we have to choose φ and take it so that (1/c)∂φ/∂t =

−∇ · ~A. This is called the Lorentz gauge. With it we find

∇2φ− 1

c2

∂2φ

∂t2
= −4πρ (7.11)

∇2 ~A− 1

c2

∂2 ~A

∂t2
= −4π

c
~J (7.12)

For a given charge distribution ρ and current distribution ~J we solve equations 7.11
and 7.12 first, and then obtain ~E and ~H from eqs. 7.8 and 7.9.

7.2 Electrostatics and magnetostatics

In a stationary situation the time derivatives in eqs. 7.11 and 7.12 can be dropped.
Let us first consider a static charge distribution of a number of point charges ea

at positions ~Ra. With the δ-function we write the charge distribution as a sum of
individual charges: ρ =

∑
eaδ(~r − ~Ra). The solution of the static case of Eq. 7.11

is Coulomb’s Law
φ(~r) =

∑ ea

|~r − ~Ra|
(7.13)

At large distances from the charges, ~r � ~Ra, we may expand φ in terms of ~Ra/~r.
With the general expansion of a function f

f(~r − ~Ra) = f(~r)− ~Ra · ∇f(~r) (7.14)

we rewrite Eq. 7.13 as

φ(~r) =

∑
ea
r
−
∑

ea ~Ra · ∇
1

r
(7.15)
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The sum
∑
ea ~Ra ≡ ~d is called the dipole moment of the system of charges. When

the total charge is zero,
∑
ea = 0, the dipole moment does not depend on the choice

of the origin, so that

φ(~r) = ~d · ∇1

r
=
~d · ∇~r
r3

(7.16)

With Eq. 7.8 the electric field follows:

~E(~r) = − 1

r3
∇(~d · ~r)− (~d · ~r)∇ 1

r3
=

3(~n · ~d)− ~d

r3
(7.17)

where ~n ≡ ~r/r is the unit vector in the direction of ~r. Eq. 7.17 is the equation for
a dipole electric field, valid at large distance.

In an analogous fashion we derive the magnetic dipole field. Write the current
distribution as ~J =

∑
ea~vaδ(~r − ~Ra), and the solution of Eq. 7.12 in the static case

is
~A =

1

c

∑ ea~va

|~r − ~Ra|
(7.18)

At large distance we expand once more with Eq. 7.14 to obtain

~A =
1

cr

∑
ea~va −

1

c

∑
ea~va(~Ra · ∇

1

r
) (7.19)

In stationary cases the total current is most often zero:
∑
ea~va = 0. We rewrite the

second term in Eq. 7.19 by noting that in the stationary case

d

dt
(
∑

ea ~Ra(~Ra · ~r)) = 0 =
∑

ea~va(~Ra · ~va) +
∑

ea ~Ra(~va · ~r) (7.20)

and by use of the vector identity (~Ra × ~va)× ~r = (~r · ~va)~Ra − (~Ra · ~va)~va to obtain

~A = − 1

2c

∑
ea

(~Ra × ~va)× ~r
r3

=
1

c

~m× ~r
r3

(7.21)

where we have defined the magnetic dipole moment ~m ≡ (1/2)
∑
ea ~Ra × ~va/c.

Substituting this in Eq. 7.7 we find the magnetic field for a magnetic dipole, valid
at large distance of the charge currents

~H =
3~n(~m · ~n)− ~m

r3
(7.22)

With Eq. 7.22 we conclude that a sphere has a magnetic field if its interior
contains and electric current ~J . This is as true for a copper sphere as for a neutron
star, an ordinary star, or the Earth. We can write the magnetic dipole moment in
terms of the magnetic field Bo at the pole, where ~n ‖ ~m so that

Bo =
2m

R3
⇒ m =

BoR
3

2
(7.23)

In this equation R is the radius of the sphere.
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7.3 The pulsar magnetosphere

In this section we derive the charge distribution inside a rotating neutron star caused
by the magnetic field. This charge distribution in turn causes an electric field which
draws charged particles from the neutron star into the magnetosphere.

The magnetic field given by Eq. 7.22 is attached to the crust of the neutron star,
and rotates with it. We’ll consider the simple case where the magnetic axis is parallel
or anti-parallel to the rotation axis. The velocity is then given by ~v = ~Ω × ~r. In
the corotating coordinate system the electric field is zero. Application of a Lorentz
transformation thus gives the electric field in a non-rotating, resting coordinate
system as

~E = −1

c
~v × ~H (7.24)

This implies that the electric field is perpendicular to the magnetic field: ~E · ~H = 0.
According to Eq. 7.1 the electric field leads to a charge redistribution inside the
conducting neutron star, so that the difference between the number densities n+

and n− of positive and negative charges is given by

4π(n+ − n−)e = −1

c
∇ · (~v × ~H) = −1

c

[
~H · (∇× ~v)− ~v · (∇× ~H)

]
(7.25)

The last term includes a rotation of ~H, and is negligible as long as v � c. Ignoring
this term and using ∇× ~v = ∇× (~Ω× ~r) = 2~Ω we obtain

n− − n+ =
~H · ~Ω
2πec

= ± mΩ

2πec

3 cos2 θ − 1

2
(7.26)

where we used Eq. 7.22 for ~H and where θ is the angle between ~n and ~m. The sign of
the right hand side is + when the magnetic field is parallel to the rotation axis, and
− when the magnetic field is anti-parallel. Eq. 7.26 shows that the rotating dipole
magnetic field causes a quadrupole charge distribution. At the poles of a parallel
field the positive charges dominate, and around the equator (for cos θ <

√
1/3 i.e.

55◦ ∼< θ ∼< 125◦) the negative charges.
This charge distribution inside the neutron star causes an electric field outside

the neutron star, which we derive by writing Eq. 7.11 in spherical coordinates:

1

r

∂2

∂r2
rΦ +

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
= 0 (7.27)

When the rotation and magnetic axes coincide, Φ does not depend on φ, and the
third term in Eq. 7.27 is zero. We write Φ as the product of a function U(r)/r of r
and a function P (cos θ) of θ, i.e. Φ = U(r)P (cos θ)/r and rewrite Eq. 7.27 as

r2

U

∂2U

∂r2
= − 1

P sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
= l(l + 1) (7.28)

The last equality we find by noting that the first term in Eq. 7.28 depends only on
r and the second term only on θ, so that both must be equal to a constant; we write
this constant as l(l + 1). Solving U from Eq. 7.28 gives

U(r) = Arl+1 +Br−l (7.29)
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with A and B arbitrary constants. The solution of P from Eq. 7.28 is given by
the Legendre polynomials, which are finite at the interval −1 < cos θ < 1 only for
integer l. The first three Legendre polynomials are P0(cos θ) = 1, P1(cos θ) = cos θ
and P2(cos θ) = (3 cos2 θ − 1)/2. The normalization of the Legendre polynomials is
chosen such that Pl(0) = 1 and the polynomials are orthogonal in the sense that∫ +1

−1

Pl(cos θ)Pl′(cos θ)d cos θ =
2

2l + 1
δll′ (7.30)

For the potential Φ we thus have found

Φ =
∞∑
l=0

(Alr
l +Blr

−(l+1))Pl(cos θ) (7.31)

If we can determine the constants Al and Bl along the symmetry axis θ = 0, we can
find the potential at arbitrary angle with Eq. 7.31.

As an example consider the potential at position ~r of a single charge at location
Ra: φ = ea/|~r − ~Ra|. Choosing ~r along the direction ~Ra we may expand 1/|~r − ~Ra|
for |~r| > |~Ra| as (1/r)

∑∞
0 (Ra/r)

l. For an arbitrary angle γ between ~r and ~Ra we
obtain

φ(~r, γ) =
e

|~r − ~Ra|
=

1

r

∞∑
0

(
Ra

r

)l
Pl(cos θ) (7.32)

Now enter the charge distribution of Eq. 7.26 into Eq. 7.11, using the expansion
Eq. 7.32. Along the magnetic axis γ = θ, and the solution is given by

Φ(~r) =

∫
ρ(~Ra)

|~Ra − ~r|
d~Ra =

∞∑
l=0

mΩ

πcrl+1

∫ +1

−1

P2(cos θ)Pl(cos θ)d cos θ

∫ R

o

2πRl−3+2dR

(7.33)
The orthogonality of the Legendre polynomials ensures that only the term with l = 2
contributes to the summation. Computing this term we get

Φ(~r, θ) = −2mΩR2

5cr3

3 cos2 θ − 1

2
(7.34)

This is an enormous field! Entering R = 10 km and m from B = 1012 G we
obtain a voltage Φ ' 1015 Volt/cm. The electric force exerted on a proton is thus
109 times stronger than the gravitational force, and on an electron 1012 times. The
consequence of the strong electric field is that charges are pulled from the neutron
star, which enter the magnetosphere. This process continues until the charge density
in the magnetosphere becomes high enough to make ~E · ~H equal to zero. Eq. 7.26
tells us that the charge density required to do this is of the order 1012 charges per
cubic centimeter.

7.4 The radiation loss of a rotating neutron star

We write the current ~J at location ~x as due to the sum of the individual moving
charges ea at locations ~ra:

~J(~x, t) =
∑
a

eac~βδ [~x− ~ra(t)] (7.35)
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where ~β ≡ ~v/c. For this current, eqs. 7.11, 7.12 can be solved, via the use of Green’s

function. We omit the mathematics involved in this, and give the solutions for ~E
and ~H directly, for one point charge:

~E(~x, t) = e

[
(~n− ~β)(1− β2)

κ3R2

]
ret

+
e

c

[
~n

κ3R
× {(~n− ~β)× ~̇β}

]
ret

(7.36)

and
~H = ~n× ~E (7.37)

In these equations we use the definitions ~R(t) ≡ ~x − ~r(t), R ≡ |~R|, ~n ≡ ~R/R and

κ ≡ 1− ~n · ~β. The subscript ret indicates that the term between brackets must be
evaluated at the retarded time t′ = t−R(t′)/c.

An important result follows from Eq. 7.37: the magnetic field is perpendicular
to the electric field, and has the same magnitude. This enables us to write the
Poynting flux as

~S ≡ c

4π
~E × ~H =

c

4π
| ~E2| = c

4π
| ~H2| = c

8π
(| ~E2|+ | ~H2|) (7.38)

This equation explains our interpretation of the third term in Eq. 7.3 as the flow
of energy through the volume surface. We consider the Poynting flux of a sum of
accelerated particles in some more detail. At large distances, the second term in
Eq. 7.36 dominates. Expanding this term to orders of β ≡ v/c, we write

~E =
∑ ea

cR

[
~n× (~n× ~̇β)− ~n× (~β × ~̇β) + 3(~n · ~β)~n× (~n× ~̇β)

]
(7.39)

We rewrite this in terms of the electric and magnetic dipoles defined above, and of
the quadrupole moment defined as Dij ≡

∑
ea(3rirj − δijr2). We find

~E =
1

c2R

[
~n× (~n× ~̈d)− ~n× ~̈m+

1

6c
~n× (~n× ~̈D)

]
(7.40)

With Eq. 7.38 we see that the radiation of a system of accelerated charges is domi-
nated by the electric dipole radiation. We obtain the radiated power by integrating

the Poynting flux over a sphere with radius R. For an angle θ between ~n and ~̈d we
have

Pd =

∫ π

0

∫ 2π

0

| ~̈d|2 sin2 θR2 sin θdθdφ =
2

3c3
| ~̈d|2 (7.41)

When the (second derivative of the) electric dipole moment is zero, the most impor-
tant radiation term is given by the second derivative of the magnetic dipole:

Pm =

∫ π

0

∫ 2π

0

| ~̈m|2 sin2 θR2 sin θdθdφ =
2

3c3
| ~̈m|2 (7.42)

The next important term is that of the quadrupole radiation, and keeping more
terms in the expansion of R gives rise to even higher order terms.

Denoting the angle between the rotation and magnetic axes with α we can write
the magnetic moment of a rotating neutron star in the nonrotating coordinate frame
as

~m = BR3
(
~e‖ cosα + ~e⊥ sinα cos Ωt+ ~e⊥ sinα sin Ωt

)
(7.43)
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where R now is the radius of the neutron star, and ~e‖ and ~e⊥ are unit vectors in
the nonrotating coordinate frame along the dipole momnet and perpendicular to it.
The energy loss of a rotating neutron star with a dipole magnetic field is obtained
by entering Eq. 7.43 into Eq. 7.42 and we then obtain:

Pm = −2B2R6Ω4 sin2 α

3c3
(7.44)
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Chapter 8

Accretion

The energy emitted by many sources that emit high-energy radiation directly or
indirectly derives from accretion of matter onto a compact object. In this chapter
we derive some basic properties of accretion. Before doing so we recapitulate some
physics that we need in describing accretion processes.

8.1 Recapitulation of some thermodynamics

N.B. Thermodynamci quantities can be (and are!) defined in various ways: per unit
of mass, per unit of volume, per particle, etc. . . . When reading the literature or
using equations from others, take care to know which definitions are used. In these
lecture notes we use quantities per unit mass.

For the pressure of an ideal gas we have PV = NkT , with V the specific volume
(= the volume of 1 kg) and N the number of particles per kg. The average weight
of 1 particle is usually written µmp, with mp the proton mass; for brevity we will
write m ≡ µmp. Hence

PV =
k

m
T (8.1)

and thus

PdV + V dP =
k

m
dT (8.2)

Each particle has an energy 0.5fkT , with f the number of degrees of freedom. For
an ideal, one-atomic gas f = 3. The internal energy of 1 kg follows

ε =
fk

2m
T (8.3)

and since ε is a function temperature only, we may write

dε =
dε

dT
dT (8.4)

When energy d̄ q is added, it may be used to add to the internal energy of the kg or
to expand its volume:

Tds ≡ d̄ q = dε+ PdV (8.5)

where the first equality defines the entropy s.

