
Chapter 1

Introduction

This chapter gives a brief historical overview of the study of binaries and in doing
so explains some of the terminology that is still used. It also gives an outline of the
topics that these lecture notes cover.

1.1 History until 19001

It has been noted long ago that stars as seen on the sky sometimes occur in pairs.
Thus, the star list in the Almagest of Ptolemaios, which dates from ±150 AD, de-
scribes the 8th star in the constellation Sagittarius as ‘the nebulous and double
(διπλου̃ς) star at the eye’. After the invention of the telescope (around 1610) it
was very quickly found that some stars that appear single to the naked eye, are
resolved into a pair of stars by the telescope. The first known instance is in a let-
ter by Benedetto Castelli to Galileo Galilei on January 7, 1617, where it is noted
that Mizar is double.2 Galileo observed Mizar himself and determined the distance
between the two stars as 15′′. The discovery made its way into print in the ‘New
Almagest’ by Giovanni Battista Riccioli in 1650, and as a result Riccioli is often
credited with this discovery. In a similar way, Huygens made a drawing showing
that θOrionis is a triple star (Figure 1.1), but the presence of multiple stars in the
Orion nebula had already been noted by Johann Baptist Cysat SJ3 1618.

The list of well-known stars known to be double when viewed in the telescope
includes the following
year star published by comment
1650 Mizar (ζ UMa) Riccioli found earlier by Castelli
1656 θOri Huygens triple, found earlier by Cysat
1685 αCru Fontenay SJ
1689 αCen Richaud SJ
1718 γVir Bradley
1719 Castor (αGem) Pound
1753 61 Cygni Bradley

1This Section borrows extensively from Aitken 1935
2see the article on Mizar by the Czech amateur astronomer Leos Ondra on leo.astronomy.cz
3SJ, Societatis Jesu, i.e. from the Society of Jesus: a Jesuit. Jesuits attached great importance

to education and science, and in earlier centuries trained good astronomers. Examples are the first
European astronomers in China: Ricci (1552-1610) and Verbiest (1623-1688); and the rediscoverers
of ancient Babylonian astronomy: Epping (1835-1894) and Kugler (1862-1929)
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Figure 1.1: Drawing of the Orion nebula made by Huygens (left) compared with a
modern photograph (from www.integram.com/astro/Trapezium.html, right).

All these doubles were not considered to be anything else than two stars whose
apparent positions on the sky happened to be close. Then in 1767 the British
astronomer John Michell noted and proved that this closeness is not due to chance,
in other words that most pairs are real physical pairs. An important consequence is visual

binary
statistical

that stars may have very different intrinsic brightnesses. Michell argues as follows
(for brevity, I modernize his notation). Take one star. The probability p that a
single other star placed on an arbitrary position in the sky is within x degrees from
the first star is given by the ratio of the surface of a circle with radius of x degrees
to the surface of the whole sphere: π × (0.01745x)2/(4π) ' 7.615 × 10−5x2. The
probability that it is not in the circle is 1− p. If there are n stars with a brightness
as high as the faintest in the pair considered, the probability that none of them is
within x degrees is (1− p)n ' 1−np. Since for the first star we also have n choices,
the probability of no close pair anywhere in the sky is (1− p)n×n ' 1− n2p. As an
example, Michell considers β Capricorni, two stars at 3′20′′ from one another, i.e.
x = 0.0555, with n = 230. The probability of one such a pair in the sky due to
chance is 1 against 80.4. With a similar reasoning, Michell showed that the Pleiades
form a real star cluster.

As an aside, we consider the Bright Star Catalogue. For each star in this cata-
logue, we compute the distance to the nearest (in angular distance) other star, and
then show the cumulative distribution of nearest distances in Figure 1.2. (Stars in
the catalogue with the exact position of another star, or without a position, have
been removed from this sample.) We then use a random generator to distribute
the same number of stars randomly over the sky, and for these plot the cumulative
nearest-distance distribution in the same Figure. It is seen that the real sky has an
excess of pairs with distances less than about 0.1◦.

Starting in 1779 William Herschel compiled a list of close binaries. In doing so
he was following an idea of Galileo: if all stars are equally bright, then a very faint
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Figure 1.2: Cumulative distribution of the angular distance to the nearest star for
the stars in the Bright Star Catalogue (only stars with an independent catalogued
position are included), and for the same number of stars distributed randomly over
the sky.

Figure 1.3: Illustration of Galileo’s idea of measuring the parallax from a close pair
of stars. If all stars are equally bright intrinsically, the fainter star is much further
than the bright star, and its change in direction as the Earth (E) moves around the
Sun (S) negligible with respect to that of the bright star. The figure shows the change
in relative position as the Earth moves from E1 to E2 half a year later.

star next to a bright one must be much further away. From the annual variation
in angular distance between the two stars, one can then accurately determine the
parallax of the nearer, brighter star (Figure 1.3). Herschel found many such pairs,
which he published in catalogues. He notes that close pairs can be used to test the
quality of a telescope and of the weather (Herschel 1803).

Herschel first assumed that the double stars are not physical, but soon realised
that most must be physical pairs, and then defined single and double stars (Herschel
1802):

When stars are situated at such immense distances from each other as
our sun, Arcturus, Capella, Sirius, Canobus (sic), Markab, Bellatrix,
Menkar, Shedir, Algorah, Propus, and numerous others probably are, we
may then look upon them as sufficiently out of reach of mutual attrac-
tions, to deserve the name of insulated stars.

If a certain star should be situated at any, perhaps immense, distance
behind another, and but very little deviating from the line in which we see
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the first, we should then have the appearance of a double star. But these
stars, being totally unconnected, would not form a binary system. If, on
the contrary, two stars should really be situated very near each other,
and at the same time so far insulated as not to be materially affected by
the attraction of neighbouring stars, they will then compose a separate
system, and remain united by the bond of their own mutual gravitation
towards each other. This should be called a real double star; and any two
stars that are thus mutually connected, form the binary system which we
are now to consider.
It is easy to prove, from the doctrine of gravitation, that two stars may Chapter 2.1

be so connected together as to perform circles, or similar ellipses, round
their common centre of gravity. In this case, they will always move in
directions opposite and parallel to each other; and their system, if not
destroyed by some foreign cause, will remain permanent.

Apparently unaware of Michell’s earlier work, Herschel computed the probability
of getting a pair of stars with magnitudes 5 and 7, respectively, within 5′′ of one
another, given the numbers of stars with magnitudes 5 and 7. He concluded that
such close pairs are real binaries.

Herschel observed αGeminorum, also known as Castor, between November 1779
and March 1803. The less luminous of the two stars was to the North, and preceding visual

binary
individual

(i.e. with smaller right ascension) during this time, and to the accuracy of Herschel’s
measurements always at the same distance of the brighter star. By taking multiple
observations on the same day, he obtained an estimate of the error with which he
determined the positional angle: under ideal circumstances somewhat less than a
degree. He used an observation by Bradley in 1759, confirmed by Maskelyne in
1760, that the two stars of Castor were in line with the direction between Castor
and Pollux, to extend his time range. Herschel gives his data only in tabular form;
plots of his values are given in Figure 1.4. For a circular orbit, Herschel concludes
from the change between 1759 and 1803 that the binary period is about 342 years
and two months (a modern estimate is 467 yrs; see Table 3.1). Herschel argues that it
is virtually impossible that three independent rectilinear motions of the sun and the
two stars of Castor produce the observed apparent circular orbit. He strenghtens the
argument by considering five other binaries, viz. γ Leonis, εBootis (‘This beautiful
double star, on account of the different colours of the stars of which it is composed’),
ζ Herculis, δ Serpentis and γVirginis.

The list of close pairs of stars increased with time, and some astronomers spe-
cialised in finding them. In Dorpat (Estonia) Frederich Struve systematically scanned
the sky between the North pole and −15◦, examining 120 000 stars in 129 nights
between November 1824 and February 1827. With bigger telescopes, close pairs
were increasingly found. Therefore the lists of binaries became longer and longer,
especially after John Herschel’s suggestion was followed to include individual mea-
surements of angular distance and position angle with the date of observation. Flam-
marion’s selection of only those pairs where orbital motion had been observed was
very helpful.
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Figure 1.4: William Herschel observed the position angle of the two stars in Cas-
tor between 1779 and 1803; and added a measurement by Bradley from 1759, and
discovered the motion of the two stars in the binary orbit.

year astronomer Nbin comment
1779 Mayer 80 faint companions to bright stars
1784 W. Herschel 703
1823 J. Herschel & J. South 380 southern sky
1827 Struve 3110
1874 J. Herschel 10 300 published postumously
1878 Flammarion 819 only pairs with observed binary motion

The micrometer, invented by W. Herschel, was continously improved so that
measurements of angular distances and position angles became increasingly accurate.
Further improvements came with photography, which, as Hertzsprung remarked,
provides a ‘permanent document’. The first binary to be photographed, in 1857 by
Bond, was. . . Mizar.

Methods to derive the orbital parameters from a minimum of 4 observations
were developed by Savary (1830), Encke (1832), and J. Herschel (1833), and many
others. In these methods, an important consideration is to minimize the number of
computations; as a result they are now only of historic interest.

Meanwhile another binary phenomenon had gradually been understood. In 1670
Geminiano Montanari had discovered that the star β Persei varies in brightness.
β Persei is also called Algol, ‘the Demon’, the Arabic translation of Ptolemy’s
Medusa, whose severed head Perseus is holding4. John Goodricke discovered in
1782 that the variation is periodic, with about two-and-a-half days (modern value:
2.867 d), and suggested as one possibility that the darkening was due to the passage eclipsing

binaryof a giant planet in front of the star.
This suggestion was spectacularly confirmed when a third method of studying

4Contrary to what has been asserted, therefore, the name Algol does not suggest that the Arabic
astronomers already knew about the variability.