87



The last equation allows us to compute the specific heat at constant volume:

cV ≡
(
d̄ q

dT

)
V

=
dε

dT
=
fk

2m
(8.6)

By entering Eqs. 8.2,8.4 into Eq. 8.5 we may write

d̄ q =

(
dε

dT
+
k

m

)
dT − V dP (8.7)

and from this obtain the specific heat at constant pressure

Cp ≡
(
d̄ q

dT

)
P

=
dε

dT
+
k

m
= CV +

k

m
(8.8)

The ratio fo the two specific heats follows

γ ≡ CP
CV

= 1 +
2

f
(8.9)

A change is called adiabatic when no energy is removed or added, i.e. when
d̄ q = 0. For an adiabatic change, the change in temperature is related to the change
in specific volume as

0 = dε+ PdV =
dε

dT
+
k

m

T

V
dV = CV dT + (CP − CV )

T

V
dV

⇒ dT

T
=

(
(1− CP

CC

)
dV

V
⇒ T = constC1−γ (8.10)

Once more using the equation of state Eq. 8.1 we find

P = constV −γ = constργ and T = constργ−1 (8.11)

Finally defining enthalpy w ≡ ε+ P/ρ we may write

w =

(
f

2
+ 1

)
P

ρ
=

γ

γ − 1

P

ρ
(8.12)

8.2 Recapitulation of some fluid mechanics

Consider a fluid element which at time t is at location (x, y, z) and has velocity
(vx, vy, vz). Some time later, at t + dt, the element is at position (x + vxdt, y +
vydt, z + vzdt). To compute the change of a physical quantity of the element, we
must take its movement into account:

df

dt
=

f(x+ vxdt, y + vydt, z + vzdt, t+ dt)− f(x, y, z, t)

dt

=

∂f
∂x
vxdt+ ∂f

∂y
vydt+ ∂f

∂z
vzdt+ ∂f

∂t
dt

dt
= (~v · ∇) f +

∂f

∂t
(8.13)

Now consider a fixed volume in a flow. Conservation of mass implies that any
change in the mass of the volume corresponds to a net in- or outflow of mass through
its surface S:

d

dt

∫
V

ρdV +

∫
dS

(ρ~v) · d~S = 0→
∫
V

[
∂ρ

∂t
+∇ · (ρ~v)

]
dV = 0
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Because this applies to any volume, we conclude

∂ρ

∂t
+∇ · (ρ~v) = 0 (8.14)

A change in velocity of the fluid element, i.e. its acceleration, arises when forces
operate, as expressed in the Navier-Stokes equation

d~v

dt
=
∂~v

∂t
+ (~v · ∇)~v = −∇P

ρ
−∇Φ− ∇ ·

~~W

ρ
(8.15)

Here Φ is the gravitational potential, and W a tensor describing the viscous forces.
Finally, the conservation of energy is described with

ρ

(
∂ε

∂t
+ (~v · ∇)ε

)
= −P∇ · ~v − (~~w · ∇) · ~v −∇ · ~q (8.16)

The left hand side gives the change in internal energy ε, due to the terms on the right
hand side: work by pressure, energy release due to friction, and the net result of
energy flow into and out of the unit volume. Examples of energy flows are radiation
or conduction, and it is the divergence of such flow that enters the energy equation..

When gravity and viscosity are unimportant, Eq. 8.15 simplifies into the Equation
of Euler

∂~v

∂t
+ (~v · ∇)~v = −∇P

ρ
(8.17)

For an adiabatic gas we now derive the Equation of Bernoulli. From Eq. 8.11 we
write

∇P
ρ

=
1

ρ
∇(Kργ) = γργ−2K∇ρ = γ∇ K

γ − 1
ργ−1 = ∇ γ

γ − 1

P

ρ
(8.18)

Substitute this in the equation of Navier-Stokes for the stationary case (∂/∂t = 0)
and without friction, and find

(~v · ∇)~v +∇ γ

γ − 1

P

ρ
+∇Φ = 0

The derivative along the line of flow is found by taking the inner product of the
velocity with the derivative. Thus

~v ·∇
(
v2

2
+ w + Φ

)
= 0 ⇒ v2

2
+w+Φ = constant along the line of flow (8.19)

A different form of this equation uses the velocity of sound, given by

a2 =
dP

dρ
= γ

P

ρ
(8.20)

and with this we write the law of Bernoulli as

v2

2
+

a2

γ − 1
+ Φ = constant along the line of flow (8.21)
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8.3 Diffusion by particles

In a gas in which a quantity G carried by the particles varies with location, the
differences are gradually removed by the random motion of the particles. We derive
a general diffusion equation and then give some applications. We choose the z-axis
along the gradient in G. Consider a particle that first moves along the free path
length l in a direction with angle θ to the z-axis, and then collides with another
particle. At the point of collision the difference in G with respect to its surrroundings
is dG = l cos θ(∂G/∂z). The number of particles moving with velocity vth in direction
θ that passes per unit of time through a unit area perpendicular to the z-axis is
(n/4π)vth cos θ sin θdθdπ. To find the flux Q of G through the surface we integrate
over angles θ and φ to obtain

Q =

∫ π

0

∫ 2π

0

l cos θ
∂G

∂z

n

4π
vth cos θ sin θdθdφ =

lnvth
3

∂G

∂z
(8.22)

We have made the simplifying assumption in the last step that the free path length
does not depend on velocity.

Some examples:
Heat conduction. Each particle carries an energy G = 3

2
kT and the general

diffusion equation becomes the Equation of Fourier:

Q =
lnvthk

2
∇T (8.23)

Transfer of momentum: atomic viscosity. Each particle carries momentum
mv, hence the diffusion flow of momentum is

Q ≡ w =
nlvthm

3
∇v ≡ ν∇v ⇒ ν =

ρlvth
3

(8.24)

where we use ρ = nm and discriminate between the thermal (random) velocity
vth and the large-scale systemic velocity v, and where we have defined the viscosity
coefficient ν. If the free path length is determined by collisions between the particles,
it may be written l = 1/(nσ) with σ the collision cross section. Further entering the
thermal velocity 1

2
mvth

2 = 3
2
kT we obtain for atomic viscosity

ν =

√
3kmT

3σ
' 0.03

kg

m s

(
m

mp

)0.5(
T

107 K

)0.5
10−20 m2

σ
(8.25)

where we scale temperature on a typical temperature for an X-ray emitting gas, and
the cross section on the rough cross section of a hydrogen atom.
Transfer of momentum: radiative viscosity. If the free path length of the
particles is dominated by interacting with radiation, and the photons exchange mo-
mentum with the particles, we may approximate vth = c and use the equation
defining opacity l ≡ 1/(ρκ). For a sufficiently hot gas the opacity is given by the
Thomson cross section σT . Hence the viscosity is given by

ν ' c

3σT
(8.26)

Note that the above equations describe the flow of heat and momentum, and
that a net change in heat content (temperature) or momentum arises only via a
derivative of the flow, i.e. from a difference between the flow into and the flow out
of a volume.
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8.4 Scaling equations for accretion

Before we go into detailed descriptions, it is useful to make some rough estimates of
what we may expect.

If a mass M with radius R accretes at a rate Ṁ we expect a bolometric luminosity
of about

L =
GMṀ

R
(8.27)

This luminosity may be emitted as radiation, and we consider two extreme cases.
If the radiation is fully thermalized, and emitted from an area comparable to 4πR2,
we may write

L = 4πR2σTeff
4 (8.28)

hence with Eq. 8.27

σTeff
4 =

GMṀ

4πR3
(8.29)

In the other extreme, all the energy gained by one particle goes into a single
photon. This gives the maximum energy of that photon:

hνmax ≡ kTmax =
GMmp

R
(8.30)

The shortest time scales on which we may expect to see variation are on the
order of the rotation period near the surface of the accreting object:

τ =

(
R3

GM

)0.5

(8.31)

Finally we discuss an upper bound to the accretion rate, which arises because
the force of the emitted radiation stops more mass from accreting. For simplicity
we consider the spherically symmetric case. A photon with energy ε = hν has a
momentum ε/c. Thus, if the photons moving away radially from the accreting source
are scattered in an arbitrary direction, the net transfer of momentum per photon is
ε/c, and thus for a unit surface at radius r together L/(4πr2c). The cross section
for scattering for a sufficiently hot gas is the Thomson cross section κT = neσT/ρ.
Thus the maximum accretion luminosity LEdd arises when the momentum transfer
from the emitted radiation balances the gravitational force:

LEdd

4πr2

κT
c

=
GM

r2
⇒ LEdd =

4πcGM

κT
(8.32)

and this occurs at an accretion rate ṀEdd given by

ṀEdd =
4πcR

κT
(8.33)

The opacity κ is defined per kg; the cross section σT = 6.652 × 10−29 m2 is for one
electron. Define ρ ≡ µenemH , where mH is the mass of a hydrogen atom. For pure
hydrogen µe = 1, for pure helium µe ' 2, and for a mixture µe ' 2/(1 +X). Thus

κT =
σT
mH

1

µe
= 0.04

1 +X

2
m2kg−1

These rough scaling equations may be used to compare systems with accreting
black holes, neutron stars, and white dwarfs.
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Table 8.1: Estimated values of properties for accreting compact objects; for κT we
assume X = 0.7.

black hole neutron star white dwarf
mass M 10M� 1.4M� 0.6M�
radius R 30 km 10 km 8600 km

Eq. 8.33 ṀEdd(kg/s) 3.3× 1015 1.1× 1015 9.6× 1017

(M� yr−1) 5.3× 10−8 1.8× 10−8 1.5× 10−5

Eq. 8.32 LEdd (W) 1.5× 1032 2.1× 1031 8.9× 1030

Eq. 8.28 Teff (K) 2.2× 107 2.3× 107 6.4× 105

kTeff (eV) 1900 2000 55
Eq. 8.30 kTmax (MeV) 460 190 0.10

8.5 Spherically symmetric accretion

We start with the description of spherically symmetric flows. We assume that gas
from the interstellar medium is flowing radially towards a compact object; and we
furthermore assume that to first order this flow is adiabatic, i.e. the gas does not
radiate energy. For an adiabatic gas we have

P ∝ ργ ⇒ P

P∞
=

(
ρ

ρ∞

)γ
;

T

T∞
=

(
ρ

ρ∞

)γ−1

(8.34)

For the speed of sound we get

a2 =
dP

dρ
⇒ a

a∞
=

(
ρ

ρ∞

)(γ−1)/2

(8.35)

The form that Eq. 8.15 takes for a stationary, radially symmetric, friction-less
fluid is

vr
dvr
dr

= −1

ρ

dP

dr
− dΦ

dr
(8.36)

Using the relation between pressure and density for an adiabatic fluid we integrate
this equation and find

1

2
vr

2 +
a2

γ − 1
− GM

r
=

a∞
2

γ − 1
(8.37)

We recognize here he Equation of Bernoulli, Eq. 8.21.
Conservation of mass, Eq. 8.14, can be written

Ṁ = 4πr2ρvr = constant (8.38)

We change to dimensionless variables by scaling the gas velocity on the velocity
of sound, and the radius on a fiducial radius where the escape velocity would equal
the escape velocity:

µ ≡ vr
a

; x ≡ r

rB
with rB ≡

GM

a∞2
(8.39)

and thus rewrite the equation of motion and the equation of mass conservation

1

2
µ2 +

1

γ − 1
=
(a∞
a

)2
(

1

2x
+

1

γ − 1

)
(8.40)

92



Ṁ = 4πa∞
2ρ∞rB

2
(a∞
a

)(γ+1)/(γ−1)

x2µ (8.41)

To analyze these equations we eliminate a/a∞, and separate the variables µ2 and x
to obtain:

f(µ2) = Ag(x) (8.42)

with

f(µ2) ≡
(
µ2

2
+

1

γ − 1

)(
µ2
)−(γ−1)/(γ+1)

(8.43)

g(x) ≡
(

1

2x
+

1

γ − 1

)
x4(γ−1)/(γ+1) (8.44)

and

A ≡
(

4πρ∞a∞rB
2

Ṁ

)2(γ−1)/(γ+1)

(8.45)

The function f(µ2) has a minimum at µ2 = 1 and the function g(x) a maximum at
x = (5−3γ)/8. Solutions for all x (0 ≤ x <∞)exist only when A > min(f)/max(g).
Because γ > 1, the maximum value for Ṁ corresponds to the smallest value for A,
and we find it from min(f) and max(g) as

β = e3/2 for γ = 1

Ṁo =
π

4
ρ∞a∞rB

2β(γ) with β = 23/2 for γ = 4/3 (8.46)

β = 1 for γ = 5/3

This value for the accretion rate Ṁo exceeds the value Ṁf for freely falling particles
by a factor

Ṁo

Ṁf

=

(
vf
a∞

)3
β(γ)

4
(8.47)

Because f is a function of µ2, the solution is the same for µ and −µ, i.e. for inflow
(accretion) and for outflow (e.g. stellar wind)! In Fig. 8.1 we show the solutions of
Eq. 8.42 for 1 < γ < 5/3. We may discriminate five classes of solutions:

1. these are solutions with Ṁ < Ṁo and µ < 1 for all x. It describes subsonic
accretion with a low accretion rate. With decreasing radius the Mach number
first increases and then decreases. The limiting case Ṁ → 0 describes an
adiabatic atmosphere around the accreting object.

2. the most interesting solution has a monotonically increasing Mach number for
decreasing r. The flow becomes supersonic at the critical point x = xcr where
f(µ) has its minimum value and g(x) it maximum value:

x = xcr =
5− 3γ

8
(8.48)

This is the flow with the maximum accretion rate, given by Eq. 8.47, which is
determined by the sound velocity of the interstellar medium.

3. This is the solution where the Mach number is increasing monotonically with
increasing radius: it is the Parker solution for the supersonic stellar wind.
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Figure 8.1: Solutions of radially symmetric flows (Eq. 8.42) for γ < 5/3 (left) and for
γ = 5/3 (right)

4. For these solutions the Mach number is larger than 1 everywhere: this doesn’t
match the boundary condition for accretion from a gas at rest in infinity. (It
also doesn’t match a stellar wind starting at the star surface with velocity
zero.)

5. These solutions are valid only in limited ranges of x and therefore not physical.

We focus now on the second class of solutions. Far from the sonic point, at
x� xcr, the inflow velocity approaches free-fall velocity

vr = −
√

2GM

r
(8.49)

and with the equation of mass conservation this gives the density as

ρ =
Ṁ

4πr2vr
=
β(γ)

4
ρ∞x

−3/2 (8.50)

The sound velocity and temperature then are

a

a∞
=

(
β(γ)

16

)(γ−1)/2

x−3(γ−1)/4;
T

T∞
=

(
β(γ)

16

)γ−1

x−3(γ−1)/2 (8.51)

As the gas is flowing in, it is compressed and its internal energy changes accord-
ingly:

εad = −P dV
dt

=
P

ρ2

dρ

dt
=
P

ρ

d ln ρ

dr

dr

dt
=

k

0.5mp

× (− 3

2r
)×

(
−
√

2GM

r

)
(8.52)

8.6 Accretion disks

Gas with angular momentum cannot flow radially towards a central source: in gen-
eral one may expect it to form a disk perpendicular to the angular-momentum vector.
We will use a cylindrical coordinate system r, φ, z, with z = 0 the central plane of
the disk.
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8.6.1 The hydrodynamic equations

The disk is symmetric with respect tot this plane. A simple model for a disk through
which mass flows towards the center is based on a number of simplifying assumptions:

1. the disk is axisymmetric: ∂
∂φ

= 0

2. the disk is thin: h/r � 1. This implies that the pressure forces in the disk
are much smaller than the gravitational forces: pressure thickens the disk
(see Eq. 8.60 below): P � ρv2. It also implies that the vertical velocity,
which changes the thickness of a fluid element as it moves inwards (hence
vz ' (h/r)vr) is much smaller than the radial velocity: vz � vr.