5



binaries was implemented: the measurement of radial velocity variations. In 1889
Pickering showed that the spectral lines of. . . Mizar doubled periodically, reflecting spectroscopic

binaryDoppler variations due to the orbital motion. In the same year Vogel showed that
the spectral lines of Algol were shifted to the red before the eclipse, and to the blue
after the eclipse, and thereby confirmed the eclipse interpretation of Goodricke. A
binary in which the orbital variation is observed in the spectral lines of both stars,
like Mizar, is called a double-lined spectroscopic binary, if the spectral lines of only single- or

doublelinedone star are visible in the spectrum, we speak of a single-lined spectroscopic binary.
It is now known that the spectroscopic period of Mizar is 20.5 d, much too short

for the two stars that Castelli and Galileo observed through their telescopes and that
Bond photographed. In a visual binary, the brighter star is usually (but confusingly
not always) referred to as star A, the fainter one as star B. The 20.5 d period shows
that Mizar A is itself a binary. Mizar B is also a binary, with a 175.6 d period.

The first catalogue of spectroscopic binaries was published in 1905 by Campbell,
with 124 entries. The catalogue that Moore published in 1924 already had 1054
entries. Methods for deriving the binary parameters were devised by Rambaut in
1891, and by Lehman-Filhés in 1894. Soon the number of orbits determined from
spectroscopy surpassed the number of visually determined orbits. The reason is
straightforward: spectroscopic orbits must be short to be measurable, a visual orbit
long. Therefore a spectroscopic orbit can be found in a shorter time span. Equally
important is that a spectroscopic binary can be detected no matter what its distance
is, whereas the detection of visual orbits requires nearby binaries.

1.2 Lightcurves and nomenclature

As the number of eclipsing binaries grew, different types were discriminated. The
simplest type, often called the Algol type, shows two eclipses per orbit, of which the
deeper one is called the primary eclipse. To interpret this, consider a binary of a primary

eclipsehot and a cold star. When the cold star moves in front of the hot star, the eclipse is
deep, and when the hot star moves in front of the cool star, the eclipse is shallow.

When the two stars in a binary are far apart and non-rotating, they are spherical,
and thus the lightcurve is flat between the eclipses. When the stars are closer they
are deformed under the influence of one another, elongated along the line connecting
the centers of the two stars. Thus the surface area that we observe on earth is largest
when the line of sight to the Earth is perpendicular to the line connecting the two
stars, and this is reflected in a lightcurve that changes throughout the orbit. Such
variations are called ellipsoidal variations. When both stars touch, their deformation ellipsoidal

variationscauses large variations throughout the orbit. To describe the form of the stars under
the influence of one another’s gravity, we must compute the equilibrium surfaces in
the potential of two stars: the Roche geometry. Chapter 3.4

The study of lightcurves showed up more and more details, or complications,
depending on your point of view. . . .

Thus, if one small star disappears for a time behind a bigger star, the minimum
of its eclipse is flat (i.e. of constant flux). Clearly, the length of ingress and egress,
and of the bottom of the eclipse, contain information on the relative sizes of the two Chapter 4.3.1

binary stars. Rapidly rotating stars are flattened, leading to different eclipse forms. rotation
Stars can have variable spots on them, leading to variable lightcurves. Gas can flow spots
from one star to the other, leading to asymmetric lightcurves, and in fact also to gas streams
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Figure 1.5: Various examples of lightcurves, taken from the Hipparcos Catalogue.
One-and-a-half orbital period is shown for each star. The top curve shows two
eclipses per orbit, separated by half the orbital period; the curve of AR Cas shows
two eclipses asymmetrically located over the orbital period. TV Cas shows ellipsoidal
variations, and the contact binary W UMa even more so.

asymmetric radial velocity curves, even in circular orbits. A hot star may heat the heating
facing surface of its companion, thus reducing or even inverting the light changes
when the companion is eclipsed. In the course of the 20th century observations and
interpretation of radial velocity curves and lightcurves were continuously improved.
The variation in interpretation also led to a proliferation of names for various binary
types, usually after a prototype.

So one can encounter statements like ‘AR Lac is an RS CVn variable’, or ‘AR
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Cas is an Algol type variable’. To understand this we make a short digression into
nomenclature. To designate variable stars, Argelander introduced the following, alas nomenclature

variable
stars

rather convoluted, system. The first variable discovered in a constellation Con is
called R Con, the second one S, the third one T and so on to Z. Argelander thought
that variability was so rare, that this would be enough. It isn’t! and one continues
with RR, RS, . . . RZ, SS, ST, . . . SZ to ZZ. After that follows AA, AB, . . . AZ, BB,
BC, . . . BZ, etc. until QZ. The letter J is not used (probably for fear of confusion
with I). After this, one starts enumerating: V335 Con, V336 Con, etc., where V
stands for variable. So we now know that AR Lac is the 71th variable discovered in
the constellation Lacerta.

Thus, eclipsing binaries often have a designation as a variable star. It should
be noted, however, that many variable stars are not binaries; most are pulsating
variables, like RR Lyrae, some are magnetically active stars, like the flare star UV
Ceti, and some are young stars with the forming disk still present, like T Tau.

The number of prototypes after which a class of objects is named is rather large;
in general the World Wide Web is the best place to start finding out what type
of star the prototype is. We will encounter designations of particular classes of
binaries throughout these lecture notes, but two may be mentioned here. A short-
period binary in which one star has evolved into a subgiant or giant, whereas the
other is still on the main sequence, is called an RS CVn type variable. Such binaries RS CVn

typeare often eclipsing, and further stand out through magnetic activity that causes
stellar spots and X-ray emission. When the giant expands, it may at some point
start transferring mass to its companion: it has then become an Algol system. Algol type

The maximum size that a star can have before gas flows over from its surface to
the other star is called the Roche lobe (Roche 18595). When a star fills its Roche Chapter 9

Roche-lobe
overflow

lobe, one expects in most cases that tidal forces have circularized the orbit.
The relatively recent physical classification of a binary does not always agree with

the old lightcurve nomenclature. The statement ‘AR Cas is an Algol type variable’ is
a good example. From Figure 1.5 we see that the orbit of AR Cas is eccentric: thus,
the giant presumably does not fill its Roche lobe in this system, as also indicated by
the absence of ellipsoidal variations, and AR Cas is better classified as an RS CVn
system.

An often used classification of binaries refers to the sizes of the stars with respect
to their Roche lobes. If both stars are smaller than their Roche lobe, the binary is detached,

semi-
detached,
contact

detached. If one star fills its Roche lobe, the binary is semi-detached; if both stars
fill or over-fill their Roche lobes, i.e. the stars touch, the binary is a contact binary,
also called a W UMa system, after its prototype.

It is very difficult to determine from the lightcurve alone whether a star is just
close to filling its Roche lobe, or actually fills it. For this reason, a classification of
lightcurves based on this distinction, i.e. EA for detached, EB for semidetached, and EA,EB,EW
EW for contact, is becoming obsolete. Nonetheless, clearly separated stars are easily
recognisable from the absence of ellipsoidal variations and from the eccentricity of
the orbit (as derived from the unequal time intervals between the primary and
secondary eclipse), e.g. AR Cas in Figure 1.5; and contact binaries from the strong
variation of the lightcurve throughout the orbit, e.g. W UMa in Figure 1.5.

5Roche computed the maximum size of the atmosphere of a comet before the Sun disrupts it!
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Figure 1.6: Lightcurves and radial–velocity curves of the binary GG Lup (B7 V +
B9 V). The orbital period is 1.85 d. In the lightcurves the changes of V and B−V
with respect to a constant comparison star are plotted. In the radial-velocity plot the
theoretical curves have been added to the observed data points for the more massive
star (•, solid line), and for the lighter star (◦, dashed line). After Clausen et al.
(1993) and Andersen et al. (1993).

1.3 The development of modern binary research

In the 20th century more and more data were gathered from binaries, in studies
of the orbits of visual binaries, the velocities of spectroscopic binaries, and the flux
variations of eclipsing binaries. An important development in the 1970s followed
the design of the velocity correlator by Griffin. The standard way to measure a
stellar velocity is to obtain a high-quality, high-resolution spectrum, and then fit the
spectral lines. This requires large amounts of observing time on large telescopes.
The velocity correlator works as follows (Griffin 1967): velocity

correlator
Suppose a widened spectrogram is obtained, through the optics of a spec-
trometer, of, say, a bright K star; and that it is returned after processing
to the focal surface where it was exposed, the telescope being turned to
the same star. If the spectrogram is replaced accurately in register with
the stellar spectrum, all the bright parts of the spectrum will be systemat-
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ically obstructed by heavily exposed emulsion, and rather little light will
pass through the spectrogram. If it is not in register, the obstruction of
the spectrum will not be systematic and the total transmission will be
greater.

The spectrum can be used for the measurement of velocities of other stars, simply
by measuring the transmitted light as a function of the position, regulated with a
screw. With this instrument, radial velocities with an accuracy as good as 1 km/s
can be obtained in relatively short observing times. Slightly modified versions of the
velocity correlator were made for a number of telescopes, and became the work horses
for long-term studies of spectroscopic binaries. For the first time, systematic studies
of the binary frequency in stars near the Sun, and of stars in selected stellar clusters,
became possible. In particular Mayor and his collaborators of the Observatoire de
Genève contributed to these studies with the CORAVEL.

The work horse of choice for many years for the fitting of lightcurves and radial Chapter 3.4.1

Wilson &
Devinney
code

velocities was the computer code developed by Wilson & Devinney. It computed
which surface elements of the two stars in a binary were visible at each orbital phase,
and added the fluxes from these elements. Often, the spectrum of each element was
taken to be a black body spectrum, and colour corrections to stellar spectra were
made only for the summed flux and colours. For spherical stars the analysis is
relatively straightforward, but for a deformed star one must take into account that Chapter 3.3

the measured radial velocity may not reflect the velocity of the centre of mass. An
example of data of high quality, allowing the determination of masses, radii and
luminosities to within a few percent, is given in Figure 1.6.

The theory of binaries came into being with the understanding of the evolution
of stars, the first ideas of which were developed in the 1920s by Eddington. Main
sequence stars evolve into giants, and giants leave white dwarfs upon shedding their
envelope. Massive giants can shed their envelope in a supernovae explosion and leave
a neutron star or a black hole. The study of binaries is an important aspect of the
study of stellar evolution, as it provides accurate masses and radii, for comparison Chapter 4

with stellar evolution. It also may pose questions that stellar evolution has to
answer. A nice example is the Algol paradox.

From stellar evolution, we know that the more massive star in a binary evolves
first. It was therefore a nasty surprise when it was discovered that the giant in Algol
systems is usually less massive than its unevolved companion! This ‘Algol paradox’
was solved by Kuiper (1941), when he realized that mass is being transferred from Algol para-

doxthe giant to its main-sequence companion: apparently enough mass has already
been transferred that the initially more massive star has become the less massive
star by now. The evolution of such binaries under the influence of mass transfer has Chapter 9,10

been described in the 1960s in a number of classical papers by Paczyński and by
Kippenhahn & Weigert. Our understanding of stellar evolution, and by extension,
of the evolution of binaries continues to increase as our understanding of for example
opacities, the equation of state, and nuclear reactions continues to be improved.

From the observational point of view the end of the 20th century saw a number
of very large changes, which have completely transformed astronomy in general, and
the studies of binaries in particular.

Space research made it possible to study stars at previously inaccessible wave-
lengths: ultraviolet and X-rays, and more recently infrared. The shorter wavelengths
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Figure 1.7: Left: orbital motion of Sirius A with respect to a fixed point on the
sky (+, after correction for proper motion). The orbital period is 50.09 yr. Right:
the 13.8 d orbit of 64 Piscium with respect to its companion (•) is resolved with the
Palomar Testbed Optical Interferometer. After Gatewood & Gatewood (1978) and
Boden et al. (1999).

started the wholly new topic of the study of binaries with neutron stars and black
holes, and greatly extended the research of binaries with white dwarfs. Chapter 12

Larger telescopes became possible with the technology of supporting thin mirrors
with a honeycomb structure, thus allowing mirrors of 8 m diameter.

Optical interferometers became possible when technology allowed distances be-
tween mirrors to be regulated with an accuracy better than one-tenth of the wave-
length of observation: i.e. first in the infrared. The technique has been pioneered by
Michelson in the beginning of the 20th century, and allowed Pease (1927) to make
the first interferometric resolution of a binary, viz.. . . Mizar A. In the last decades of
the 20th century, routine interferometric measurements became possible, allowing
milliarcsecond resolution (e.g. Figure 1.7).

Infrared detectors opened up the field of pre-main-sequence stars (Figure 1.8).
CCD cameras allow much more rapid observations, which can be calibrated much

more easily than photographic plates. This allows standard photometry with an
accuracy of 1% or better, and rapid spectroscopy. It also makes the data immediately
available in digital format

Computers allow the handling of much larger data sets, and the correct handling
of them. In earlier studies, fitting of radial velocity data and of visual orbits had
to be done in an approximate fashion, often not allowing realistic error estimates.
With computers, a much more correct way of data analysis and fitting is possible.
The development of software is an important aspect of this: a good example is the
Munich Interactive Data Analysis System MIDAS.

Computers also allow much more detailed computation of the evolution of single
stars, and by extension of binaries. They also allow more accurate computation of
stellar atmosphere models, for comparison with light curves.

The combination of these developments leads to other advances:
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Figure 1.8: Visual orbit and radial velocity curve of the T Tau star 045251+3016 in
the Taurus Auriga star forming region. After Steffen et al. (2001)

Data bases can be constructed much more easily now that the data are often digi-
tal from the start. They require much storage space, and thus large computers. The
World Wide Web allows access to many of these data bases, including standardized
analysis software.

Velocity Correlation for CCD spectra can be done on the computer: the spec-
trum of the object can be compared to a whole library of (observed or theoretical)
stellar spectra, allowing not only the determination of the velocity, but also of stellar
spectrum parameters as temperature, gravity, and metallicity. Radial velocities can
now be measured with an accuracy less than 10 m/s, depending on the stellar type.

Lightcurve fitting. With the faster computers today it is possible to fit a stel-
lar spectrum directly to each surface element; this is important because it allows
correct application of limb-darkening. With the more accurate CCD data, more
orbital phases can be studied. With genetic algorithms, all parameters can be fitted
simultaneously.

Visibility fitting. An interferometer measures the interference pattern between
different sources of light, e.g. the two stars in a binary, combined from several aper-
tures, i.e. the separate mirrors of the interferometer. The strength of the interference
is expressed as the visibility and depends on the angular distance between the two
stars, and on the distances between the mirrors of the interferometer. Rather than
first derive the angular distance and position angle of the stars, and then fit these,
one can now directly fit the observed visibilities.

Automated or semi-automated observations have led to an important role of small
telescopes. Typically, a small telescope surveys the sky, and discovered an object
with interesting variability or colour. A followup with a 1 m telescope then may give
a better lightcurve, and if the system is still deemed interesting a radial velocity
curve is obtained with an 8 m telescope. This type of observations has led to the
determination of accurate masses and radii of very-low-mass stars and of brown
dwarfs. Chapter 4.3
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Figure 1.9: Distribution of orbital periods (left) and mass ratios (right) of O stars as
observed (i.e. not corrected for selection effects). Spectroscopic binaries are indicated
with gray, visual binaries with white, and speckle binaries with black histograms.
After Mason et al. (1998)

1.4 These lecture notes

This Lecture Course is set up as follows. First we derive the relative orbit of two
stars under the influence of their mutual gravitation (Chapter 2), and then we derive
the visual orbit, the radial velocity curve, and the eclipse lightcurve for a binary
observed from Earth (Chapter 3). We briefly indicate how observations can be fitted
to these theoretical curves. In these chapters we assume perfectly spherical masses.
In Chapter 4 we show how parameters of binaries are derived from the observations,
and discuss a number of interesting cases. In Chapter 5 we discuss perturbations:
how a star becomes non-spherical under the influence of its companion, how this
affects the observed orbital variations of flux and velocity, and how the deformation
affects the orbit.

In Chapter 6 we discuss a special binary: the Earth-Moon binary planet. Even
though some of the properties of a binary of (mostly) solid objects differ from those
of a binary of gaseous stars, some of the results derived in this Chapter apply to
binaries in general. For Chapters 7 and 8, on the evolution of a binary under the
influence of tidal forces, we use two articles by Piet Hut.

In Chapter 9 we start discussing interacting binaries, in which mass is (or has
been) transferred from one star to the other. We discuss the stability of mass transfer
and derive the effects of mass transfer on the evolution of the orbit. In Chapter 10
we discuss binaries in which mass is tranferred in different evolutionary stages of the
mass donor: the main sequence and the first giant branch. In Chapter 11 we discuss
rapid changes of a binary, due to a supernova explosion or due to one star entering
the envelope of its companion star. In Sections 12 and 13 we discuss binaries with
compact objects.

13



1.5 Exercises

The following sites may be useful:
general information on astronomical objects simbad.u-strasbg.fr this site also
has links to catalogues.
popular site on stars www.astro.uiuc.edu/∼kaler/sow/
reference search adsabs.harvard.edu/abstract service.html

Exercise 1. Use the Web to find the Bayer names for the stars Markab, Algorah
and Propus mentioned in the quotation on page 3 from Herschel.

Exercise 2. Use SIMBAD and the Hipparcos Catalogue to find the distance to
Mizar. Noting that Galileo measured the distance between Mizar A and B as 15′′,
give a rough estimate of the orbital period.

Exercise 3. Get the pdf-file of the paper in which Herschel gives his measure-
ments of the orbit of Castor AB; and of the paper in which Griffin explains the
velocity correlation method.

Exercise 4. Confirm from the lightcurves of GG Lup (Figure 1.6) that the pri-
mary eclipse is the eclipse of the hotter star.

Exercise 5. Consider a binary of two O stars, each with a mass of 20M�.
The nearest O stars are at about 250 pc. With an angular resolution of 0.1′′ and a
radial velocity accuracy of 5 km/s, determine the minimum period for studying this
binary as a visual binary, and the maximum period for studying its radial-velocity
curve. Assume that a reliable study requires an amplitude 5 times bigger than
the measurement accuracy. Compare the results with Figure 1.9. How do the limits
change when the accuracy is improved by a factor 100 (as has happened since 1980)?
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Chapter 2

The gravitational two-body
problem

In this chapter we derive the equations that describe the motion of two point masses
under the effect of their mutual gravity, in the classical Newtonian description.

2.1 Separating motion of center of mass and rel-

ative orbit

Suppose we have two masses, M1 at position ~r1 and M2 at position ~r2. The equations
of motion for the two bodies are

M1 ~̈r1 = − GM1M2

|~r1 − ~r2|2
~e12 (2.1)

M2 ~̈r2 = +
GM1M2

|~r1 − ~r2|2
~e12 (2.2)

where a dot · denotes a time derivative, and where ~e12 is a vector of unit length in
the direction from M2 to M1.

We now define two new coordinates, one denoting the center of mass:

~R ≡ M1~r1 +M2~r2

M1 +M2

(2.3)

and one the vector connecting the two masses:

~r ≡ ~r1 − ~r2 (2.4)

Adding equations 2.1 and 2.2 gives

M1 ~̈r1 +M2 ~̈r2 = 0 ⇒ ~̈R = 0 (2.5)

which implies that the center of mass has a constant velocity:

~̇R = constant vector (2.6)

Dividing Eqs. 2.1 and 2.2 byM1 andM2, respectively, and subtracting the results,
one obtains

~̈r1 − ~̈r2 = −
(

1

M1

+
1

M2

)
GM1M2

|~r1 − ~r2|2
~e12 ⇒ µ~̈r = − GM1M2

r3
~r (2.7)
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Figure 2.1: Relation between the relative orbit (left) and absolute orbits (right) of a
binary, in this case Sirius, as expressed by Eq. 2.9.

where we have introduced the reduced mass:

µ =
M1M2

M1 +M2

(2.8)

We have now split the equations of motion 2.1 and 2.2 into an equation 2.6 for
the motion of the center of mass, and an equation 2.8 for the motion of the vector
connecting the masses. To see how the vectors for the masses ~r1 and ~r2 can be
obtained once we have solved Eq. 2.7, we solve Eqs. 2.3 and 2.4 for them:

~r1 = ~R +
M2

M1 +M2

~r ; ~r2 = ~R− M1

M1 +M2

~r (2.9)

From this equation we learn that the orbits of M1 and M2 with respect to the
center of mass have the same form, and that the sizes of the orbits are inversely
proportional to the masses.