3. the elements of the viscous force tensor are smaller than the pressure: wij ≤ P ,
hence, from the previous assumption: wij � ρv2. This implies that the viscous
force gives rise to a small radial velocity only (see Eq. 8.56 below): vr � vφ

4. the disk is stationary

With these assumptions we can write down the lowest order approximations of the
hydrodynamical equations. We integrate over the vertical direction, and from here
on P , ρ, and T refer to the pressure, density and temperature in the central plane
(z=0) of the disk, whereas the half-thickness is defined by

ρ ≡
∫ ∞
o

ρ(z)dz (8.53)

Thus, Eq. 8.14 for conservation of mass becomes

∂

∂r
(rρhvr) = 0⇒ rρhvr = −Ṁ

4π
(8.54)

where the constant of integration is chosen such that Ṁ is the accretion rate. This
equation expresses the fact that in a stationary disk all the mass entering it at the
outside is transported all the way through to the center.

Eq. 8.15 can be written for the three components separately. The radial compo-
nent becomes

vφ
2 =

GM

r
(8.55)

expressing the fact that for small friction (assumption 3 above) the circular velocity
of the gas is (almost) Keplerian.

The tangential component becomes

rρhvr
∂

∂r
(rvφ) = − ∂

∂r
(r2Wrφ) with Wrφ ≡

∫ ∞
0

wrφdz (8.56)

In cylindrical coordinates the tensor vector can be written

wrφ ' −ν
(
∂vφ
∂r
− vφ

r

)
' 3

2
ν
vφ
r

(8.57)

where ν is the dynamic viscosity coefficient, and where the last equality follows with
Eq. 8.55. We can integrate this equation using Eq. 8.54 and obtain

Ṁ

4π
rvφ = r2Wrφ −

J̇

4π
(8.58)

95



The integration constant J̇ represents the angular momentum lost from the disk by
the mass flow through the inner radius. It is usually assumed that the torque Wrφ

disappears at the inner edge of the accretion disk. Hence, using Eq. 8.55 again,

Ṁrvφ

(
1−

√
ri
r

)
= 4πr2Wrφ (8.59)

For large radii r � ri, where the specific angular momentum is large with respect
to that at the inner radius of the disk, the correction fact

√
ri/r can be ignored.

The vertical component becomes

P =
1

2
ρh2GM

r3
(8.60)

Finally, conservation of energy may be written

Q− ≡
∫ ∞

0

dq

dz
dz = Q+ ≡ −Wrφr

∂

∂r

(vφ
r

)
(8.61)

where Q− is the flux emitted at the disk surface, and Q+ the vertically integrated
production of energy due to viscosity. Writing Q− = σTeff

4 and using Eq. 8.58 this
can be written:

σTeff
4 =

3GMṀ

r3

(
1−

√
ri
r

)
(8.62)

Again, for large radii the correction factor can be omitted.
We have a closer look at the last equation, to stress two important points. First,

we find that the effective temperature of the accretion disk, as given by Eq. 8.62, does
not depend on the viscosity! This seemingly rather strange fact is a consequence of
our assumption that the disk is stationary: when a certain amount of Ṁ is delivered
to the outside of the disk, this amount must be transported through the disk. If the
viscosity is too small, mass will build up in the disk, and with it presumably the
viscosity, until the viscosity is adjusted to produce the required mass flow. If the
viscosity is too high, the disk will empty itself onto the central object, and with the
drop in density the viscosity drops, again until equilibrium is reached.

Second the effective energy loss from the disk at radius r differs from the loss
than one may calculate from the change in total mechanical (kinetic plus potential)
energy alone by a factor 3(1 −

√
ri/r). The difference results from the transport

of energy in the disk by visous stresses. At radii r > 9
4
ri, the energy loss σTeff

4 is
larger, at radii r < 9

4
ri, lower, such that the total energy emitted from the disk is

still equal to the total mechanical energy lost by the accreting matter on its way
from infinity to the inner radius:

2Q−disk ≡ 2

∫ ∞
0

2πrQ+dr =
GMṀ

2ri
(8.63)

In order to solve the disk structure these five hydrodynamic equations must be
supplemented by three auxilliary equations: the equation of state, an equation for
the energy flow Q, and an equation defining the dynamical viscosity coefficient ν,
or equivalently the viscous stress tensor.

Most authors use the hydrodynamic equations in their vertically integrated form
as given in the table above. The reason for this is that it allows separation of the
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radial and vertical structure, and thus the reduction of a two-dimensional problem
to two one-dimensional problems. This is paind for, however, by an intrinsic un-
ceertainty in the vertical structure. Once we have chosen the auxilliary equations
we can first solve the disk variables as a function of radius, and then go back to the
non-integrated equations of vertical hydrostatic equilibrium and cooling to solve the
vertical structure.

8.6.2 Auxilliary equations: the Shakura-Sunyaev disk

For the equation of state we may use the version alo used in stellar structure

P =
1

3
aT 4 +

k

µmp

ρT (8.64)

expressing the total pressure as the sum of radiation pressure Pr and gas pressure
Pg.

For the radiative transport equation we start with

4π
∂2K

∂τ 2
=

1

κρ

∂q

∂z
(8.65)

with K the second moment of the intensity and τ = κρz the optical depth. This dif-
fers from the usual form of this equation in stellar atmospheres in having a non-zero
right-hand side, denoting radiation production per unit optical depth. Approximat-
ing 4πK = cPr and integrating twice, we find for large optical depth τ � 1 and for
surface temperature much smaller than central temperature:

Q− =
2

3

caT 4

κρh
(8.66)

The main contributions to the opacity are expected to come from Thomson scatter-
ing (for hot gas) and free-free opacity (for less hot gas):

κ = 0.40 + 0.66× 1022ρT−7/2m2kg−1 (8.67)

Different authors use soemwhat different numerical factors in Eq. 8.66, dependent
on the assumptions they make on the vertical distribution of density and energy
production. These differences do not have much effect on the solution of he radial
structure.

The problem arises with the viscosity. From Eqs. 8.56, 8.57 and 8.59 we may
write

Ṁ

(
1−

√
ri
r

)
= 6πhν (8.68)

In a typical X-ray binary, the accretion flow may be Ṁ = 1014 kg s−1 and the height
of the disk h < 108 m, leading to ν > 106 kg s−1 m−1, and this is many, many orders
of magnitude larger than ordinary particle viscosity as given by Eq. 8.25.

The clever trick that Shakura and Sunyave (1973) made is to note that the
dimension of the viscosity tensor is that of pressure, and to write

wrφ = αP (8.69)

where α is a dimensionless constant, whose magnitude depends on the details of the
viscous process. One usually takes α ' 0.1− 1.
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8.6.3 Solving the Shakura-Sunyaev disk equations

To solve the Shakura-Sunyaev disk equations it is useful to simplify their appearance
by entering some notations

η ≡
(

1−
√
ri
r

)
ω2 =

GM

r3
; Ḣ ≡ Ṁη

4π

The tangential and vertical components Eqs. 8.59, 8.60 may be combined with
Eq. 8.69 into

Ḣω = hαP (8.70)

P =
1

2
ρh2ω2 (8.71)

and the equations Eqs. 8.62,8.66 for energy production and energy loss are combined
into

3

2
Ḣω2 =

2cP

κρh
(8.72)

These three equations are valid for all three regions of the disk.
In the inner region the pressure is dominated by the radiation pressure, P =

1
3
aT 4, and the opacity by the Thomson cross section: κ = σT . Substituting the

pressure Eq. 8.71 into Eq. 8.72 immediately gives the half-height of the disk:

h =
3

2

σT
c
Ḣ =

3σT
8πc

Ṁη (8.73)

Two things may be noted here. First: the disk thickness in the inner region does
not depend on the viscosity parameter α. Second, comparing Eq. 8.73 with Eq. 8.68
we see that indeed ν ∝ σT/c, as expected. The surface density Σ ≡ 2ρh may be
derived by substituting the pressure Eq. 8.71 into Eq. 8.70 and using Eq. 8.73:

Σ =
2

αω

(
2c

3σT

)2
1

Ḣ
=

32πc2

9σT 2

1

αωṀη
(8.74)

The pressure in the z = 0 plane may be derived by entering Eqs. 8.74 and 8.73
into Eq. 8.71, and the temperature by subsequently using P = 1

3
aT 4

In the middle region of the disk the opacity is still dominated by the Thomson
cross section, but the gas pressure dominates over the radiation pressure P = k

m
ρT ,

where we write µmp ≡ m. One may now derive:

h =

(
9σT
2ca

)1/10(
2k

m

) 2
5 Ḣ1/5

α1/10ω7/10
(8.75)

The boundary between the inner and outer regions may be found by equating the
disk thicknesses according to Eqs. 8.73,8.75.

8.7 Observations of accretion disks

Accretion diks are observed directly in several classes of binaries: cataclysmic vari-
ables, in which a white dware accretes matter from a main-sequence binary com-
panion; and in X-ray binaries, in which a neutron star or black hole accretes matter
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Figure 8.2: Formation of an accretion disk in a binary according to theory. Left:
schematic drawing; right: density vs. radius as a function of time from computer sim-
ulation: the rings spreads (from Verbunt 1982 SSR 32, 379;Lynden Bell & Pringle 1974
MNRAS 168, 603).

from a binary companion. Algol systems, in which a main-sequence star accretes
mass from a (sub)giant binary companion sometimes have disks. Because of their
larger surface, main-sequence stars are more luminous than white dwarfs, and these
more luminous than neutron stars. On the other hand, according to Eq. 8.27 the
disk luminosity is higher when the accreting star is smaller. This means that accre-
tion disks dominate the light in cataclysmic variables, but are not very conspicuous
in Algol binaries with a disk. In X-ray binaries, the surface of the disk is heated by
the high X-ray flux from near the neutron star, and as a result the accretion disk
may contribute significantly to the total flux in the optical.

To some extent, a proto-planetary disk can also be described as an accretion
disk. The main difference is that such disks are not in equilibrium, mainly becaue –
initially at least – the mass in the disk is relatively high (i.e. a much higher fraction
of the mass in the central star than in the above-mentioned cases).

Accretion disks are thought to exist in active galactic nuclei, but the evidence
for them is indirect. The most convincing evidence is the presence of jets in these
systems, which are assumed to flow perpendicularly to the plane of the accretion
disk.

8.7.1 Accretion disks in cataclysmic variables

Gas at the surface of one star in a binary also feels the gravitation of the other
star. When the surface of one star gets too close to the (center of gravity of the)
other star, gas from the surface will start flowing towards that other star. The
maximum size that a star can reach before this happens is called the Roche lobe:
it scales linearly with the distance between the two stars and it is a function of the
mass ratio of the two stars and of the rotation velocity of the stars with respect
to the binary revolution. The point from where the mass flows is called the inner
Lagrangian point.
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Figure 8.3: Top: geometry of the disk eclipse: the curved lines on the disk are loci
of simultaneous ingress or egress (for given mass ratio and inclination). Below: radial
temperature distribution derived from eclipse mapping of the cataclysmic variable Z Cha
at maximum (left) and at minimum (right), together with theoretical curves according to
Eq. 8.62. From Horne 1985 MNRAS 213, 129; Horne & Cook 1985 MNRAS 214, 307;
Wood et al. 1986 MNRAS 219, 629.

The orbit of the gas initially is close to that of free particles: in the Bernoulli
equation (Eq. 8.21) the gas pressure term is negligible with respect to the gravita-
tional potential. The orbital motion gives the gas stream an angular momentum
with respect to the mass receiving star, and thus the gas stream reaches a minimum
distance to (the center of gravity) of the other star in its flow. If the mass-receiving
star is bigger than this minimum distance, the gas hits it directly and probably no
disk is formed. If the star is small enough, the gas stream flows around it and hits
itself, after which it settles in the radius with the appropriate angular momentum.
Viscous forces then may lead to transport of most of the mass inwards, and angular
momentum (with a little mass) outwards. This is illustrated in Figure 8.2.

Cataclysmic variables are common, and the nearest systems can be found within
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Figure 8.4: Light curve of the dwarf nova VW Hyi from 1998 Aug 14 to Nov 18, as
observed by the American Association of Variable Star Observers. Three ordinary outbursts
are followed by a super-outburst.

100 pc. In systems with a sufficiently high inclination the mass donor eclipses the
accretion disk every orbit, and thus provides a one-dimensional scan of its surface
brightness. By making suitable assumptions, in particular by demanding that the
flux distribution of the disk surface is as rotationally symmetric as the data allow,
one can construct a map of the surface flux. By doing this at different wavelengths,
a temperature map of the disk surface can be made and compared to Eq. 8.62. The
method has been developed by Keith Horne and applied by him to a number of
cataclysmic variables, one of which is illustrated in Fig. 8.3. The system in question
is a dwarf nova, i.e. a cataclysmic variable which occasionally shows outbursts to
a higher flux. At outburst maximum, the radial temperature dependence is as ex-
pected for a stationary disk, but in quiescence, i.e. at the low flux between outbursts,
the temperatures in the inner disk are below the values expected for a stationary
disk. The interpretation may be that in quiescence mass stays at the outer region
of the disk – until enough mass has built up to set the flow through the disk going.

Important information about the viscosity can be derived from the light curves
of dwarf novae: the time scale on which the mass flow through the disk changes is
less than a week (Fig. 8.4). We may compare this with the viscous time scale of the
radial flow Eq. ??, where we use the disk solution for the outer region. By entering
the size of the accretion disk in dwarf novae, typically of the order of the solar radius,
the mass flow rate Ṁ ' 1014 kg/s, and mass of the white dwarf M ' 0.5M�, we
find that α ∼ 1.

The explanation for the variability of the accretion in cataclysmic variables is
thought to be an instability in the accretion disk; or an instability in the transfer of
matter from the donor; or a combination of both. The disk instability is related to
the details of the solution of the vertical structure, which is thermally unstable in a
range of surface densities Σ ≡ ρh. If a ring in a disk has such a Σ it will either cool
to a lower stable temperature or heat up to a higher stable temperature. For α = 1
numerical calculations show that the disk would be split in many rings which are
alternately hot and cold. This means that the total flux fluctuates only little. To
obtain outbursts as large as observed, one postulates that α in quiescence is an order
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of magnitude lower than in outburst: then the whole disk will change from cool to
hot and back again, giving rise to large flux variations. This ad hoc assumption is a
major problem for the disk-instability theory (although the supporters of this model
don’t seem to mind).