Consider the angular momentum of a particle with mass µ:

~L ≡ µ~r × ~̇r = constant vector (2.10)

where× denotes the outer product. That the angular momentum is constant, follows
from its time derivative, noting that the force is along the line connecting the masses,
~r ‖ ~̈r (Eq. 2.7):

~̇L = µ
(
~̇r × ~̇r + ~r × ~̈r

)
= 0 (2.11)

Thus the angular momentum vector ~L is conserved, and has a fixed direction,
perpendicular to both ~r and ~̇r. This implies that the orbital plane of both masses
is fixed, perpendicular to the angular momentum vector. We can therefore describe
the motion of the masses with two coordinates, in this plane. For these coordinates
we choose cylindrical coordinates r and φ, which lead to

~̇r = ṙr̂ + rφ̇φ̂ and ~̇r 2 = ṙ2 + r2φ̇2 (2.12)
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Figure 2.2: Illustration of Eq. 2.12; ~v ≡ ~̇r.

with r̂ the unit vector in the direction of ~r and φ̂ the unit vector perpendicular
to ~r (and in the orbital plane). For the angular momentum we obtain in these
coordinates:

~L = rr̂ × µ
(
ṙr̂ + rφ̇φ̂

)
= µr2φ̇

(
r̂ × φ̂

)
(2.13)

and for its scalar length:
L = µr2φ̇ (2.14)

The total energy of the two masses is given by the sum of the kinetic and potential
energies:

E =
1

2
M1 ~̇r1

2 +
1

2
M2 ~̇r2

2 − GM1M2

r
(2.15)

By substituting the time derivatives of ~r1 and ~r2 after Eq. 2.9 we can rewrite this as

E =
1

2
(M1 +M2) ~̇R 2 +

1

2
µ~̇r 2 − GM1M2

r
(2.16)

Thus the total energy can be written as the kinetic energy derived from the motion
of the center of mass, and the kinetic and potential energy in the relative orbit.

2.2 The relative orbit

To solve the relative orbit, we first write down the energy and angular momentum
of the relative orbit per unit of reduced mass:

ε ≡ Ebin

µ
≡ 1

2
(ṙ2 + r2φ̇2)− G(M1 +M2)

r
(2.17)

l ≡ L

µ
= r2φ̇ (2.18)

Both ε and l are constants of motion. We now use Eq. 2.18 to eliminate φ̇ from
Eq. 2.17, and find

ε =
1

2
ṙ2 − G(M1 +M2)

r
+

1

2

l2

r2
(2.19)

We first investigate this equation qualitatively by defining an effective potential

ε =
1

2
ṙ2 + Veff where Veff ≡ −

G(M1 +M2)

r
+

1

2

l2

r2
(2.20)

The effective potential depends on the angular momentum l. Depending on the total
energy ε we can have various types of orbits (see Figure 2.3).
1) ε > 0: the particle moves from r =∞ to a minimal distance, and back out again.
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Figure 2.3: Possible orbits; the values are for l = 2GM where M ≡M1 +M2

It has a finite radial velocity ṙ at r =∞.
2) ε = 0: idem, with radial velocity equal to zero at r =∞.
3) ε < 0: the orbit is bound, between rmin and rmax

At the minimum of Veff(r), which may be found from ∂Veff/∂r = 0, the orbit is
circular. Thus, for each given angular momentum l, the circular orbit is the orbit
with the smallest total energy. No matter how small the angular momentum l is, a
circular orbit is always possible. Another property of the classical solution is: the
larger the energy, the closer to the origin the particle can come, but it can never
ever reach the origin, as long as l > 0.

To solve the orbit analytically, we write r as a function of φ:

dr

dφ
=
ṙ

φ̇
=
r2

l

(
2ε+

2G(M1 +M2)

r
− l2

r2

)1/2

(2.21)

Next, we substitute u = 1/r to find

(
du

dφ
)2 =

1

l2
(2ε+ 2G(M1 +M2)u− l2u2) (2.22)

the solution of which is given by

u =
1

r
=

1

p
(1 + e cos[φ− φo]) ≡

1

p
(1 + e cos ν) (2.23)

with
1

p
=
G(M1 +M2)

l2
and 2ε =

[G(M1 +M2)]2

l2
(e2 − 1) (2.24)

(verify! by entering the solution in Eq. 2.22). Here φo is an integration constant;
we will see below that it corresponds to periastron. Because φo is constant, we have
ν̇ = φ̇.

Eq. 2.23 is the equation for a conic section: in the Newtonian description of
gravity, the relative orbit of a two masses in their mutual gravitational fields is
always a conic section.
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2.2.1 Some properties of elliptic motion

We will now show that, in the case of a bound orbit, when ε < 0, the orbit corre-
sponds to an ellipse, with eccentricity e < 1. The shortest distance, periastron, is
reached for ν = 0 at r = p/(1 + e), and the longest distance, apastron, for ν = π
at r = p/(1 − e). The sum of the periastron and apastron distances is the major
axis of the ellipse, 2a, and from this we find p = a(1− e2). p is called the semi-latus
rectum, a the semi-major axis of the ellipse. Entering this result in Eqs. 2.24 and
2.23 we obtain

l2 = G(M1 +M2)a(1− e2) and ε = − G(M1 +M2)

2a
(2.25)

and

r =
a(1− e2)

1 + e cos ν
(2.26)

We write the relative velocity as v2 ≡ ṙ2 + r2φ̇2. We combine Eqs. 2.17 and 2.25,
noting that the total orbital energy ε is constant, to find

v2 = G (M1 +M2)

(
2

r
− 1

a

)
(2.27)

For peri- and apastron we get

rp = a(1− e) and ra = a(1 + e) (2.28)

Hence with Eq. 2.27 the velocities vp and va at peri- and apastron are

vp =

√
G(M1 +M2)

a

1 + e

1− e
; va =

√
G(M1 +M2)

a

1− e
1 + e

(2.29)

(These velocities can also be derived directly by comparing the energy Eq. 2.17 and
angular momentum Eq. 2.18 at peri- and apastron.)

Now draw a coordinate system with the origin (C in Fig. 2.4) in the middle of
the major axis of the ellipse, with the X-axis along the major axis, and the Y -axis
along the minor axis. In this coordinate system we have from Eq. 2.26 and 2.28:

X = ea+
a(1− e2) cos ν

1 + e cos ν
=
a(e+ cos ν)

1 + e cos ν
and Y =

a(1− e2) sin ν

1 + e cos ν
(2.30)

For X = 0 we have cos ν = −e, and entering this in the equation for Y , we find the
minor axis b:

b = a
(
1− e2

)1/2
(2.31)

With these results it is now easily shown that(
X

a

)2

+

(
Y

b

)2

= 1 (2.32)

i.e. the relative orbit is an ellipse.
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Figure 2.4: Left: Drawings of ellipse with center C, focus F, periastron P, and
apastron A. Right: Detail to illustrate derivation of equation of Kepler (Eq. 2.36).

2.2.2 The equation of Kepler

Having established the form of the orbit r(ν), we wish to know the position as a
function of time r(t).

We start by deriving the second law of Kepler, that the radius vector ~r covers
equal area in equal times. Consider an infinitesimal time interval ∆t. The area ∆O
covered in this interval is ∆O = (1/2)|~r × ~̇r∆t|. Thus

dO

dt
=

1

2
|~r × ~̇r| = 1

2
|~r × (ṙr̂ + rφ̇φ̂)| = l

2
≡ L

2µ
= constant (2.33)

This is the second law of Kepler, also called the law of equal areas. By integrating
we find that the area covered increases linearly with time:

O(t) = O(0) +
L

2µ
t (2.34)

We define in Figure 2.4 semi-major axis AC=CP= a, and semi-minor axis HC=CK=
b. The foci of the ellipse are F at X = ea and G at X = −ea. The periastron P has
a distance to the focus F given by PF≡ rp = (1− e)a; the apastron A has a distance
to focus F given by AF≡ ra = (1 + e)a. If we have a point S on the ellipse, then
the sum of the distances of this point to the foci is GS + SF = 2a.

The motion of the point S along the ellipse in a Kepler orbit is such that the
area covered by FS, the area FPS shaded grey in Fig. 2.4 left, increases linearly
with time, according to Eq. 2.34. We add to the ellipse a circle around the center
C with radius a (Figure 2.4 right), and note from Eq. 2.32 that this circle can be
found from the ellipse X, Y by multiplying for each X the corresponding Y value
with a/b. Draw a line perpendicular to the semi-major axis through S, and call the
point where this line cuts the semi-major axis T and where it cuts the circle Q. Then
QC= a and QT/ST= a/b. The area FPQ in the circle (indicated grey in Fig. 2.4
right) is a/b times the area FPS in the ellipse (indicated grey in Fig. 2.4 left), and
thus also increases linearly with time. We write this as:

M

2π
≡ Area(FPS)

Area(ellipse)
=

Area(FPQ)

Area(circle)
=

Area(CPQ)− Area(CFQ)

πa2
(2.35)
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where M increases linearly with time. Now write angle QCF as ε. The area of the
circle sector is Area(CPQ)= 0.5εa2. With QC= a we have QT= a sin ε, and the
area of triangle CFQ= 0.5CF×QT= 0.5ae× a sin ε = 0.5a2e sin ε. The last equality
of Eq. 2.35 can then be written:

M

2π
=

0.5εa2 − 0.5a2e sin ε

πa2
⇒M = ε− e sin ε (2.36)

This is Kepler’s equation. M is called the mean anomaly, and ε the eccentric
anomaly. To express r ≡FS in terms of ε we note that ST= (b/a)QT= b sin ε, thus
ST2 = b2 sin2 ε = a2(1− e2) sin2 ε where we use Eq. 2.31, and therefore

r2 ≡ FS2 = ST2 + TF2 = ST2 + (CF− CT)2 = a2 (1− e cos ε)2 (2.37)

hence
r = a(1− e cos ε) (2.38)

To express ν as a function of ε we combine Eqs. 2.26 and 2.38 into

1− e cos ε =
1− e2

1 + e cos ν
⇒ tan

ν

2
=

√
1 + e

1− e
tan

ε

2
(2.39)

(Since the derivation of the right hand side equation is somewhat convoluted we give
the steps explicitly: From the left equation, we have

cos ν =
cosε− e

1− e cos ε
hence sin ν =

√
1− e2sinε

1− e cos ε
(2.40)

Thus, with Eq. 2.50,

tan
ν

2
=

√
1− cos ν

1 + cos ν
=

√
(1 + e)(1− cos ε)

(1− e)(1 + cos ε)
(2.41)

from which Eq. 2.39 follows.)

2.3 Exercises

Exercise 6. The general definition of the angular momentum is

~L =

∫
V

ρ(~r × ~v)dV (2.42)

In the case of two point masses, this can be written

~L = M1~r1 × ~̇r1 +M2~r2 × ~̇r2 (2.43)

Show that this can be written also as

~L = (M1 +M2)~R× ~̇R + µ~r × ~̇r (2.44)

so that the angular momentum can be split, analogously to the energy, in the angular
momentum of the center of mass and the angular momentum in the binary.
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Exercise 7. Start from the second law of Kepler, Eq. 2.34, to derive his third
law: (

2π

P

)2

=
G(M1 +M2)

a3
(2.45)

Exercise 8a. Geometrical interpretation of the semi-latus rectum. In Figure 2.4
draw a line from the focal point F to the ellipse, perpendicular to the major axis.
This line is called the semi-latus rectum. Show that its length is a(1− e2).
b. Prove the statement that for any point S on the ellipse, the sum of the distances
to the two focal points equals the major axi: GS+SF=2a. (Hint: write GS in terms
of a, e and ε)

Exercise 9: an alternative derivation for the velocities vp and va at peri- and
apastron. The orbital angular momentum and the orbital energy are given by
Eq. 2.25. Use the equality of energy and angular momentum at periastron with
energy and angular momentum at apastron, to write two equations for vp and va,
and then solve for these two velocities.

Mathematical intermezzo: adding angles, half-angles

We reiterate some useful goniometric relations.

eix = cosx+ i sinx

eiy = cos y + i sin y

ei(x+y) = eixeiy

hence (2.46)

cos(x+ y) = cosx cos y − sinx sin y (2.47)

sin(x+ y) = cosx sin y + sinx cos y (2.48)

In the case where x = y we have

cos(2x) = cos2 x− sin2 x = 1− 2 sin2 x = 2 cos2 x− 1 (2.49)

from which we have

2 sin2 x = 1− cos(2x), 2 cos2 x = 1 + cos(2x) ⇒ tan2 x =
1− cos(2x)

1 + cos(2x)
(2.50)
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Mathematical intermezzo: projection and rotation

In general, a vector ~r in a plane can be written as consisting of components along
the X and Y axes: X = r cosφ and Y = r sinφ. If we wish to switch from one
coordinate system X, Y to another one X1, Y1, we construct a rotation matrix, as
follows. Suppose the new coordinate system is at angle −θ from the previous one.
We are looking for a matrix for which(

X1

Y1

)
=

(
R11 R12

R21 R22

)(
X
Y

)
(2.51)

The unit vector along the X axis is projected on the new coordinate axes as
X1 = cos θ and Y1 = sin θ. Therefore we take R11 = cos θ and R21 = sin θ. The unit
vector along the Y axis is projected on the new coordinate axes as X1 = − sin θ and
Y1 = cos θ. Therefore we take R12 = − sin θ and R22 = cos θ. Herewith we have
constructed the rotation matrix R(−θ).

Consider the vector r which we want to express in a new coordinate system,
rotated −θ with respect to the original system. Eq. 2.51 becomes:(

r cosφ1

r sinφ1

)
=

(
cos θ − sin θ
sin θ cos θ

)(
r cosφ
r sinφ

)
(2.52)

executing the multiplications, we have

r cosφ1 = r(cos θ cosφ− sin θ sinφ) = r cos(θ + φ)

and
r sinφ1 = r(sin θ cosφ+ cos θ sinφ) = r sin(θ + φ)

Note that the rotation does not change the length of the vector r. Hence, perhaps
not surprisingly, we see that a rotation of −θ of the coordinate system corresponds
to the addition of θ to the position angle of the original vector.

In 3-d space, we may choose the Z-axis perpendicular to the plane we just
described, and the rotation along −θ now is written as a rotation around the Z
axis:

Rz(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (2.53)

Thus, we see the close connection between projecting a vector and a rotation of the
coordinate system.

Analogously, a rotation over −θ around the X-axis can be shown to be given in
3-d coordinates by:

Rx(−θ) =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2.54)
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Chapter 3

Observing binaries

In this chapter we first derive the equation for the visual orbit of a binary, and briefly
describe how it can be fitted. We then derive the radial velocities of the binary
members, and describe how they are fitted. The visual orbit and radial velocities
provide information about the masses of the stars. Eclipsing binaries allow us to
obtain observational information on the radii of the stars. If the stars are spherical,
the analysis of the eclipse is relatively straightforward. However, the mutual gravity
of the stars leads to non-sphericity. In the last Section of this chapter we discuss
the Roche geometry which describes the surfaces of stars in a binary, and briefly
explain how this affects the analysis of eclipse observation. The non-sphericity of
the stars also implies that their gravity deviates from the 1/r2-law. The discussion
of this deviation and its effect on the binary orbit are deferred to a later Chapter.

3.1 Projecting the binary orbit

Some angles involved in converting the binary orbit into the observed visual orbit are
illustrated in Figure 3.1. To obtain the position of the star in the plane perpendicular
to the line of sight, we perform two subsequent rotations. The angle ω is the angle
between the long axis of the ellipse, and the line o which is the intersection of the
orbital plane with the plane perpendicular to the line of sight. We project r onto
o (the new X-axis) and l (the new Y axis). As derived in the intermezzo, this
corresponds to adding ω to the position angle ν. We then rotate around o, the new
X axis, over the inclination angle −i.

The coordinate system in the plane of the sky has o as its X-axis and m as its
Y -axis. It is customary to take the X-axis towards the North, and thus we require
a third rotation, over the angle Ω between o and the North-South line, to obtain the
final coordinates. In Equation: x′

y′

z′

 = Rz(−Ω)Rx(−i)Rz(−ω)

 r cos ν
r sin ν

0

 =

Rz(−Ω)Rx(−i)

 cosω − sinω 0
sinω cosω 0

0 0 1

 r cos ν
r sin ν

0

 =
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Figure 3.1: Illustration of the planes involved in observing binary motion. C is the
center around which the star moves. n is the normal to the binary plane, passing
through C; the celestial plane is drawn through C, perpendicular to the line of sight
(�). The angle between n and � is the inclination i, which thus is also the angle
between the two planes. l is the line through C, perpendicular to the intersection o
of the two planes, in the orbital plane. m is the line through C perpendicular to the
intersection, in the celestial plane. Thus, l, �, n and m are all in one plane, the
plane through C perpendicular to the intersection. The vector r connects C with the
location of the star, the projection in the orbital plane of r on l is CP , the projection
of CP on m is CQ, and PQ ≡ z is the distance of the star to the celestial plane.
The angle between r and the semi-major axis is ν (zero at periastron), the angle
between the intersection and the semimajor axis is ω.

Rz(−Ω)Rx(−i)

 r cos(ω + ν)
r sin(ω + ν)

0

 =

Rz(−Ω)

 1 0 0
0 cos i − sin i
0 sin i cos i

 r cos(ω + ν)
r sin(ω + ν)

0

 = Rz(−Ω)

 r cos(ω + ν)
r sin(ω + ν) cos i
r sin(ω + ν) sin i


Computationally, it is easier to write the third rotation on the left hand side of

this equation, i.e. to multiply the last equality left and right with Rz(Ω). This leads
to: cos Ω sin Ω 0
− sin Ω cos Ω 0

0 0 1

 ρ cos θ
ρ sin θ
z

 =

 ρ cos(θ − Ω)
ρ sin(θ − Ω)

z

 =

 r cos(ω + ν)
r sin(ω + ν) cos i
r sin(ω + ν) sin i


So finally, we can wrap up the computation, by writing the last equations as

x = r cos(ω + ν) (3.1)
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Figure 3.2: Modern computation of the orbit of Castor B relative to Castor A. The
positions in various years are indicated. Compare with Herschel’s observations in
Figure 1.4.

parameter symbol Castor AB
orbital period P 467.0 yr
time of periastron passage T 1958.0
semi-major axis a 6.805′′

eccentricity e 0.343
inclination i 114.5◦

angle periastron/node-line ω 249.5◦

angle North/node-line Ω 41.3◦

Table 3.1: Parameters required to describe a visual orbit, their symbols, and as an
example the values for Castor (from Heintz 1988).

y = r sin(ω + ν) cos i (3.2)

z = r sin(ω + ν) sin i (3.3)

ρ =
√
x2 + y2 (3.4)

θ = Ω + atan
y

x
(3.5)

3.1.1 Computing and fitting the visual orbit

To illustrate the computation of the relative positions of two stars in a binary at
time t, we compute the relative position of Castor B with respect to Castor A at the
time of Herschel’s first observation. We use the orbital parameter as determined by
Heintz (1988), listed in Table 3.1.
Step 1. Herschel’s first observation is from 11 May 1779. Since the period is in
years, we write this as t = 1779.36. We compute the mean anomaly from:

M =
2π

P
(t− T ) (3.6)

and find M = −2.403 radians.
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Step 2. We solve the eccentric anomaly ε from Kepler’s equation Eq. 2.36, to find:
ε = −2.585 radians
Step 3. We compute the radius vector in the orbital plane r and the real anomaly
ν from Eqs. 2.38 and 2.39. Results: r = 8.787′′ and ν = −2.747.
Step 4. We compute the coordinates with respect to the line of nodes, in the plane of
the sky, and from this the radius vector and position angle with respect to the North,
from Eqs. 3.1-3.5. Results: x = −0.324, y = −3.641, ρ = 3.656, θ − Ω = −95.08◦,
hence θ = −53.78◦, equivalent to θ = 306.22◦. The tricky thing here is to obtain
θ −Ω in the right quadrant. If one computes atan(y/x), the answer is the same for
x and y both negative as for x and y both positive, but the quadrant in which the
result lies is not the same!
Step 5. We can now plot the relative position of the two stars. Putting Castor A at
the origin, and noting that the angle θ by definition increases from the North, anti-
clockwise. The relative position can be expressed in the directions of right ascension
and declination, as:

∆α = ρ sin θ and ∆δ = ρ cos θ (3.7)

Note that in the figure, as on the sky, the right ascension increases towards the left.