An argument in favour of variable mass transfer from the donor is the observation
that cataclysmic variables without a disk – in which the white dwarf has a very strong
magnetic field which forces the gas to flow along the field lines and thereby prevents
the formation of a disk – also show large variations in luminosity. Also, even the
disk-instability supporters admit that superoutbursts are caused by variable mass
transfer to the disk. However, there is currently no theory which may explain the
variation in the mass flow from the inner lagrangian point.

8.8 Exercises

Exercise 26. Derive the equation for the radius where the effective temperature in
an accretion disk reaches its maximum and derive this temperature.

Exercise 27. Derive the equation of the radius where the transition occurs of
the inner region to the middle region of the Shakura-Sunyaev disk.

102



Figure 8.5: Top: map of the X-ray sky made with the British Ariel V satellite in the
1970s. The central horizontal line is the galactic plane, with the gaalctic center in the
middle. Systems with a low-mass donor to a neutron-star accretor are indicated dark blue
(bursters), light blue (non-bursting), red (in globular cluster) and purple (pulsars). High-
mass systems are indicated yellow (pulsars) and green (black holes). Below: map of the
X-ray sky made with the German ROSAT satellite in the 1990s.
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Chapter 9

X-ray binaries

The number of X-ray sources detected in the ROSAT All Sky Survey is 77,549,
rather higher than the number of stars one can see with the naked eye. Most of
these sources are nearby chromospherically active stars, or black holes in the centers
of galaxies far away. If one limits oneself to the brightest sources only, as perforce
was the case with the earliest X-ray satellites in the 1970s, one finds that these are
concentrated towards the Galactic Plane, and in this towards the Galactic Center
(Figure 8.5). Many of these bright sources turn out to be neutron stars or black
holes that accrete from an accompanying star. The origin and evolution of these X-
ray binaries, and their relation to recycled radio pulsars in binaries, are the subject
of this chapter.

9.1 Observations

Investigation of the properties of the brightest X-ray sources soon showed that they
can be divided in two clearly separate types (Figure 8.5). Some sources emit their
X-rays partially pulsed, others only show irregular variations. Many systems in the
latter category occasionally show sudden surges in the X-ray flux: the X-ray bursts.

Figure 9.1: X-ray lightcurves, obtained with EXOSAT, of an X-ray pulsar,
EXO 2030+375 (left), and of a burster, X1746-371, with two bursts visible (right).
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Figure 9.2: X-ray spectra of an X-ray pulsar (left), an X-ray burster transient (at
three different flux levels; middle), and a black hole transient (at two flux levels;
right). Shown are the photons number fluxes that would arrive at Earth if there
were no interstellar absorption.

9.1.1 X-ray pulsars: high-mass X-ray binaries

The model for X-ray pulsars is that they are neutron stars with a strong dipolar
magnetic field, which focusses the accreting matter to the magnetic poles, where it
is stopped and emits X-rays. As the poles rotate in and out of view, we observe
pulses of X-rays. The spectra of X-ray pulsars are hard, and photons are detected
to energies above 50 keV (Figure 9.2). Signs of the magnetic fields are thought to
have been detected in the form of cyclotron absorption lines in the X-ray spectra.

Optical identification was not easy in the early days, as the X-ray pulsars are
located in the Galactic Plane, which means that the relatively large positional error
boxes are crowded with stars. Nonetheless, many X-ray pulsars were succesfully
identified, and their optical counterparts almost invariably are massive O or B stars.
The X-ray pulse period varies due to the orbital motion of the neutron star around
its companion; when the radial velocity curve of the O or B star can be measured
as well, we have a double-lined spectroscopic binary. If in addition the neutron
star is eclipsed by its companion, classical binary techniques can be employed to
determine the masses of both stars. The neutron star masses cluster around 1.4 M�,
as expected from theory.

Some X-ray sources with an O or B companion star do not show pulses. The X-
ray source in these may still be a neutron star. In some cases, however, which include
Cyg X-1 and LMC X-3, the orbital velocity of the O or B supergiant indicates a mass
for the compact star in excess of the maximum mass that is possible for a neutron
star, and it is concluded that the compact star must be a black hole. The X-ray
spectra of these black hole candidates contain more photons both at low energies
(< 1 keV) and at high energies (up to > 100 keV) than the pulsar spectra.

The mass determinations are feasible in the systems with relatively short orbital
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Figure 9.3: Orbital periods of X-ray binaries and binary radio pulsars in our Galaxy,
and, for comparison, cataclysmic variables and contact binaries (also called W UMa
binaries). Each symbol indicates one system. For the X-ray binaries • indicates a
system with a black hole, and × a Be donor star. For the binary radio pulsars +
indicates a system with a low-mass white dwarf companion, × a system with a high-
mass white dwarf or neutron star companion, and � a main-sequence companion.
For globular clusters a × indicates an X-ray binary, a + a radio pulsar binary.

periods, Pb ∼< 10 d, in which the companion of the neutron star is an O or B super-
giant. Many systems have rather longer orbital periods, up to more than a year. In
these, the companion is usually a Be star, i.e. a rapidly rotating B star, and the X-
ray emission is only detected occasionally. Taking selection effects against detection
of such transient hard X-ray sources into account, we conclude that the Be-star +
X-ray-pulsar binaries are in fact much more common (a few thousand in the Galaxy)
than the supergiant + X-ray-pulsar systems (a dozen in the Galaxy). For both types
of systems we find that the X-ray luminosity emitted near the neutron star is of the
order of the optical luminosity of the O or B star.

The pulse periods of all X-ray pulsars vary, on time scales ranging from P/Ṗ '
100 yr to 106yr. These short time scales indicate that the moment of inertia, and
hence the radius, of these objects are very small, in agreement with the theoretical
estimates for neutron-star radii of ∼ 10 km.

Finally, it is somewhat of a surprise that many of the first detected X-ray pulsars
are located in one spiral arm, Carina, close to the Sun, even though their brightness
ought to make them detectable, even with early X-ray satellites, throughout our
Galaxy. With the GINGA satellite Be X-ray transients have been detected also in
spiral arms closer to the Galactic Center.

9.1.2 X-ray bursters: low-mass X-ray binaries

Soon after the discovery of the X-ray bursts, it was realized that these are caused by
the sudden fusion into carbon of a helium layer on a neutron star, deposited there
by the accretion of hydrogen which fuses immediately into helium. Thus, a burst is
the neutron-star analogue of a nova outburst for a white dwarf. The X-ray spectra
of the X-ray bursts have characteristic temperatures of kT ∼< 5 keV.

The steady X-ray spectrum of the luminous burst sources is soft; less luminous
sources have power-law spectra. The spectra of sources of variable luminosity change
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Table 9.1: Name, position, pulse period, X-ray luminosity, orbital period and eccen-
tricity, and (for high-mass systems) the spectral type of the donor, for representative
X-ray binaries. Binaries containing a black hole, and transients are indicated with B
and T, respectively. For transients, the luminosity is the luminosity at outburst max-
imum. It should be noted that luminosities are uncertain due to uncertain distances
for many sources.

Selected X-ray binaries
name position P logLx Pb e sp.type

(s) (erg/s) (d)
high-mass X-ray binaries

LMC X-4 0532− 66 13.5 38.6 1.4 0.011 O7III
LMC X-3 0538− 64 - B38.5 1.7 ∼0 BIII-IV
Cen X-3 1119− 60 4.8 37.9 2.1 0.0007 O6.5II
SMC X-1 0115− 74 0.7 38.8 3.9 <0.0008 B0I
Cyg X-1 1956 + 35 - B37.3 5.6 ∼0 O9.7I
Vela X-1 0900− 40 283 36.8 9.0 0.092 B0.5I
LMC tran 0535− 67 .069 T39.0 16.7 ∼0.7 B2IV
V635 Cas 0115 + 63 3.6 T36.9 24.3 0.34 Be
BQ Cam 0331 + 53 4.4 T35.8 34.3 0.31 Be
GX301-2 1223− 62 696 37.0 41.5 0.47 B1-1.5
V725 Tau 0535 + 26 104 T37.3 111.0 0.3-0.4 Be

low-mass X-ray binaries
KZ TrA 1627− 67 7.7 36.8 0.029
V1405 Aql 1916− 05 36.9 0.035
UY Vol 0748− 68 T37.0 0.159
V4134 Sgr 1755− 34 36.8 0.186
V616 Mon 0620− 00 BT38.3 0.323
N Mus 1991 1124− 68 BT37.6 0.427
Cen X-4 1455− 31 T38.0 0.629
Sco X-1 1617− 16 37.5 0.787
V404 Cyg 2023 + 33 BT38.4 6.500
Cyg X-2 2142 + 38 38.0 9.843

peculiar systems
Her X-1 1656 + 35 1.2 36.8 1.7 < 0.0003 A9-B
Cyg X-3 2030 + 41 38.0 0.2 WN
Cir X-1 1516− 57 T38.9 16.6
SS433 1909 + 05 35.8 13.2
bursting pulsar 1744− 28 0.467 T38.9 11.8 accretion bursts
bursting pulsar 1808− 36 0.0025 T36.8 0.084 thermonuclear bursts

accordingly (Figure 9.2).
Orbital periods for X-ray sources without pulses could be determined in larger

numbers only after the launch of EXOSAT, whose wide orbit allowed four days
of uninterrupted observing, and after the introduction of CCD photometry, which
is capable of detecting small flux variations accurately. The orbital periods span
the same range as those of the cataclysmic variables, which by analogy is taken
to suggest that the companion to the neutron star is a low-mass star, close to the
main sequence. These X-ray sources are therefore called low-mass X-ray binaries.
Direct measurements of the properties of the donor star are hard to obtain, because
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Figure 9.4: The quiescent optical spec-
trum of Cen X-4 and the spectrum of
a K7 V star. The Cen X-4 spec-
trum shows features of the K7 V spec-
trum. Subtraction of the K7 V stellar
spectrum from that of Cen X-4 leaves
a spectrum which is featureless apart
from Balmer emission lines. This spec-
trum is shown also (shifted for clarity,
its zero level indicated with the dotted
line).

the optical luminosity is dominated by reprocessing into the optical of X-rays that
impinge on the accretion disk around the neutron star. The optical luminosity of
these systems is much less than the X-ray luminosity, Lopt ∼< 0.01Lx, say. Even
though the low-mass X-ray binaries often are well away from the Galactic Plane,
with |z| ' 1 kpc, their low visual brightness impedes easy optical identification.

The thick accretion disk also is responsible for the paucity of eclipsing low-mass
X-ray binaries: when the inclination is high enough for the neutron star to be
eclipsed by its companion, the probability is high that it is hidden altogether by the
accretion disk.

Some low-mass X-ray binaries are transient sources. In these, the optical flux
from the disk disappears with the X-ray flux, and the companion becomes optically
detectable. The radial velocity curve of the companion can then be measured. The
companions in transients indeed appear to be low-mass stars (Figure 9.4). In an
increasing number of such transients the mass function indicates that the compact
accreting star is a black hole. The X-ray spectra of transients with a black hole are
remarkably similar to those of transients with a neutron star; the difference being
that at the brightest levels they have (relatively) more soft as well as more hard
photons (Figure 9.2). The case of Cyg X-3 (see chapter 9.1.4) illustrates that the
assumption of a low-mass donor remains insecure for most of the low-mass X-ray
binaries.

9.1.3 Relation with recycled radio pulsars

In the last decade, an increasing number of radio pulsars have been discovered in
binaries. Two of these pulsars have a companion which is a massive O or B star.
Most of the others have a companion believed to be a neutron star or a white
dwarf. The pulsars in these other binaries are called recycled radio pulsars, and
are generally characterized by short pulse periods, P ∼> 1.5 ms, and very low period
derivatives, P/Ṗ ∼> 108yr, as compared to the pulse periods and period derivatives
of ordinary radio pulsars, which have P ∼ 1 s and P/Ṗ ∼< 107yr.

The pulse periods of binary radio pulsars vary with the orbital motion, which
provides an indication of the mass of its companion. In three close binaries with
two neutron stars, and one binary with a white dwarf and a neutron star, general
relativistic effects allow accurate mass determinations. In some binaries, the com-
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Table 9.2: Position, pulse period, characteristic age (τc ≡ P/(2Ṗ ), magnetic field
strength, orbital period and eccentricity, and companion mass, for representative ra-
dio pulsar binaries. The companion masses marked ∗ were calculated for an assumed
inclination of 60◦.

Selected binary radio pulsars
position P logτc logB Pb e Mc

(ms) (yr) (G) (d) (M�)
high-mass binary radio pulsars

1534 + 12 37.9 8.4 10.0 0.42 0.2737 1.36
1913 + 16 59.0 8.0 10.4 0.32 0.6171 1.39
0655 + 64 195.6 9.7 10.1 1.03 <0.00005 >0.7
2303 + 46 1066.4 7.5 11.9 12.34 0.6584 1.5

low-mass binary radio pulsars
1957 + 20 1.6 9.2 8.2 0.38 <0.001 0.02
1831− 00 521.0 8.8 10.9 1.81 <0.005 0.07∗

J0437− 47 5.8 8.9 8.9 5.74 0.000018 0.17∗

1855 + 09 5.4 9.7 8.5 12.33 0.000021 0.23
1953 + 29 6.1 9.5 8.6 117.35 0.00033 0.22∗

0820 + 02 864.9 8.1 11.5 1232.40 0.0119 0.23∗

antediluviana radio pulsars
1259− 63 47.8 1236.8 0.870 Be
1820− 11b 279.8 6.5 11.8 357.8 0.795 0.8∗

single recycled radio pulsars
1937 + 21 1.6 8.4 8.6
1257 + 12c 6.2

ai.e. in an evolutionary stage preceding mass transfer
bthis pulsar is tentatively listed as antediluvian; alternatively, this system may be a
high-mass binary radio pulsar
cthis pulsar has three, possibly four planets; see Table ??

panion to the recycled pulsar has a mass Mc ∼> 1 M�, and – with one exception –
these orbits are eccentric. In the other binaries the mass of the companion is lower,
Mc ∼ 0.2 M�, and the orbits are (almost perfectly) circular (Fig. 9.5). As we will
see, the first are thought to have evolved from high-mass X-ray binaries, the latter
from low-mass X-ray binaries.

9.1.4 Peculiar systems

Pulsars with low-mass donors. Whereas most X-ray pulsars have O or B star com-
panions, some have low- or intermediate-mass companions. The best known of these
is Her X-1, which has a ' 2 M� companion, which is slightly evolved. Its age is
therefore in excess of ' 5 × 108yr, and Her X-1 is an excellent example of an old
neutron star with a strong magnetic field. The binary is also striking in being re-
moved from the Galactic Plane, at |z| ' 3 kpc. The X-ray pulsar 4U1626-67 has a
companion in a ' 40 min orbit, whose mass must be less than 0.1 M�. For some
other pulsars, including 1E2259+59, there is no sign of any companion. It has been
suggested that these are single, accreting from a disk; or that they do not accrete,
but have very high magnetic fields. This will be discussed in the next chapter.