The inverse problem from plotting a known orbit is to solve the orbital parameter
from a set of observations ∆αi, ∆δi obtained at N times ti. For a set of assumed
values for the orbital parameters listed in Table 3.1 we can compute for each ob-
serving time ti the model values ∆αm(ti) and ∆δm(ti). If the measurement errors in
right ascension and declination at time ti are σα,i and σδ,i respectively, and if these
errors are Gaussian, the quantity to be minimized is:

χ2 =
N∑
i=1

[
(∆αi −∆αm(ti))

2

σα,i2
+

(∆δi −∆δm(ti))
2

σδ,i2

]
(3.8)

In general, this minimization cannot be done directly, but must be done with succes-
sive improvements on an initial trial solution. The solution to the problem consists
of 1) the best parameter values 2) the errors on the parameter values 3) the proba-
bility that the model describes the observed orbit (as given by the probability that
the model would give rise to a χ2 with the observed value or larger).

The minimization provides us with the values for the parameters listed in Ta-
ble 3.1. Of these parameters, T , i, ω and Ω are not essential for the binary itself,
but only indicate relations with the direction to and time measurement on Earth.
Relevant parameters for the binary are the orbital period P , the eccentricity e and
the semi-major axis a. From the visual orbit alone, a is only known in angular units.

If the orbits of both stars can be measured separately with respect to the sky
(after correction for parallax and proper motion), then from Eq. 2.9 we see that the
ratio of the semi-major axes gives the ratio of the masses: a1/a2 = M2/M1.

If the distance to the binary is known, for example because its parallax is mea-
sured, or because it is in a star cluster, we can compute the semi-major axis in cm,
and thus from Kepler’s third law Eq. 2.45 derive the total mass.

If both distance and mass ratio are known we can derive the masses M1 and M2

separately.
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3.2 Radial velocities

From Eq. 3.3 we have the distance z of the star to the plane perpendicular to the line
of sight. The derivative of z corresponds to (a component of) the radial velocity:

ż = ṙ sin(ω + ν) sin i+ rν̇ cos(ω + ν) sin i

To rewrite this, we first use the angular momentum, as expressed in Eq. 2.18, and
then rewrite it, using Eqs. 2.25 and 2.26:

rν̇ = rφ̇ =
l

r
=

√
G(M1 +M2)

a(1− e2)
(1 + e cos ν) (3.9)

Next, we take the time derivative of Eq. 2.26 and rewrite it with Eq. 3.9:

ṙ =
a(1− e2)

(1 + e cos ν)2
e sin ν ν̇ =

a(1− e2)

(1 + e cos ν)2
e sin ν

l

r2
=

√
G(M1 +M2)

a(1− e2)
e sin ν (3.10)

Entering these results Eq 3.9 and 3.10 into the equation for ż, we find

ż =

√
G(M1 +M2)

a(1− e2)
sin i [cos(ω + ν) + e cos ν cos(ω + ν) + e sin ν sin(ω + ν)]

=

√
G(M1 +M2)

a(1− e2)
sin i [cos(ω + ν) + e cosω] ≡ K [cos(ω + ν) + e cosω] (3.11)

where the last equality defines K.
In practive, an observed velocity does not belong to the reduced mass, but to

one of the two stars. Let us for the moment consider that the star whose radial
velocity is measured is labeled 1. We define

K1 ≡
a1

a
K =

√
G(M1 +M2)

a3(1− e2)
a1 sin i⇒ a1 sin i =

(
P

2π

)
(1− e2)1/2K1 (3.12)

where we have further used that a1/a = M2/(M1 + M2) (see Eq. 2.9). With K1 we
derive a useful quantity, called the mass function for star 1. Multiply the third law
of Kepler Eq. 2.45 left and right with (a1 sin i)3/G, and use Eq. 3.12 to find the mass
function f(M1):

f(M1) ≡ M3
2 sin3 i

(M1 +M2)2 =
P

2πG
K3

1

(
1− e2

)3/2
(3.13)

From Eq. 3.11 we see that the parameters K, e and ω define the radial velocity
curve. K defines the amplitude of the velocity curve, and e (through the non-
linearity of ν with time) and ω (as a phase angle) define the form of the curve. In
an observed binary, the motion of the center of mass must be added to the average
velocity. To visualize how the average radial velocity can differ from zero, consider
an eccentric binary with the major axis in the plane of the sky. There are two
possibilities: the maximum velocity away from us is at periastron (or at apastron),
then the maximum velocity towards us is at apastron (or at periastron), and thus
the average of these two is away from us (towards us).
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If both velocity amplitudes K1 and K2 are measured, we have the mass ratio, as
can be seen from dividing the two mass functions Eq. 3.13 and its analogon for star
2: M1/M2 = K2/K1. We also have lower limits to each of the two masses M1 and
M2, from the mass functions. But further than this one cannot go.

If the inclination is known and both amplitudes then we can solve both masses
separately, as well as the semi-major axis.

3.3 Computing eclipses

For the moment we assume that both binary stars are spherical. A spherically
symmetric star gives the same flux no matter from which direction it is observed,
provided it is not eclipsed. For this reason, it is relatively easy to compute its eclipse
by a spherical companion.

Before we do this, we reiterate some basic equations that describe the flux leaving
a stellar surface. We start by considering a unit surface of the star; this is sufficiently
small to be considered flat. The energy flux dFλ(θ) at wavelength λ leaving the
surface under an angle θ with the normal to the surface is given by

dFλ(θ) = Iλ(θ) cos θdω = Iλ(θ) cos θ sin θdθdφ (3.14)

We obtain the flux leaving the unit surface by integrating over the spatial angle dω;
due to symmetry, the integration over φ gives 2π, and we obtain:

Fλ = 2π

∫ π/2

0

Iλ(θ) cos θ sin θdθ ≡ 2π

∫ 1

0

Iλ(µ)µdµ (3.15)

where we have defined µ ≡ cos θ. Integrated over the stellar surface, we obtain the
(monochromatic) luminosity of the star

Lλ = 4πR2Fλ (3.16)

Now consider the star from a large distance, and compute the flux fλ through a
unit surface at that distance. The light reaching us from the center of the star leaves
its surface along the normal, but the light reaching us from positions away from the
center leaves the star at an angle to the surface. A circle at projected distance
r = R sin θ from the star center has a projected surface 2πrdr = 2πR2 sin θ cos θdθ,
and at large distance d subtends a spatial angle dω = 2π(R/d)2 sin θ cos θdθ. The
radiation from this circle leaves the stellar surface under an angle θ. From the
definition of the intensity I according to Eq. 3.14, we can write the flux fλ as

fλ =
2π

d2

∫ R

0

rIλ(r)dr = 2π

(
R

d

)2 ∫ π/2

o

Iλ(θ) cos θ sin θdθ = Fλ

(
R

d

)2

(3.17)

From this we see that energy is conserved as the flux travels from the stellar surface
to distance d:

Lλ = 4πR2Fλ = 4πd2fλ (3.18)

This assumes, of course, that there is no interstellar absorption; for the moment we
will continue to make this assumption.

A stellar atmosphere model provides the flux Fλ leaving a unit surface of the
star. The model depends on 1) the effective temperature 2) the gravity at the
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parameter symbol
radius of star 1 R1

effective temperature of star 1 T1

radius of star 2 R2

effective temperature of star 2 T2

Table 3.2: Parameters added to those of Table 3.1 for the study of an eclipsing binary.
In principle the metallicity of both stars should be added; however, this are usually
determined not from the eclipses, but from the out-of-eclipse spectra.

stellar surface g ≡ GM/R2, usually expressed as log g 3) the abundances of the
elements. If the whole star is observed, this is sufficient for a description of the
stellar spectrum. When part of the surface is blocked, as in an eclipse, we need the
intensity Iλ(θ) as a function of angle with the normal. These intensities are also
provided by a stellar atmosphere model. The drop of intensity with angle θ is called
limb-darkening, and is caused by the fact that the radiation leaving the star at a
large angle originates in a region closer to the stellar surface, and therefore cooler
than the deeper layer which produces the radiation leaving the stellar surface along
the normal. It is best to use these intensities, tabulated as a function of θ; but
when these are not available (as in many old studies), one can take recourse to an
approximate formula. Often an equation was used of the form

Iλ(µ) = Iλ(1) (a0 + a1µ) (3.19)

or higher order approximations. The constants a0 and a1 in general may depend on
wavelength. For quick estimates one may use the Eddington approximation, which
has a0 = 2/5 and a1 = 3/5. The normalization Iλ(1) must be chosen to give the
correct flux Fλ with Eq. 3.15.

With this background we are ready to compute the eclipse lightcurve. In addition
to the orbital parameters listed in Table 3.1 we now have the parameters listed in
Table 3.2

To compute a lightcurve, one first divides the orbit into a number of time inter-
vals. For each time, one proceeds as follows.

Step 1. Compute the projected distance ρ between the two stars, just as in the
case of the visual binary, with the parameters of Table 3.1.

Step 2. Check, with the parameters from Table 3.2, whether R1 + R2 > ρ. If
not, both stars are seen in full, and the total flux is the sum of the fluxes of the two
stars. If R1 +R2 < ρ the eclipse is in progress, and we must continue.

As an example, Figure 3.3 show the apparent orbit on the sky of a recently
discovered eclipsing brown dwarf, and also the projected distance between the stars
as a function of time.

Step 3. Give the eclipsed star index 1, and the eclipser index 2. Compute for
each r = R1 sin θ which fraction of the ring at r is covered. Some rings (e.g. those
with r < ρ − R2) are wholly visible, others are wholly covered, as illustrated in
Figure 3.4. (For details, see Section 3.3.2.)