Radio sources. The X-ray source 3A1909+05, with optical counterpart SS 433,
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Figure 9.5: Drawing – to scale – of orbits of binaries with compact stars. An example
of a massive binary in which one star has already exploded is PSR1259-63. Once
the neutron star captures mass from its companion, it becomes an X-ray source
like V725 Tau or GX301−2, which after spiral-in may form a binary with a recycled
radio pulsar accompanied by a massive white dwarf (PSR0655+64) or after a second
supernova by a second neutron star (PSR1913+16). PSR1820−11 may have a low-
mass main-sequence companion, and evolve into a low-mass X-ray binary like Cyg X-
2, which in turn may form a binary in which a recycled radio pulsar is accompanied
by an undermassive white dwarf (PSR1855+09). (e,f,h): see Figure 9.8.

is located in a shell of radio emission. The optical and X-ray spectra of this source
show emission lines from a jet with velocity v ' 0.26c, which precesses in about
165 days. The jet is detected directly in Very Long Baseline Interferometry radio
observations. It is not clear whether the X-ray source is a neutron star or a black
hole. Cyg X-3 has a 4.8 hr orbital period and was classified as a low-mass X-ray
binary, until an infrared spectrum was obtained which shows the strong and broad
Balmer emission lines characteristic of a Wolf Rayet star. Cyg X-3 has a double
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radio jet. Cir X-1 is another X-ray source with a radio jet, and is remarkable for the
sudden, extreme surges of the X-ray flux, possibly related to the periastron passage
of the donor star.

Very soft X-ray sources. The sensitivity of ROSAT to photons with energies

∼< 500 eV has led to the discovery of a new class of sources that emits only at
these low energies. The sources are called supersoft sources. Various types of ob-
jects could give rise to such very soft X-ray emission, including white dwarfs that
immediately process accreting hydrogen into helium, hot sdO stars in the centers
of planetary nebulae, and white dwarfs still hot following a recent nova outburst.
Correct luminosity estimates of these sources require the use of stellar atmosphere
model spectra.

The first bursting pulsar is a very bright transient which shows both pulses and
bursts. The bursts are not thermonuclear, but probably due to variation in the
accretion onto the neutron star. The second bursting pulsar is also a transient. Its
bursts are genuine thermonuclear bursts. Its pulse period is very short, so that we
may observe in this system a progenitor of a binary radio pulsar.

9.1.5 Ingredients of binary evolution

To facilitate the discussion of the scenarios for the evolution of X-ray binaries, we
first describe some of the important ingredients of these scenarios.

9.1.6 Stellar time scales

Three time scales associated with single stars are important for the study of binary
evolution. In order of increasing length these are:

• the pulsational time scale. This is the time scale on which a star counteracts
a perturbation of its hydrostatic equilibrium. It is given by the ratio of the
radius of the star R and the average sound velocity of the stellar matter cs:

τp =
R

cs
' 0.04

(
M�
M

)1/2(
R

R�

)3/2

day (9.1)

• the thermal time scale. This is the time scale on which a star reacts when
energy loss and energy production are no longer in equilibrium. It is given by
the ratio of the thermal energy content of the star Eth and the luminosity L:

τth =
Eth
L
' 3.1× 107

(
M

M�

)2
R�
R

L�
L

yr (9.2)

• the nuclear time scale. This is the time scale on which a star uses its nuclear
fuel. It is given by the product of the available fusable matter Mcore and the
fusion energy εN , divided by the stellar luminosity. For hydrogen fusion, this
is:

τN =
McoreεN

L
' 1010 M

M�

L�
L

yr (9.3)
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Figure 9.6: Evolution of the radius of stars
of 5M� and 15M� until the onset of carbon
burning. The solid lines give the results of cal-
culations by Schaller et al. (1992) which in-
clude overshooting. For comparison, the dashed
line gives radii from calculations by Paczyński
(1970) for a 5 M� star that do not include
effects of overshooting. The horizontal thin-
dashed lines delineate the radius ranges on the
main-sequence and on first and second ascent of
the giant branch. Mass transfer while a stellar
radius is in these ranges are referred to as case
A, case B and case C, respectively, as indicated
for the 5M� track.

In the course of its evolution, a star fuses hydrogen in its core on the nuclear
time scale. During this time, on the main sequence, the star does not change its
radius very much. On the main-sequence we can use the following mass-radius and
mass-luminosity relations in Eqs. 9.1-9.3:

R

R�
'
(
M

M�

)0.75

(9.4)

L

L�
'
(
M

M�

)3.8

(9.5)

After exhaustion of the hydrogen in the core, the star starts expanding, on a thermal
time scale.

9.1.7 Roche lobe overlow

A particle within the Roche lobe is attached to one star; a particle on the Roche
lobe can move to the other star. Thus, if a star reaches the size of the Roche lobe,
mass transfer may ensue. This can occur because the star expands in the course
of its evolution, or because the binary shrinks. An evolving star in a binary can
fill its Roche lobe for the first time as it expands on the main sequence (Case A),
as it expands after hydrogen exhaustion (Case B), or as it expands after helium
exhaustion (Case C), see Figure 9.6. Which of the three cases applies, depends on
the size of the Roche lobe, which in turn depends on the distance between the two
stars and (to a lesser extent) on the mass ratio (see Eqs. 3.33-3.35).

9.1.8 Conservative mass transfer

We illustrate the effects of mass transfer for the conservative case, in which both the
total mass and the angular momentum of the binary are conserved. In this case, all
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mass lost by one binary is gained by the other:

M1 +M2 = constant ⇒ Ṁ1 = −Ṁ2 (9.6)

The angular momentum of the binary may be written:

Jb = M1M2

√
Ga

M1 +M2

(9.7)

In Eq. 9.7 it is assumed that the angular momentum residing in the rotation of
the two stars, or in the rotation of the accretion disk, is negligible with respect to
the angular momentum of the orbital revolution. This assumption is almost always
justified. The time derivative of Eq. 9.7 can be written

ȧ

a
= 2

J̇b
Jb
− 2

(
1− M2

M1

)
Ṁ2

M2

(9.8)

Consider first a binary whose angular momentum is conserved: J̇b = 0. Use
subscript 2 to label the mass donor, i.e. Ṁ2 < 0. According to Eq. 9.8, transfer
from the more massive star to the less massive star causes a decrease of the distance
between the stars: if M2 > M1, ȧ < 0. Conversely, transfer from the less massive
star causes a to increase.

To see whether the mass exchange is stable one must study the effect of the mass
transfer on the stellar radius of the mass-losing star and on the Roche lobe. After
the loss of a certain amount of mass, a star adjusts its radius. The star first restores
hydrodynamical equilibrium, on a dynamical time scale given by Equation 9.1. This
adjustment happens so rapidly, that the change is adiabatic. Next the star tries to
adjust its thermal equilibrium, on the thermal time scale given by Equation 9.2. If
after exchange of an infinitesimal amount of mass, the donor star becomes larger
than its Roche lobe, more mass transfer ensues, causing the donor to become still
larger with respect to its Roche radius, etc. The mass transfer is unstable, and
runs away. The time scale of the instability is the dynamical time scale if the star
exceeds its Roche lobe after restoring hydrodynamical equilibrium. If it only exceeds
its Roche lobe after adjusting its thermal structure, the time scale of the instability
is given by the thermal time scale.

If mass transfer is stable, it proceeds on the time scale at which the donor
star expands, or on which the Roche lobe shrinks. For conservative evolution, the
distance between the stars and the orbital period depends on the initial values and
on the masses of the two stars only! Denoting the initial values with index i and
the values after mass transfer with index f , one finds from combining Eqs. 9.6 and
9.7 (where Jb =constant for the conservative case)

af
ai

=

(
M1iM2i

M1fM2f

)2

(9.9)

and with Kepler’s law Eq. 3.32

Pbf
Pbi

=

(
M1iM2i

M1fM2f

)3

(9.10)
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9.1.9 Nonconservative mass transfer, mass loss in wind

If mass is lost from the binary, the equations become more complicated. Equation 9.6
becomes

Ṁ1 = −βṀ2 or Ṁ1 + Ṁ2 = (1− β)Ṁ2 (9.11)

i.e. a fraction β of the mass lost by the donor star is accreted onto its companion, the
rest leaves the system. The mass lost from the system will carry angular momentum.
If we write the specific angular momentum of the mass that is lost as α times the
specific angular momentum of the mass-losing star, we may replace Equation 9.7
with

J̇Ṁ
J

= α(1− β)
M1

M1 +M2

Ṁ2

M2

(9.12)

where J̇Ṁ indicates the loss of angular momentum due to loss of matter. If other loss
of angular momentum, e.g. the loss associated with the emission of gravitational
radiation, is written as J̇ , Equation 9.8 may be replaced with

ȧ

a
= 2

J̇

J
− 2

Ṁ2

M2

(
1− βM2

M1

− (1− β)M2

2(M1 +M2)
− α(1− β)

M1

M1 +M2

)
(9.13)

To see the effect of mass loss on the orbit, consider the case where almost all the
mass lost by the donor is also lost from the system, β ' 0), and where no loss of
angular momentum occurs other than that concomitant with the mass loss. In that
case, the orbit will widen provided that α < 1 + M2/(2M1). This is the case if the
mass lost leaves with specific angular momentum equal to that of the mass-losing
star, i.e. if α = 1. Equation 9.13 then simplifies into

a(M1 +M2) = constant (9.14)

9.1.10 Mass loss in a supernova explosion

A neutron star or black hole can be formed from a massive star via a supernova
explosion. The envelope of the exploding star is expelled. In a binary the loss of the
envelope mass changes the binary parameters. To estimate this effect in a simple
way, it is often assumed that the explosion occurs in a circular orbit, is instantaneous,
and that the position and velocities of the stars are the same after the explosion as
before the explosion. This implies that the distance ai between the two stars before
the explosion is the periastron distance after the explosion

ai = (1− e)af (9.15)

and that the periastron velocity of the new orbit is the same as the orbital velocity
in the pre-supernova orbit:

G(M1 +M2)

ai
=
G(M1 +M2 −∆M)

af

1 + e

1− e
(9.16)

Substituting Eq. 9.15 in Eq. 9.16 gives the eccentricity of the post-supernova orbit:

e =
∆M

M1 +M2 −∆M
(9.17)
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We see that the binary is disrupted (e > 1) when more than half of the total mass
is lost in the explosion, i.e. when ∆M > (M1 +M2)/2.

Because of the mass loss, the velocity of the center of mass of the binary changes
by vs, given by

vs =
M2v2 − (M1 −∆M)v1

M1 +M2 −∆M
= ev1 (9.18)

where vi is the orbital velocity of the star with mass Mi before the explosion. Massive
binaries have small velocities; thus vs is a good estimate for the system velocity of
the binary after the supernova explosion.

If the orbit after the explosion is sufficiently small, it may be circularized by tidal
interaction. From conservation of angular momentum, the radius ac of the circular
orbit can be written in terms of the semi-major axis of the eccentric orbit, or of the
radius of the pre-supernova orbit

ac = (1− e2)af = (1 + e)ai (9.19)

In reality, the correctness of the assumptions made to derive Equations (9.15-
9.19) is rather doubtful. Wide binaries are expected to have initially eccentric orbits.
And from measurements of velocities of single radio pulsars, it appears that a single
neutron star may receive an appreciable kick velocity at its birth, of several hundred
km/s. It may be expected that a neutron star formed in a binary will also obtain
a kick velocity at birth. This velocity can have an arbitrary direction and its effect
on the orbit is therefore unpredictable. The presence of kick velocities introduces
a major uncertainty in the evolution of a binary in which one star undergoes a
supernova explosion.

9.1.11 Supernova explosion in an eccentric orbit

In an eccentric orbit, the relative velocity of the two stars when their distance to
one another is r is given by

v2 = G(M1 +M2)

(
2

r
− 1

a

)
(9.20)

Denote the supernova progenitor mass with M1, and the pre-explosion semi-major
axis with a, and combine Eq. 9.20 with a similar equation for the post-explosion
orbit, with a compact star of mass M1n and semi-major axis an. Assuming that the
instantaneous position r is not changed by the explosion, we then may write the
ratio a/an as

a

an

=
2a

r
−
(vn

v

)2 M1 +M2

M1n +M2

(
2a

r
− 1

)
(9.21)

where vn is the relative velocity between the two stars immediately after explosion.
The binary will be disrupted if the right hand side of Eq. 9.21 is zero, which is

the case for
rd

2a
= 1−

(
v

vn

)2
M1n +M2

M1 +M2

(9.22)

rd must be on the pre-explosion orbit, i.e. 1 − e < rd/a < 1 + e, with e the
eccentricity of the pre-explosion orbit. If the value for rd/a found with Eq. 9.22 is
less than 1− e, e.g. when virtually no mass is lost, then the binary remains bound
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Figure 9.7: The probability Πs, as a function of the mass M2 of the non-exploding
star, that the binary remains bound after a supernova explosion in which a 10 M�
star leaves a 1.34 M� neutron star. (Left) without kick velocity in an eccentric orbit
with e = 0.6. (Right) for the case in which the neutron star receives a kick velocity
of vk = 100 km/s in a cicular orbit (solid line) and in an orbit with e = 0.6 in which
the explosion occurs at apastron (dashed line).

at all pre-explosion radii. If it is larger than 1 + e, e.g. when virtually all mass is
lost, then the binary is disrupted at all radii.

For intermediate values of rd/a, the binary will be disrupted at all r < rd, and
thus the probability that this will happen is given by the fraction of the time that
r < rd in the binary orbit. We calculate this fraction by writing r in terms of the
eccentric anomaly E (see, e.g. R.M. Green, 1985, Spherical Astronomy, p.137 sqq.)

r = a(1− e cos E) (9.23)

The eccentric anomaly may be related to the mean anomaly M, which progresses
linearly with time, via the equation of Kepler

M = E − e cos E (9.24)

To calculate the probability that the supernova will dissolve the binary, we start
by calculating rd/a with Eq. 9.22, and check whether 1− e < rd/a < 1 + e. If so, we
continue by calculating the eccentric anomaly Ed corresponding to rd with Eq. 9.23,
and find the probability that the binary will be disrupted as the probability that
the two stars are found at an r between periastron and rd from Eq. 9.24 as

Πd =
Ed − e cos Ed

π
(9.25)

In Fig. 9.7 the probability of survival, Πs ≡ 1 − Πd is illustrated for a binary
with initial semi-major axis of 100 R�, in which a 10 M� star explodes to leave a
1.34 M� neutron star, and where the velocity is unchanged: vn = v, as a function
of the companion mass M2. For an initial circular orbit, Eq. 9.23 shows that the
binary is always disrupted for M2 < M2crit = 7.32 M�, and always remains bound
for M2 > M2crit. For an initial orbit with eccentricity e = 0.6, we find that there
is a finite probability that the binary survives down to very low companion masses,
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or that it is disrupted up to relatively high companion masses. The lowest possible
companion mass for which the binary can remain bound is found by equating the
pre-explosion velocity at apastron to the escape velocity after the explosion, at the
same position:

v2 =
G(M1 +M2)(1− e)

a(1 + e)
=

2G(M1n +M2)

a(1 + e)
⇒M2 =

(1− e)M1 − 2M1n

1 + e
(9.26)

For the example shown in Fig. 9.7 this minimum mass is M2 = 0.825 M�. Thus,
in the absence of velocity kicks, even very low-mass stars have a finite probability
of surviving the supernova explosion of their companion – after all, in an eccentric
orbit more time is spent near apastron than near periastron.