Step 4. Finally, integrate Iλ(µ) over the visible part of the star. (Alternatively,
integrate Iλ(µ) over the eclipsed part, and subtract the result from the out-of-eclipse
flux.) The intensity Iλ(µ) is found by looking up the appropriate stellar atmosphere
model, characterized by T1 and log g1 = log(GM1/R1

2). The integral can be done
by dividing the stellar surface in a finite number of (projected) surface rings.
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Figure 3.3: Left: apparent orbit on the sky of the binary brown dwarf 2M
J05352184−0546085 as determined from the radial velocities and eclipse; note that
the angle with North is arbitrarily chosen. In the left-low corner the sizes of the two
stars are indicated. Right: projected distance ρ between the centers of the stars as
a function of time. The sum of the radii of both stars is indicated as a horizontal
dotted line. The eclipses occur where ρ < R1 +R2. (See Stassun et al. 2007)

The effect of limb-darkening is to make the eclipse narrower: at the beginning
of the eclipse (called ingress) and at the end (egress), the change in flux is less for a
limb-darkened atmosphere, and when the center of the star is eclipsed the variation
is stronger in a limb-darkened atmosphere.

In fitting lightcurves, one most often uses data from many orbits, which are
averaged into an average lightcurve. This implies that the orbital period is found
from a separate analysis, and known before the eclipse lightcurves are fitted. Thus,
the separation where the eclipse begins (or ends) directly gives the sum of the two
radii, in units of the semi-major axis. Note that the radii of the stars scale with the
distance, so that R1,2 are only known in angular size, i.e. as R1,2/d. The fluxes of
both stars, as observed on earth, scale with (R1,2/d)2. This implies that the solution
of the lightcurve can only deliver the stellar radii in angular units. The only place
where the stellar masses enter are in the choice of log g for the stellar atmosphere
model; this choice also is best made on the basis of the analysis of the out-of-eclipse
spectrum, and is usually not very sensitive to the stellar mass.

3.3.1 Uniform disk

We first consider the case of constant intensity Iλ(θ) = Iλ = constant. From Eq. 3.15
we find the flux at the surface

Fλ = πIλ (3.20)

and from Eq. 3.17 the flux observed at distance d

fλ = 2π

(
R

d

)2

Iλ(θ)

∫ π/2

o

cos θ sin θdθ = πIλ

(
R

d

)2

(3.21)
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The latter equation could also have been derived by combining Eqs. 3.20 and
3.16.

The uniform disk assumption is often made in conjunction with the assumption
that the emitted spectrum is given by the Planck function:

Bλdλ =
2πhc2

λ5

1

ehc/λkT − 1
dλ ≡ C1

eC2/T − 1
(3.22)

where

C1 = 1.10 106

(
806 nm

λ

)5

watt m−2nm−1; C2 =
806 nm

λ
17850.8 K (3.23)

Note that 806 nm is the effective wavelength of the I filter.

Illustration of the computation of
the eclipsed area when a star with
radius R1 covers part of the star
with radius R2, for distance ρ be-
tween the centers.

Now consider two stars, with radii R1, R2 and uniform intensities Iλ1, Iλ2. Away
from the eclipse, when the projected distance ρ between the stars exceeds the sum
of the radii, the flux observed at distance d is

fλ = πIλ1

(
R1

d

)2

+ πIλ2

(
R2

d

)2

(3.24)

We first consider the case where star 1 eclipses part of star 2, i.e. the circles
outlining both stars intersect in two points (P and Q in Figure 3.3.1). The flux
observed from star 2 is diminished by the eclipsed lenticular surface PVQT; the flux
of star 1 is not affected. The intersection points P,Q are connected by a line which
is a chord in both circles, subtended by angles 2α (from center of star 1) and 2β
(from center of star 2) given by the cosine-rule as:

A ≡ cosα =
ρ2 +R2

1 −R2
2

2ρR1

B ≡ cos β =
ρ2 +R2

2 −R2
1

2ρR2

(3.25)

To compute the eclipsed area we first consider the right hand side of the lenticular
surface, i.e. area PSQT, and in particular the upper half PST. The area of PST may
be computed by subtracting triangle CSP from the circle sector CTP. The area of
the triangle is 0.5R1

2 cosα sinα, the area of the sector α/(2π) times the area πR1
2

of the projected area of star 1. Therefore the right hand part of the lenticular area
is given by

PSQT = 2PST = (α− sinα cosα)R1
2 (3.26)
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Figure 3.4: Various eclipse geometries and fluxes. For three ratios of stellar radii
R2/R1, where R1 is the eclipsed star, the top graphs illustrate the geometry, and the
lower graphs the non-eclipsed flux. The fluxes are computed for a homogenous circle
(f , for I =constant), and for a sphere with Eddington limb darkening (fld). The
latter are shown in blue, and the difference with the homogeneous circle, fld − f ,
is also shown. Note that the fluxes are plotted as a funtion of distance between the
stars, NOT as a function of time.

Analogously we find for the left hand part

PSQV = 2PSV = (β − sin β cos β)R2
2 (3.27)

Finally we express the eclipsed full lenticular area as a fraction of the projected
surface of star 2, πR2

2,

w ≡ PVQT

πR2
2 =

arccos(A)− A
√

1− A2

π

(
R1

R2

)2

+
arccos(B)−B

√
1−B2

π
(3.28)

and obtain the flux during partial eclipse of star 2 as

fλ = πIλ1

(
R1

d

)2

+ (1− w)πIλ2

(
R2

d

)2

(3.29)

When there is no intersection between the outlines of the stars, even though
ρ < R1 +R2, there are two possibilities: star 2 is wholly covered (w = 1) if R1 > R2,
or maximally covered with w = (R1/R2)2 if R1 < R2.

3.3.2 Eclipse of limb-darkened star

Eq. 3.17 suggests that the integral is most easily computed after conversion to coor-
dinate µ. However, for an eclipse we do need the radius in the computation of the
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eclipsed fraction, and also prefer a more uniform coverage in r rather than in µ. We
therefore define x ≡ r/R to rewite Eq. 3.17 as

fλ =
1

d2

∫ R

0

2πrIλ(r)dr =
2πR2

d2

∫ 1

0

xIλ(x)dx

With the definition Ξ ≡ xI(x), the integral can be written as a sum over rings with
constant r:

fλ =
2πR2

d2
∆x
∑
i

xiIλ(xi) ≡
2πR2

d2
∆x
∑
i

Ξi (3.30)

An eclipse is in progress for each phase at which ρ < R1 + R2. For each such ρ, we
compute the arccos of the eclipsed angle φ for each ring r as by first computing

z ≡ cos(φ) =
r2 + ρ2 −R1

2

2ρr

If −1 < z < 1, we can indeed compute φ = arccos(z), and the eclipsed fraction
of the ring; the fractions covered are given by φ/π. If |z| > 1 the ring does not
intersect the outline of the eclipsing star 2, with radius R2, which means that it is
either fully eclipsed, or not eclipsed at all (see Fig. 3.4). The eclipsed flux is then
computed from

fλ,e =
2R2

d2
∆x
∑
i

φiΞi

and the observed flux from
fλ,o = fλ − fλ,e

The (monochromatic) luminosities of both stars scale with the square of the
distance of the binary, and often the uncertainty is the luminosities is dominated
by the distance uncertainty. In that case, the ratio of the luminosities may be more
accurate than either luminosity separately.

3.4 Roche geometry and the Von Zeipel theorem

A star no longer is spherical when it is rotating and/or when it feels the gravity of
another star. This deviation of spherical symmetry has an effect at various points
in the study of binaries. We briefly investigate the deformation of and limit to the
stellar surface due to the presence of a companion star, and the effect of the defor-
mation on the eclipse and on the radial velocity curve, which requires an adapted
method of fitting observations of a binary when deformations are important (Chap-
ter 3.4.1). Some other processes that affect the lightcurve are briefly mentioned also
(Chapter 3.4.2.

The potential in a binary is determined by the gravitational attraction of the
two stars, and by the motion of the two stars around one another. For simplicity,
we assume that the potential of each star separately, can still be written as that of
a point source; and we discuss a binary with a circular orbit. In the binary frame,
one has

Φ = −GM1

r1

− GM2

r2

− ω2r2
3

2
(3.31)
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Figure 3.5: Roche lobe geometry for a mass ratio M1/M2 = 2. Equipotential surfaces
are shown for different values of −Φ = C. For the largest value of C the surface
consist of two separate lobes, one around each star. The Roche lobe is the surface
around both stars that passes through the inner Lagrangian point. Also shown are
the surfaces containing the two outer Lagrangian points. The vertical line is the
rotation axis.

where r1 and r2 are the distances to the center of the stars with mass M1 and M2,
respectively; ω is is the orbital angular velocity, given by

ω ≡ 2π

Pb
=

√
G(M1 +M2)

a3
(3.32)

and r3 is the distance to the axis of rotation of the binary (see Figure 3.5). Writing
Eq. 3.31 in dimensionless units (mass in units of the total mass, and distances in
units of the semi-major axis a), one sees that the form of the surfaces of constant Φ
depends only on the mass ratio M1/M2.

We can discriminate four types of surfaces of−Φ = C, with C a positive constant.
For large C, the potential surface consists of two closed surfaces, one around each
star. For a critical value of C, the two closed surfaces touch, in the inner Lagrangian
point. The surface at this value of C is called the Roche lobe (see Roche 1859). For
smaller values of C we have a closed surface around both stars, and for very small
values the surfaces become open.

The volume of the Roche lobe can be calculated numerically. A useful approx-
imate formulae for the average radius of the Roche lobe around the most massive
star (with mass M1) is:

RL(M1)

a
' 0.38 + 0.2log

M1

M2

(3.33)
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which is accurate to 2 % for mass ratios 0.2 < M1/M2 < 20. For the average radius
of the Roche lobe around the less massive star, with mass M2, one may use the
approximate formula:

RL(M2)

a
' 0.46

(
M2

M1 +M2

)1/3

(3.34)

which is accurate to 2 % for mass ratios M2/M1 < 0.8. An approximate equation
valid for all mass ratios is

RL1 =
0.49a

0.6 + q−2/3 ln(1 + q1/3)
where q ≡ M1

M2

(3.35)

A particle within the Roche lobe is attached to one star; a particle on the Roche
lobe can move to the other star. Thus, if a star reaches the size of the Roche lobe,
mass transfer may ensue. This can occur because the star expands in the course
of its evolution, or because the binary shrinks. An evolving star in a binary can
fill its Roche lobe for the first time as it expands on the main sequence (Case A),
as it expands after hydrogen exhaustion (Case B), or as it expands after helium
exhaustion (Case C). Which of the three cases applies, depends on the size of the
Roche lobe, which in turn depends on the distance between the two stars and (to a
lesser extent) on the mass ratio (see Eqs. 3.33-3.35).