9.1.12 Supernova with velocity kick

The calculations that we just discussed would lead to the conclusion that there
could be many wide binaries in which a neutron star is accompanied by a low-mass
companion, i.e. many radio pulsars would have an optical counterpart. As this
appears not to be the case, we must conclude that most neutron stars acquire a kick
velocity vk at birth, which is added to the pre-explosion orbital velocity:

v2
n = v2 + v2

k + 2vvk cos θ ≡ (1 + f 2 + 2f cos θ)v2 (9.27)

where θ is the angle between the kick velocity and the orbital velocity before ex-
plosion, and where we have written the kick velocity in units of the pre-explosion
velocity, vkick ≡ fv. This equation may be entered into Eq. 9.22 to check whether
the supernova explosion dissolves the binary in the presence of a kick.

To illustrate the effect of a kick we consider an explosion at apastron. The binary
remains bound if the post-explosion velocity is less than the escape velocity:

(1 + f 2 + 2f cos θ)
G(M1 +M2)(1− e)

a(1 + e)
≤ 2G(M1n +M2)

a(1 + e)
⇒

cos θ ≤ cos θcrit ≡
1

2f

(
2(M1n +M2)

(M1 +M2)(1− e)
− 1− f 2

)
(9.28)

The probability for this to happen is given by the probability that θ ≥ θcrit, which
for arbitrary direction of the kick is given by

Πs =

(∫ π

θcrit

sin θdθ

)
/

(∫ π

0

sin θdθ

)
=

1 + cos θcrit

2
(9.29)

and may be found directly from Eq. 9.28, as illustrated in Fig. 9.7.

9.1.13 Spiral-in

If a mass donor expands very rapidly, or if the distance between two binary stars
decreases very rapidly due to mass transfer (see Eq. 9.8), the companion of the
mass-losing star may find itself engulfed by the envelope of the donor. This is
thought to happen in particular when the mass transfer is dynamically unstable.
The friction between the motion of the companion and the envelope removes angular
momentum from the orbital motion, and releases energy. Thus, the orbit shrinks,
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and the envelope is brought into rotation and heated. This process continues until
enough energy is added to the envelope to expel it. Alternatively, the companion
star may spiral-in until it merges with the core of the mass donor.

Consider a star with mass M1, composed of a core with mass Mc and an envelope
of mass Me, that comes into contact with its Roche lobe at radius R1, causing its
companion with mass M2 to spiral in. We may compare the binding energy of the
envelope with the difference in total energy of the binary before and after the spiral
in:

GM1Me

λR1

= α

(
GMcM2

2af
− GM1M2

2ai

)
(9.30)

where λ is a weighting factor for the gravitational binding of the envelope to the
core, and ai and af are the distances between the binary stars before and after the
spiral-in, respectively.

When af � ai, as is usually the case when spiral-in occurs, we may ignore the
second term on the right hand side of Eq. 9.30, and rewrite the equation as

af
ai
' λα

2

McM2

MeM1

R1

ai
(9.31)

Because spiral-in start when the star with radius R1 fills its Roche-lobe, the ratio
R1/ai is a function of the mass ratio M1/M2 only (see Eqs. 3.33-3.35).

The parameter λ can be calculated from a the stellar structure model of the
star that fills its Roche lobe, and this can be done with reasonable accuracy. The
efficiency parameter α must be calculated from a three-dimensional hydrodynamic
calculation of the spiral-in process, and this is not yet possible.

Another approach is to determine α observationally. Central binaries of plane-
tary nebulae are very good objects for such a study, because the ’smoking gun’ of the
nebula shows that such binaries have only just emerged from a common envelope,
i.e. they represent the conditions immediately following the spiral-in. The determi-
nation goes as follows. The progenitor of the white dwarf must have had a mass in
excess of 0.8M�, in order to have evolved from the main sequence within a Hubble
time. The stellar mass is divided between the core and the envelope: if a relatively
low-mass core remains as a white dwarf, this means that a relatively massive enve-
lope has been expelled. Applying Eq. 9.30 to systems with a low-mass white dwarf
and a main-sequence or other white-dwarf companion shows that α ' 1. However,
if one applies Eq. 9.30 to the binary 14 Aur, which consists of a white dwarf and a
δ Scuti star1, one gets α = −7! What this probably means is that the progenitor of
the white dwarf had already lost a fair amount of mass – and thereby widened the
orbit (see Eq. 9.14) before it filled its Roche lobe.

We really do not understand the details of the spiral-in process, and any calcu-
lation involving spiral-in is highly uncertain.

9.1.14 Accretion, magnetosphere and spin-up

Accretion of matter onto a neutron star leads to energy release mainly at X-ray
wavelengths. Therefore the X-ray luminosity Lx is related to the accretion rate Ṁ
via Eq. 8.27, with L ' Lx, and where we take the neutron star mass and radius,

1δ Scuti stars are pulsating A or F main-sequence stars; the pulsation mechanism is the κ
mechanism in the He II and hydrogen ionization zones
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respectively, for M and R. The accretion rate has an upper bound, given by the
Eddington limit: if the outward radiation pressure caused by Lx is larger than
the gravitational attraction, matter will be blown away rather than accreted. The
limiting luminosity is thus given by the condition:

LEdd
4πr2

σ

c
=
GM

r2
⇒ LEdd =

4πcGM

σ
' 1.8× 1038 M

1.4M�
erg s−1 (9.32)

where σ is the radiation absorption coefficient, for which in the X-ray regime we can
use the Thomson cross section. With Eq. 8.27 the luminosity limit can be translated
into a limit to the accretion rate:

ṀEdd =
4πcR

σ
' 1.5× 10−8 R

106cm
M�yr−1 (9.33)

An accreting neutron star with a finite magnetic field is surrounded by a volume
in which the motion of the accreting matter is dominated by the magnetic forces.
Heuristically, a radius rm of this magnetosphere is estimated by equating the mag-
netic pressure B(rm)2/8π of a dipole to a ram pressure ρv2. For spherical accretion
ρ = Ṁ/(4πr2v), and with v equal to the free fall velocity this leads to

B2R6

8πr6
m

=
Ṁ

4πr2
m

√
2GM

rm
⇒ rm

R
=

(
B2R5/2

2Ṁ
√

2GM

)2/7

(9.34)

For accretion via an accretion disk, this formula is thought to be a reasonable ap-
proximation as well. The interaction between the accretion disk and the neutron
star drives the neutron star rotation towards an equilibrium period approximately
given by the Keplerian rotation period at the magnetospheric radius. With Eq. 9.34
this gives:

Peq = 2π

(
B2R6

2
√

2Ṁ

)3/7(
1

GM

)5/7

' 6× 10−3sec

(
B

109G

)6/7(
R

106cm

)18/7(
1.4M�
Mns

)5/7(
10−9M�yr−1

Ṁ

)3/7

(9.35)

It is necessary to remember that Eqs. 9.33-9.35 are heuristic in nature. Our very
limited understanding of the accretion process does not enable us to derive rigorous
formulae.

9.1.15 Origin and evolution of high-mass X-ray binaries

The observed presence of a neutron star in a binary poses the following problem.
According to the theory of stellar evolution, it is always the more massive star in a
binary that explodes first as a supernova. According to Eq. 9.17 this means that the
binary is disrupted (e > 1) by the supernova explosion, unless the masses of the two
stars are very close to one another (more specifically: M > m > M − 2Mns, where
Mns is the mass of the compact remnant, i.e. the neutron star), One does not expect
to find (many) binaries with a neutron star. Two possible solutions have already
been discussed above: the supernova can occur at apastron of an eccentric orbit
(Eq. 9.26) and the new neutron star may be born with a kick velocity (Eq. 9.28).

More important, however, is yet another solution: that the more massive star
becomes the less massive star before it explodes. We discuss three scenarios for this.
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Figure 9.8: Conservative evolution of
high-mass binary into a Be X-ray bi-
nary, and then into a binary radio pul-
sar. For explanation see text. Note the
change of scale at phase g.

9.1.16 Pre-supernova mass transfer and the Be X-ray bina-
ries

Consider a binary of stars of 15 and 7 M�, with an orbital period Pb = 200 days.
Its evolution is illustrated in Figure 9.8. The 15 M� star evolves first, and exhausts
its hydrogen after 3.6 × 106 yr, according to Eqs. 9.3-9.5. It then expands into a
giant, and while doing so reaches its Roche lobe (Fig 9.8b). In a circular orbit
of 200 d, this happens at R1 ' 180R�, and thus the mass transfer is case B (see
Figure 9.6). The expanding star loses mass to its companion through the inner
Lagrangian point. A mainly radiative star shrinks dynamically due to mass loss,
but expands on the thermal time scale. When the mass donor is the more massive
star in the binary, its Roche lobe shrinks (Eqs. 3.35,9.8). Thus mass transfer from a
massive, mainly radiative star to a less massive star is unstable on the thermal time
scale. The mass transfer therefore occurs on the thermal time scale, ∼ 3×104 yr for
a 15 M� star, according to Eq. 9.2. Mass continues to be transferred until the mass
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Figure 9.9: Schematic representation of the
change of the radius of the Roche lobe RL and
of the equilibrium radius of a massive mass los-
ing star Req. Mass transfer begins after the
star has expanded from the main sequence to its
Roche lobe. Mass transfer is unstable because
the Roche lobe shrinks, whereas the equilibrium
radius becomes larger. It stays unstable until
Req becomes equal to RL. This occurs after re-
versal of the mass ratio, for donor mass close
to the core mass Mc.

receiving star has become more massive than the mass losing star: then the Roche
lobe of the donor increases with further mass transfer (Fig 9.8c). Once it increases
faster than the donor radius, mass transfer can stabilize again. In practice, mass
transfer stabilizes only after the mass donor has lost most of its envelope, and has
reached a total mass close to its core mass (Fig 9.8d). The evolution of the stellar
and Roche-lobe radii during transfer from a massive star is shown schematically in
Figure 9.9. The 7 M� star has gained appreciably in mass, and rotates rapidly, due
to the accretion of angular momentum with the mass. The result of the first phase
of mass transfer is a binary in which the almost naked core of the initially more
massive star is in a wide orbit around an Oe or Be star companion.

The mass Mc of the helium core of a star with initial mass M1 is found from full
stellar evolution calculations, and may be estimated from

Mc ' 0.073M1
1.42 (9.36)

The core continues its evolution, and after a short time explodes as a supernova,
leaving a neutron star of 1.4 M� (Fig. 9.8e). The sudden mass loss leads to an
eccentricity of e = 0.10 and a velocity of the center of mass of the new binary of
vs = 5.2 km/s, according to Eqs. 9.17–9.18. The neutron star may catch matter
from the wind of the Be star. Because of the rapid rotation of the Be star, this wind
is concentrated in the equatorial plane. The wind of Be star, too, often is transient;
thus the binary is often a transient source of hard X-rays.

Overflow via the inner Lagrangian point starts when the companion reaches its
Roche lobe (Fig 9.8f). The extreme mass ratio almost certainly causes the mass
transfer to be unstable dynamically as the orbit shrinks rapidly (see Eq. 9.8), and
the neutron star eventually will plunge into the envelope of its companion. In the
case shown in Figure 9.8, the spiral-in leads to a very close binary consisting of
the neutron star and the core of the Be star (Fig. 9.8g). If the helium core has
too low a mass to evolve into a supernova, it will cool into a white dwarf, and the
resulting binary looks like the one in which PSR 0655 + 64 is accompanied by a
relatively massive white dwarf. In that case, the orbit retains the circular shape it
obtained during spiral-in. Alternatively, continued evolution of the core leads to a
second supernova explosion, which may lead to the formation of a high-mass radio
pulsar binary like PSR 1913+16, consisting of two neutron stars in an eccentric orbit
(Fig. 9.8h); or which may disrupt the binary, especially when the second neutron
star is born with a kick velocity.
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Figure 9.10: Drawing – to scale – of the
evolution of a high-mass binary with a
close initial orbit. For explanation see
text; note the change in scale at phase
c. The 8.6 M� star in phase c only
barely fits in its Roche lobe. The final
binary is modelled on LMC X-3.

9.1.17 Pre-supernova spiral-in and the supergiant X-ray bi-
naries

When the initial orbital period is small, the combination of the expansion of the
donor and the reduction of the orbital separation may bring the mass receiving star
inside the envelope of the donor star. Friction then transfers angular momentum
and energy from the orbital motion to the envelope of the mass donor. As a result,
the orbit shrinks dramatically, until the envelope is heated so much that it escapes,
leaving the core of the donor in orbit around the mass-receiver, or until both stars
merge completely. This spiral-in process happens so rapidly, that the mass receiving
star accretes only a tiny fraction of the envelope of the donor.

In Figure 9.10 the formation of a high-mass X-ray binary via a spiral-in process
is illustrated with a scenario for the formation of the black-hole high-mass X-ray
binary LMC X-3. The more massive star of the binary loses some mass in a stellar
wind before it fills its Roche lobe. The mass transfer is unstable, and a spiral-in
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ensues, bringing the core of the donor in close orbit around the virtually unchanged
receiver (see Eq. 9.31; phases b-c in Fig. 9.10). The donor only fits inside its Roche
lobe because stars in the LMC, due to their lower metallicity, are smaller at the
same mass than stars in our Galaxy. The core loses some more mass in stellar wind
as it evolves to supernova, and forms a black hole(Fig. 9.10c-e). It is now thought
that all high-mass X-ray binaries with short orbital periods, in which a supergiant
is the donor, are formed via a spiral-in or via Case A mass transfer.

9.1.18 Recent developments

Two interesting developments have occurred in our thinking about the formation of
high-mass X-ray binaries in recent years. The first of these concerns the evolution of
the helium core of a star which has lost its envelope. In early computations of binary
evolution it has mostly been assumed that such an unwrapped core evolves pretty
much in the same way as it would have done inside the whole star. By computing
the evolution of unwrapped cores explicitly several authors have shown that this
assumption is not correct. In particular, even the cores of very massive stars, which
would have evolved into a black hole inside the full star, evolve into a neutron star
instead when the star loses its envelope at an early evolutionary stage. This explains
why no Be X-ray binary (formed via case B mass transfer) contains a black hole.
An important consequence is that one can no longer transfer conclusions about the
progenitor mass of a black hole from single-star evolution to binary evolution or
vice versa. The presence of black holes in close binaries can only come about via
a spiral-in initiated by case C mass transfer, when the core of the mass-losing star
has evolved far enough before it loses its envelope.

The second development is the realization that case A mass transfer may lead to
supergiant binaries, which explains that a neutron star can be accompanied by a very
massive donor. As a result, one can no longer conclude from the binary Wray 977,
in which a 48M� star transfers mass to a neutron star, that the progenitor of the
neutron star had an initial mass higher than 48M�; it may be as low as 25M�.
An interesting question regarding the systems arising from case A mass transfer is
whether the mass donor to the compact star rotates rapidly or not: the donor in
Wray 977 does not rotate rapidly, even though almost half of its mass may have
been accreted from its companion. If this slow rotation is generally the case, it may
be used to discriminate between systems evolved via case A and case B evolution;
more research is needed into this question, however.

9.1.19 Low-mass X-ray binaries

The problem in producing a high-mass X-ray binary, i.e. avoiding a disruption of the
binary during the supernova event, holds even more for the low-mass X-ray binaries.
Mass loss via a wind of a massive star will not bring its mass below the 1M� of a
low-mass companion. In order to keep the binary intact, one may have to invoke
both a spiral-in phase and a rightly aimed kick velocity of the newly born compact
star. An alternative that has been in vogue during the past few years is a quiet
supernova explosion, when a white dwarf is pushed over the Chandrasekhar limit
and implodes. Yet another alternative is evolution of a multiple system of three or
more stars.
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9.1.20 Origin of low-mass X-ray binaries via spiral-in

The spiral-in scenario was suggested first by van den Heuvel in 1983. Eqs. 9.30,9.31
show that the initial binary must have been rather wide if a merger is to be avoided.
To avoid a merger, case C mass transfer is preferred above case B, as the core mass
will be higher and the envelope mass smaller. Consider for example a star just
massive enough to evolve into a neutron star, with an initial mass of 5M�. Suppose
it evolves a carbon core of 2M�. A 1M� companion to this core fits within its
Roche lobe provided the semimajor axis is larger than 3.1R�. With Equation 9.31
we find that this requires a semimajor axis before spiral-in that is 190R�. A 5M�
star expands to the 100R� required to fill its Roche lobe in this binary during the
second giant ascent, i.e. mass transfer is case C (see Figure 9.6). The supernova
explosion causes an eccentricity e = 0.25, if a 1.4M� neutron star is formed without
a kick velocity.

The main-sequence star is hardly affected by the spiral-in process, and emerges
pretty much as it entered. Angular momentum losses may bring the 1M� star in
contact with its Roche lobe, provided the post-supernova orbit is not too wide. In a
system with a longer orbital period, mass transfer can start only after the 1M� star
evolves away from the main sequence, and expands into a (sub)giant. The boundary
between these two cases depends on the mechanism for loss of angular momentum.
Thus, the spiral-in scenario does allow the formation of low-mass X-ray binaries.
The crucial moment in the evolution is the moment of the supernova explosion. If
the binary is to remain bound, not too much mass must be lost from the system with
the explosion (see Equation 9.17). This may be the case if the core of the neutron
star progenitor is not too massive, i.e. if the progenitor itself is not too massive, as
in the example just described. Alternatively, a well-directed kick may help to keep
the binary bound. Interestingly, collapse of a massive evolved core into a black hole
may also make it easier for the binary to remain bound, as a smaller fraction of the
mass is expelled in that case.

PSR1820− 11 has already been mentioned as a possible high-mass radio pulsar
binary. The available observations also allow the companion to the pulsar to be a
low-mass main-sequence star; if so, the binary would be a progenitor of a low-mass
X-ray binary, along the scenario just sketched.

9.1.21 Origin via accretion-induced collapse

Accretion-induced collapse of a massive white dwarf as a mechanism for the forma-
tion of a neutron star was first suggested by Whelan & Iben in 1973. The progenitor
of a massive white dwarf must have a mass close to those of direct progenitors of
neutron stars. The close binary is therefore formed through a spiral-in, very similar
to the spiral-in just described: however, the core that emerges from the spiral in
now evolves into a massive white dwarf, and avoids the supernova explosion. When
mass transfer is initiated, either by loss of angular momentum or by expansion of
the secondary into a (sub)giant, the white dwarf accretes mass until it transgresses
the Chandrasekhar limit, at which point it implodes. Little mass is lost in the im-
plosion; most of the loss in fact may come from the change in binding energy, which
is roughly:

∆M ' 3GMwd
2

5Rnsc2
' 0.2M� (9.37)
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Table 9.3: Mass-radius relations and derived mass-orbital-period relations for low-
mass X-ray binaries. Valid for donors in thermal equilibrium.

main sequence R2/R� 'M2/M� Pb ' 8.9 hrM2/M�
He main sequence R2/R� ' 0.2M2/M� Pb ' 0.89hrM2/M�
white dwarf R2/R� ' 0.0115 (M2/M�)−1/3 Pb ' 40 secs M�/M2

where Mwd is the mass of the white dwarf and Rns the radius of the neutron star. The
smaller mass loss makes it easier for the binary to survive the supernova explosion.
It is often implicitly assumed that the kick velocity is also less for a neutron star
formed by white dwarf collapse. As long as the mechanism causing the kick velocity
is not known, however, there is no good reason for such an assumption.

Accretion-induced collapse as a mechanism to form a neutron star gained widespread
recognition once it was realized that the magnetic field of the radio pulsar in old
binaries was still in excess of 108G. Combined with the view that the magnetic field
of a neutron star decays on a time scale of a few million years, this meant that there
must be young neutron stars in old binaries: accretion-induced collapse can achieve
this. It has recently become less clear, however, that the magnetic field of neutron
stars does indeed decay so rapidly. In the absence of rapid decay of the magnetic field
of neutron stars, there is no reason anymore to invoke accretion-induced collapse for
the formation of low-mass X-ray binaries.

9.1.22 Relation between orbital period and donor mass

By combining Kepler’s law Eq. 3.32 with Eq. 3.34, we get an approximate relation
between orbital period and the mass and radius of the Roche-lobe-filling star:

Porb ' 8.9 hr

(
R2

R�

)3/2(
M�
M2

)1/2

(9.38)

Thus, by assuming a mass-radius relation for the donor star, we may determine its
mass from the observed orbital period, as summarized in Table 9.3. In Fig 9.3 the
known orbital periods for low-mass X-ray binaries are shown.

The equation giving the size of the Roche lobe Eq. 3.34, may also be combined
with the equation for mass exchange in a binary Eq. 9.8, to give the change in the
size of the lobe as mass is transferred. In stable mass transfer, the radius of the
donor equals the radius of the Roche lobe, at all times in this process: RL = R2

and ṘL = Ṙ2 where the index 2 identifies the donor star. The change in radius of
the donor star may be due to internal evolution of the star, or to the mass-transfer
process. We may thus write

ṘL

RL

=

(
Ṙ2

R2

)
ev

+
d lnR2

d lnM2

Ṁ2

M2

= 2
J̇

J
− 2

Ṁ2

M2

(
5

6
− M2

M1

)
(9.39)

This equation shows that mass transfer may be driven by loss of angular momentum
from the binary (J̇ < 0), or by expansion of the donor star (Ṙ2 > 0) due to, for
example, the ascent of the donor on the (sub)giant branch, or due to irradiation of
the donor. We discuss these possibilities in turn.
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9.1.23 Evolution via loss of angular momentum

The low-mass X-ray binaries with orbital periods between 80 min and 9.0 h may
have main-sequence donors with masses between 0.1M� and 1.0M�, according to
Table 9.3. These masses are less than the 1.4M� characteristic for a neutron star.
The evolutionary time scale of such low-mass stars are very long (see Eq. 9.3). As
shown by Equation 9.8, the orbit of such a low-mass X-ray binary expands when
mass is transferred conservatively from the donor. Unless the donor star expands
more than its Roche lobe, this expansion will put an end to the mass transfer. It
appears then that angular momentum must be lost from the binary to keep mass
transfer going.

It was realized by Kraft et al. in 1962 that gravitational radiation provides a
sufficiently high loss of angular momentum to drive observable mass transfer in a
close binary. The loss of angular momentum via gravitational radiation may be
written:

−

(
J̇

J

)
GR

=
32G3

5c5

M1M2(M1 +M2)

a4
(9.40)

If we write the mass-radius relation of the donor star as R2 ∝ M2
n, Equation 9.39

can be re-written as

− J̇
J

= −Ṁ2

M2

(
5

6
+
n

2
− M2

M2

)
(9.41)

This equation assumes that no mass is lost from the binary; extension to the more
general case is straightforward (see Equation 9.13).

By equating the loss of angular momentum with the loss due to the emission of
gravitational radiation, we may combine Equations 9.40 and 9.41 to calculate the
evolution of a low-mass X-ray binary. Mass-transfer rates can be calculated this
way for main-sequence stars, with n = 1, and for white-dwarf donor stars, with
n = −1/3. The results are shown in Figure 9.11, for the three types of donors given
in Table 9.3, i.e. stars on the main sequence, stars on the helium main sequence,
and white dwarfs.

For stars on the main sequence, the mass-transfer rate is about Ṁ ' 10−10M� yr−1,
for donor masses between 0.2 and 1 M�. Stars on the helium main sequence are
smaller, and fill their Roche lobes in more compact binaries, leading to higher mass-
transfer rates. Consider a main-sequence donor star. The mass transfer causes this
star to become less massive, and the binary thus evolves towards shorter periods. At
some point, the mass of the donor becomes too small to sustain significant hydrogen
burning, and the core becomes degenerate. At this point, which is reached for a
donor mass of about 0.08M�, further mass loss of the donor causes it to expand.
The orbit expands with it, according to Equation 9.38. Thus, the evolution of the
orbital period passes through a minimum. Detailed calculations show that this min-
imum may be identified with the cutoff at around 80 min observed in the period
distribution of cataclysmic variables.

A similar line of reasoning shows that binaries with donors that initially burn
helium must also show a minimum period, which detailed calculations put at around
10 min.

The minimum period for a binary whose donor is a main-sequence star depends
on the chemical composition of the core of this star. If its helium abundance is
higher, the star is relatively more compact, and becomes degenerate at a smaller
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Figure 9.11: Orbital period and mass-transfer rate as a function of donor mass
M2, for binary evolution driven by loss of angular momentum via gravitational ra-
diation. For degenerate donors (shown for M2 < 0.15M�; solid and dashed lines
for the indicated values of the hydrogen abundance) the orbital period increases and
the mass-transfer rate drops precipitously, as the donor mass decreases. For main-
sequence donors (shown for M2 > 0.15M�; solid and dashed line for stars on the
hydrogen and helium main sequence, respectively) the orbital period decreases and the
mass-transfer rate hardly changes, as the donor mass decreases. The mass-transfer
rates shown all assume M1 = 1.4M�, except for the dashed line, which assumes that
the mass receiver is a 7 M� black hole.

radius. Thus, such binaries may evolve to periods shorter than 80 min. A main-
sequence star with a helium-enriched core may be formed when the donor starts
transferring mass to its companion very soon after expanding away from the main
sequence. The mass loss stops further evolution of this donor star, which reverts to
the main sequence, but with an enhanced He abundance in the core.

A number of low-mass X-ray binaries have X-ray luminosities well in excess of
1036 erg s−1, and hence mass accretion rates well in excess of 10−10M� yr−1, accord-
ing to Equation 8.27. The orbital periods of several of these systems are too long
for helium-burning donor stars, and more indicative of main-sequence donors. If one
assumes that the currently observed Ṁ is also indicative of the Ṁ averaged over
the time scale on which the binary evolves, such high mass-transfer rates require
explanation. It is worthwhile to remark that many X-ray binaries have shown ap-
preciable variability already during the few decades that X-ray observations have
been possible, and to stress that therefore it is not possible to determine the long-
term averaged values of Ṁ . Nonetheless, the high observed values for mass-transfer
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Table 9.4: Constants for the fits to the core-mass - radius and core-mass - luminosity
relations for low-mass giants, according to Webbink, Rappaport and Savonije (1983).

a0 a1 a2 a3 b0 b1 b2 b3 mass range
Z = 0.02 2.53 5.10 -0.05 -1.71 3.50 8.11 -0.61 -2.13 0.16 < Mc/M� < 0.45
Z = 0.0001 2.02 2.94 2.39 -3.89 3.27 5.15 4.03 -7.06 0.20 < Mc/M� < 0.37

rates in low-mass X-ray binaries and, less accurately, in cataclysmic variables have
led to investigations of mechanisms that may enhance the mass-transfer rate with
respect to the values given by gravitational radiation alone.

As suggested by Equation 9.41, any additional mechanism of loss of angular
momentum increases the mass-transfer rate. A mechanism that has received appre-
ciable interest is that of magnetic braking. Observations of single G stars show that
the rotation of these stars slows down with age. It has been suggested that this is
due to loss of angular momentum via the stellar wind of the stars. Even though
the amount of mass lost with the wind is small, the concurrent loss of angular mo-
mentum may be appreciable, because the magnetic field of the star forces the wind
matter to corotate to a large distance from the stellar surface. If the donor star in a
binary loses angular momentum in this way, it will not be able to rotate slower, as it
is kept in corotation with the orbit by tidal forces. Thus loss of angular momentum
is transferred from the donor rotation to the orbital revolution, i.e. the binary loses
angular momentum.

Whereas magnetic braking remains an attractive possibility to explain mass-
transfer rates Ṁ ∼> 10−9M� yr−1 in low-mass X-ray binaries with main-sequence-like
donor stars, the details and actual efficiency of this process are not well understood.
In view of our ignorance of long-term averages of Ṁ , the necessity of a mecha-
nism in addition to gravitational radiation in these low-mass systems should not be
considered as established.

9.1.24 Evolution via donor expansion

A number of low-mass X-ray binaries, including the well-known systems Sco X-1
and Cyg X-2, have orbital periods in excess of 0.5 days, indicating that their donor
stars are (sub)giants (see Fig. 9.3). In these systems, mass transfer is driven by the
evolutionary expansion of the donor star. The radius and luminosity of a low-mass
giant are determined mainly by its core mass. Results of detailed calculations can
be represented with simple polynomial relations in y ≡ lnMc/0.25M�:

ln(R2/R�) = a0 + a1y + a2y
2 + a3y

3 (9.42)

ln(L2/L�) = b0 + b1y + b2y
2 + b3y

3 (9.43)

The values of the fitting constants ai, bi depend on the metallicity of the star, and
are given for two metallicities, for stars in the Galactic disk, and for stars in low-
metallicity globular clusters, in Table 9.4.

The luminosity on the giant branch is almost completely due to hydrogen shell
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Figure 9.12: Orbital period and mass-transfer rate as a function of the mass of the
donor core Mc, for binary evolution driven by expansion of a giant donor star. The
mass-transfer rates shown all assume M1 = 1.4M� and Ṁ1 = −Ṁ2.

burning, and is related to the core mass Mc by

Ṁc ' 1.37× 10−11

(
L

L�

)
M� yr−1 (9.44)

Combining Equations 9.42 and 9.44 gives the relation between the change in radius
and the change in core mass:

Ṙ2

R2

= [a1 + 2a2y + 3a3y
2]
Ṁc

Mc

(9.45)

In the absence of loss of angular momentum, Equation 9.39 may be rewritten

Ṙ2

R2

= −2
Ṁ2

M2

(
5

6
− M2

M1

)
(9.46)

which completes the set of equations required to calculate the binary evolution. The
orbital period and the two masses determine the radius of the giant via Eq. 9.38
and hence its core mass via Eq. 9.42; the core mass determines the rate of radius
expansion via Eq. 9.45, and with this the mass-transfer rate via Eq. 9.46. Thus the
evolution can be calculated without resort to complete stellar evolution codes.

The results are shown in Figure 9.12 for Z = 0.02, the metallicity of ordinary
disk stars. It is seen that there is a strong correlation between orbital period and
mass-transfer rate: in a binary with a long orbital period, only a large giant fills its
Roche lobe, and a large giant evolves more rapidly.

129



The simple calculations hold for stars beyond the subgiant branch; for subgiants,
Eq. 9.44 doesn’t apply. Equations 9.42 and 9.43 are valid for giants at thermal
equilibrium. Detailed calculations show that this is a good approximation until the
donor envelope has been almost fully exhausted.

9.1.25 Origin of low-mass binary radio pulsars

The evolutionary scenario for low-mass X-ray binaries with (sub)giant donors re-
ceived strong confirmation with the discovery of radio pulsars in circular orbits with
a very low mass-function, and hence a probable companion mass of 0.2 − 0.4M�
listed as low-mass binary radio pulsars in Table 9.2. The scenario discussed in the
previous subsection automatically leads to such a binary: once the envelope of the
giant donor is exhausted, the giant’s core remains and cools into a white dwarf. The
orbital period of the current binary sets the radius of the giant immediately prior to
the end of mass transfer, and thus its core mass. Thus, the orbital period Pb of the
radio pulsar should be correlated to the mass Mwd of its white-dwarf companion.
Approximately:

Pb ' 8.4× 104 days

(
Mwd

M�

)11/2

(9.47)

valid for for circular orbits with Pb ∼> 20 days.
The low eccentricity of the orbits of low-mass binary radio pulsars indicates that

orbital circularization must have occurred following the formation of the neutron
star. The low mass-functions indicate white dwarf companions to the radio pulsars
with masses lower than the ' 0.6M� expected for a white dwarf evolved from a
single star. Both these observations are explained by the scenario in which a giant
fills its Roche-lobe — causing strong tidal forces and hence rapid circularization,
and transfers its envelope to the neutron star — thereby cutting off the growth of
its core. The mass transfer also explains the short pulse period of the radio pulsars
in these binaries as a consequence of the spin-up of the neutron star as it accretes
mass from an accretion disk.

Interestingly, the realization that rapidly rotating radio pulsars may emerge from
low-mass X-ray binaries came with the discovery of a single radio pulsar, PSR1937+
21. Its extremely rapid rotation can be understood as the consequence of accretion
of a substantial amount of mass ∼> 0.1M� from an accretion disk, by a neutron star
with a low magnetic field. The magnetic field of PSR1937 + 21 is indeed low (see
Table 9.2). In order to explain the absence of any companion, several destruction
mechanisms were suggested. Detailed scrutiny of these mechanisms showed that
none of them are convincing. The discovery of another millisecond pulsar brought
a more likely solution: PSR1957 + 20 is heating its companion enough to evaporate
it.

9.1.26 Recent developments

Three recent developments are changing our picture of the low-mass X-ray binaries.
First, it has been found that several low-mass X-ray binaries have donors with
masses that aren’t as low (viz. ≤ 1M�) as hitherto assumed for low-mass X-ray
binaries. For example, the black-hole binary GRO J 1655 − 40 has donor with a
mass of about 2.3M�. It would appear that the donor must be a subgiant to fill
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its Roche lobe in the 2.6 d orbit. However, accurate radius determinations of main-
sequence stars in double-lined eclipsing binaries show that stars with masses in the
range 2-4M� expand sufficiently on the main-sequence to explain mass transfer from
a main-sequence star in GRO J 1655− 40.

Secondly, the observation of black-hole binaries in low-mass systems with evolved
donors implies that there are many times more – in the ratio of the main-sequence life
time to the giant life time, i.e. a factor ∼ 100 – black hole binaries with an unevolved
companion which doesn’t fill its Roche lobe. This has obvious consequences for the
estimated birth rate of black-hole binaries.

And finally, the Wide Field Camera on board of the BeppoSAX X-ray satellite
has discovered relatively dim X-ray transients, with peak luminosities ≤ 1037 erg/s,
thanks to its unique combination of a large field of view and small angular separation.
Most of these dim transients are bursters, i.e. neutron stars, which confounds the
recent speculations that the vast majority of X-ray transients with low-mass donors
are black hole systems.

9.1.27 X-ray sources in globular clusters

While one can assume in the galactic disk that the two stars in a binary evolved
from their progenitors in the same binary, this need not be true in the dense core
of a globular cluster. In the core, the stars may be so closely packed that encoun-
ters between the binary and other cluster stars become an important factor in its
development. Routes of binary evolution are thus opened that are not available to
binaries in the galactic disk.

That something special is happening in globular clusters is obvious from the
census of X-ray sources in our Galaxy. Some ten percent of the X-ray binaries that
we know are located in globular clusters, even though the clusters only contain about
10−4 of the number of stars of our Galaxy. A similar situation holds for the nearby
galaxy M31, in which about 20 out of several hundred X-ray sources are located
in globular clusters. Recycled radio pulsars are also present in globular clusters in
larger numbers than expected from simply scaling with total numbers of stars. In
the cluster 47 Tuc alone, 10 such pulsars have been discovered.

The observation that the X-ray sources are located especially in the clusters with
the densest cores points to close encounters between stars as the physical mecha-
nism for the formation of binaries with neutron stars. Two mechanisms have been
proposed: tidal capture of neutron stars by ordinary stars in a two-body interaction,
and the exchange of an ordinary star in a binary by a neutron star in a three-body
interaction.

9.1.28 Tidal capture

The basic principle of tidal capture can be understood with a simple calculation:
consider a neutron star with mass m and velocity v at large distance (‘infinity’)
relative to a target star with mass M and radius R. The relative kinetic energy Ek
of the two stars is given by

Ek =
1

2

mM

m+M
v2 (9.48)
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As the neutron star closes in on the target star, it causes this star to deform. The
height h of the bulge, and its mass mt can be estimated for distance d with

h ' m

M

R4

d3
; mt ' k

h

R
M ' k(

R

d
)3m (9.49)

where k is the apsidal motion constant, which depends on the central condensation
of the star, and indicates how easy it is to deform the star (see, e.g., Schwarzschild,
Structure and evolution of the stars, 1958). For a star with a deep convective enve-
lope k ' 0.14. Thus the energy Et in the tidal deformation is of order

Et ' mt
GM

R2
h ' k

Gm2

R

(
R

d

)6

(9.50)

If Et > Ek, the two stars cannot escape from one another anymore, and a binary is
formed. This condition can be written:

d ∼< 3R

(
k

0.14

m

M

m+M

2M�

R�
R

)1/6(
10km s−1

v

)1/3

(9.51)

Because of the strong dependence of Et on d, this rough estimate is in fact pretty
accurate, as more detailed calculations confirm.

The initial binary orbit is highly eccentric, with e ∼< 1, and with a velocity at
periastron close to the escape velocity. Tidal forces are expected to circularize the
orbit, during which process angular momentum is conserved. For an initial perias-
tron velocity less than the escape velocity, the semi-major axis of the circularized
orbit is given by

ac ≤ 2d (9.52)

Thus the final orbital after circularization can have a semimajor axis of up to two
times the capture distance.

The cross section σ for closest passage within distance d follows from conservation
of energy and angular momentum in a Keplerian orbit:

σ = πd2

(
1 +

2G(m+M)

v2d

)
' πd

2G(m+M)

v2
(9.53)

The second term within brackets gives the effects of gravitational focussing. This
term dominates for the small relative velocities between stars in globular clusters,
which justifies the subsequent approximation.

With number densities nc and n for the neutron and target stars, respectively,
the capture rate of neutron stars per unit volume can be written:

Γ = ncnvσ ' 6× 10−11 nc
102pc−3

n

104pc−3

m+M

M�

3R

R�

10km s−1

v
yr−1pc−3 (9.54)

To obtain the formation rate in a cluster, one must integrate Eq. 9.54 over the cluster
volume. To give an idea of the characteristic numbers, a simple example may do. In
a relatively dense core of a globular cluster, nc ∼ 100pc−3 and n ∼ 105pc−3. With
a characteristic core volume of ∼ 1pc3 it follows that a close binary with a neutron
star is formed every 109yr. For an average life time of a bright source of 109yr, we
then expect to see of order 1 X-ray source in such a cluster, in accordance with
observations.
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The capture cross section for a main-sequence star or for a white dwarf is simi-
lar to that for a neutron star. The relative numbers of main-sequence stars, white
dwarfs, and neutron stars captured in a cluster core are therefore roughly propor-
tional to their respective number densities. In the galactic disk, on the other hand,
binaries with white dwarfs and neutron stars rarely arise from binary evolution, as
compared to the formation of single white dwarfs or neutron stars. Therefore, the
fraction of main-sequence stars captured into a binary in globular clusters is small
compared to the fraction of main-sequence stars in binaries in the galactic disk, but
the fraction of white dwarfs and especially of neutron stars captured into binaries
in globular clusters is very high compared to the fraction in binaries in the galactic
disk.

9.1.29 Exchange collisions

For many years no binaries, other than the X-ray sources, were known in globular
clusters. With the improved spatial resolution of recent telescopes and software
techniques, and with the improved accuracy of photometry with CCDs, a growing
number of ordinary binaries is now being discovered. This leads to another way of
getting a neutron star in a binary: when a neutron star approaches a binary to a
distance comparable with the semi-major axis of the binary, the three stars may
temporarily move in complicated orbits around one another. Such a three-body
system is not stable, and one star is ejected at the end, usually the lightest star.
In this way, a neutron star may take the place of an ordinary star in a binary. If
mass is transferred in the binary newly containing a neutron star, an X-ray source
becomes visible. Once the mass transfer stops the neutron star may switch on as
a pulsar. It is also possible that both original members of a binary are exchanged
for a neutron star, and form a binary of neutron stars. The recoil velocity of the
three-body interaction may be large enough to explain that the neutron-star binary
in M15 is some distance away from the cluster core.

The frequency of such encounters is proportional to the number density of bina-
ries in the cluster core, and to the sizes of these binaries. Roughly:

Γ ' 5× 10−10 nc
102pc−3

nbin
102pc−3

m

M�

a

1AU

10km s−1

v
yr−1pc−3 (9.55)

when all three masses are equal to m. The smaller numbers of binaries can be offset
by their larger size, as compared to single stars.

9.1.30 Destruction of stars

In the last years it has been suggested that tidal capture may be less efficient in
forming binaries than previously thought. One reason for this is that the energy
dissipated as the orbit of the neutron star is circularized is comparable to the total
binding energy of the main-sequence star, or of the giant’s envelope. A simple
estimate may serve to illustrate this. Consider a star of mass M and radius R that
captures a compact star of mass m. Immediately after capture, the orbit has a
large semi-major axis ae, as its eccentricity is close to unity. As tidal interaction
circularizes the orbit, angular momentum is conserved, and this allows us to derive
that the radius ac of the circularized orbit is twice the distance of the initial close
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passage, i.e. ac << ae. Thus the energy difference ∆E between the initial, highly
eccentric, and the final circularized orbit is comparable to the binding energy E∗ of
the main-sequence star.

∆E
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−GMm
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(
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5R

)
' 5

6

m

M

R
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(9.56)

The circularization process provides enough energy to destroy the main-sequence
star.

Whether this really happens is currently the subject of debate. If the energy
has to be dissipated very rapidly, it is hard to avoid destruction of the donor. It
has been suggested recently, however, that the energy present in the tidally induced
oscillations of the star can be fed back into the orbit; in the very eccentric orbit,
the energy exchange between (oscillations in) the star and the orbit is chaotic. This
would mean that the star has much more time to dissipate, and thus has a much
better chance to survive.

If the number of encounters between stars is directly proportional to the clos-
est distance (Eq. 9.53), and if capture occurs out to three times the stellar radius
(Eq. 9.51), then one in three captures correspond to a direct collision between the
stars. If a neutron star thus hits a main-sequence star, it will completely destroy it.
Perhaps a disk forms around the neutron star, and if enough matter from this disk
can be accreted, the end result will be a single recycled radio pulsar. About half of
the recycled radio pulsars in globular clusters indeed is single, and this is a possible
way to make them.

If a neutron star directly hits a giant, then the core of the giant and the neutron
star may spiral-in towards one another, leaving a close binary of an undermassive
white dwarf and a neutron star. Two orbital periods of X-ray binaries in globular
clusters have been determined to be very short: one at 11 minutes in NGC 6624
and 20 or 13 minutes in NGC 6712. These are neutron stars accreting from very
low-mass white dwarfs (see Table 9.3).

Collisions can also occur in the temporary triple system formed when a single star
encounters a binary, or in the quadruple system formed in the encounter between
two binaries....

The relative importance of various possible processes to form X-ray binaries and
to recycle pulsars in globular clusters is a subject of active investigation.

9.1.31 Literature

The book Compact stellar X-ray sources, eds. W.H.G. Lewin and M. van der Klis,
gives a good overview of our observational and theoretical knowledge of X-ray bina-
ries. Further useful articles are those by F. Verbunt 1993 Ann.Rev.A.A. 31, 93 on
the formation and evolution of X-ray and radio pulsar binaries; and by E.S. Phiney
and S.R. Kulkarni 1994 Ann.Rev.A.A. 32, 591 on recycled radio pulsars. P. Hut et
al. 1992 PASP 104, 981 give an extensive review on binaries in globular clusters.
Long-term studies of bright X-ray sources are made with the BATSE instrument on
GRO; a beautiful study of pulse periods is given by Bildsten et al. 1997, ApJ Suppl.
113, 367.
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