If star a star has a deformed, but stationary structure, hydrostatic equilibrium
still holds: the gradient of the pressure P is balanced by the gravitational force,
which can be written as the derivative of the gravitational potential Φ:

∇P = −ρ∇Φ (3.36)

Thus, the gradient of the pressure is everywhere parallel with the gradient of the
potential: this implies that surfaces of constant potential are also surfaces of constant
pressure P = P (Φ). In Eq. 3.36, we then find that ρ is a function of the potential
only, since it depends only on P (Φ) and Φ. Thus, equipotential surfaces also have a
constant density ρ = ρ(Φ), and via the equation of state also a constant temperature
T = T (Φ).

The equation of radiative transport is:

∇T = −3κρ

4σ

1

4T 3
Frad (3.37)

where κ is the opacity, σ the Stefan-Boltzmann constant, and Frad the radiative
flux. In a deformed star, the distances between equipotential surfaces are different
in different directions. Since equipotential surfaces have a constant temperature,
the temperature derivative must also be different in different directions: smaller
(larger) when the equipotential surfaces are further apart (closer). With Eq. 3.37
we find that the flux across an equipotential surface, and thus the flux at the stellar
surface, varies. This is called the Von Zeipel theorem (see Von Zeipel 1924). This
theorem was first used in the context of rapidly rotating single stars, to show that
the effective temperatures at the equator are lower than at the poles. Similarly in
a binary, a star that fills its Roche lobe has a lower effective temperature near the
inner Lagrangian point. This effect is called gravity darkening.
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3.4.1 Fitting binary observations in Roche geometry

When a star in a binary is deformed from a sphere, its eclipses will look different,
for two reasons:

• the geometry of the eclipse is different

• the temperature, and therefore the flux and the spectrum, varies over the
stellar surface, due to the Von Zeipel theorem

The center of light of the deformed star no longer necessarily coincides with the
center of mass. This implies that the radial velocity measurements are also affected.
Also, the strength of a spectral line depends on the temperature and the gravity,
and therefore varies over the surface of a deformed star. This also tends to displace
the measured velocity from the velocity of the center of mass of the star.

To really compute these effects, one would require a three-dimensional model of
the stellar interior. In the absence of such models, various simplifications are made,
of which the most important is the assumption that the effective temperature Te of
a stellar surface element scales with the gradient of the potential there according to

Te
Te,pole

=

(
F

Fpole

)0.25

=

(
∇Φ

∇Φpole

)g
(3.38)

where F ≡ σTe
4 is the energy flux leaving the surface. The exponent g depends on

the type of star, and has the value g = 0.25, that follows from simple application of
the Von Zeipel theorem Eq. 3.37 for a star with a radiative envelope. For stars with
a convective envelope, the value of g is lower, g = 0.08.

By integrating Fe over the stellar surface, and equating the result with the stellar
luminosity, one finds the normalization constant Fe,pole.

It is then straightforward, but computationally expensive, to compute a lightcurve.
First compute the form of the surface of each star, which is an equipotential sur-
face, characterized by Eq. 3.31 with a constant Φ. For the sake of computation,
this surface is divided in small elements. Next assign each surface element of the
star a spectrum with the appropriate effective temperature and gravity, and then
compute for each viewing angle which surface elements are visible, and add their
contributions to the flux, or for the spectrum to the flux distributions taking into
account the Doppler shift due to the velocity of the surface element with respect to
the observer. Thus computing the flux and radial velocity at each orbital phase one
may compare to the observations, and where necessary adapt the binary parameters
to improve the fit.

The main effect of the deformation of a star into a pear shape is the ellipsoidal
variation. At conjunction of the two stars, we see smaller areas than when the stars
are in the plane of the sky. Thus the flux observed from the binary varies throughout
the orbit, with two minima each orbit at conjunction, and two maxima in between.
Figure 1.5 shows several examples, and also illustrates that the amplitude of the
ellipsoidal variation is larger when a star is closer to filling its Roche lobe, i.e. when
it is more deformed. Obviously, the amplitude of the variation also depends on the
inclination, being largest at i = 90◦.

The first widely used code to fit a binary lightcurve is that of Wilson & Devinney
(1971). This early version still had many simplifications. In particular it described

38



the radiation emitted by each surface element as a black body, only applying colour
corrections (from black body to stellar atmosphere spectrum) to the integrated flux.
In the course of time, as computers became faster, the code has been improved. An
example of a modern version is given by Orosz & Haushildt (2000), The latter code
takes into account the effects of limb darkening (see discussion near Eq. 3.19). These
codes find the best solution by minimizing a optimization function, in particular the
χ2 function.

It is impossible to find the best parameters of the binary reliably by using a stan-
dard routine for this minimization as the Levenbergh-Marquardt routine (described
in e.g. Numerical Recipes, Chapter 15.5, Press et al. 1992), because the number of
parameters is too large. Orosz has therefore experimented with another method,
the genetic algorithm which cleverly uses random numbers to search the parameter
space for the best solution, and this works very well. An very clear description of
the genetic algorithm and its applications is given by Charbonneau (1995R; in par-
ticular the first 9 pages). An interesting extension is the use of black sheep, i.e. bad
descendents from good parents, in the genetic algorithm scheme. This is discussed
by Bobinger (2000)

3.4.2 Further complications of light curve fitting

Apart from the Roche geometry, various other effects are visible in the lightcurve,
and depending on one’s interest can be considered as unnecessary complications or
interesting sources of extra information. . . We mention four of these.

The first is rapid rotation of a star, which leads to a flattened form, and thus to
an altered eclipse lightcurve. It also affects the radial velocity curve: for example,
when the part of the star that rotates away from us (towards us) is eclipsed, the
observed radial velocity is dominated by the rotation towards us (away from us) by
the part of the star that is not eclipsed, and thus shifts the radial velocity to smaller
(bigger) values. This may be a noticable effect.

The second effect is the heating of a star by its companion: the radiation of one
star impinges on the surface of its companion, and if sufficiently strong, heats it.
When a small but hot, luminous star is accompanied by a cool star, the lightcurve
may be completely dominated by the heated side facing the hot star. In this case
there is only one maximum in the lightcurve per orbit, when the heated face is
oriented towards Earth.

A third effect is the presence of spots. This is detectable through a variable
lightcurve: as spots change their intensity and/or position, the lightcurve also
changes. The spots are cooler, and therefore emit a different spectrum; the ef-
fect is largest when the spot faces the Earth, and absent when it is occulted. If a
few large spots are present, their properties can be derived from careful analysis of
the lightcurve and the radial velocities. However, if many weaker spots are present,
they merely add noise to the lightcurve, a unique solution no longer being possible.
A common procedure is such a case is to average the lightcure over many orbits,
hoping that the effects of the spots average out. . . If the Sun is any guidance, spots
may also be accompanied by flares, sudden increases in the luminosity. Again, if
one strong flare occurs, we can study it; if a large number of small flares occur at
each time, they add irreducable noise.

A final important effect is the presence of gas streams from one star to the other,
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Figure 3.6: SMC X-1 is a bright X-ray source in the Small Magellanic Cloud, in
which an O star fills its Roche lobe and transfers mass via an accretion disk to
a neutron star. The observed orbital light curve of SMC X-1 (•) is shown together
with the predicted variations due to ellipsoidal variation only (−−), due to ellipsoidal
variation plus X-ray heating (· · ·), and due to these two effects plus an accretion disc
(—). Not that the disk eclipses part of the heated side of the companion near phase
0.5. After Tjemkes et al. (1986).

in particular when one star fills its Roche lobe. Such a gas stream from a star that
fills its Roche lobe may directly hit the other star, in particular in a close binary, or
it may form a disk around the other star. Theoretically the light produced by such
a stream and/or disk is not well understood. Lightcurve fitting programmes have
very simplified prescriptions for gas streams and disks. In general it must be stated
that the presence of a strong disk complicates the lightcurve analysis, and makes
the solution less secure.

3.5 Exercises

Exercise 10. Pick a year from 1600+n20, with n between 0 and 25, and compute
the position of Castor B relative to Castor A, following the steps outlined above.
Step 2 must be done iteratively. A stable method is to find two values of ε where the
function F (ε) ≡M−ε−e sin ε changes sign, and then half the interval in which this
happens successively until the remaining interval is small enough for the required
accuracy.

Exercise 11. Find the parallax of Castor, from the Hipparcos catalogue. Use
this to compute the total mass of Castor A+B, and the radial velocity difference
between the two stars at the time of Herschel’s first observation.

Exercise 12. Consider the mass funtion Eq. 3.13. a. Show that the measure-
ment of the velocity amplitude of star 1, K1, provides a lower limit to the mass of
the companion M2.
b. What is the most likely value for the inclination?
c. In binaries with a pulsar, the analysis of the pulse arrival times gives the projected
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orbital velocity of the pulsar, K1. To estimate the mass of the pulsar companion,
one often assumes a pulsar mass M1 = 1.4M�, and a value for the inclination of
60◦. Explain this chosen value for i.
d. PSR 1953+29 has a mass function f(M) = 0.00272M�. Compute the mass of
the companion under the assumptions listed in c).

Exercise 13. a. Rewrite Eq. 3.31 in dimensionless units, by writing all distances
in units of semi-major axis a and all masses in units of M2, and show that the form
of the Roche surfaces depends only on the mass ratio M1/M2.
b. At the inner Lagrangian point, the net force is zero. Write the equation for this.
Write r2 and r3 for the inner Lagrangian point in terms of a and r1. Finally, make
the equation dimensionless, in the form F(r1/a) = 0. F(x) indicates ’function of x.
c. Note: we can use the Newton-Raphson method on the dimensionless equation of
b) to solve for the inner Lagrangian point. Knowing its place we can calculate its
potential Φ, the potential of the Roche surface. We can derive similar equations as
in b) for the second and third Lagrangian points.

Exercise 14. The radius of a 5 M� star increases on the main sequence from
2.67 R� to 6.52 R�. During hydrogen shell burning the radius increases to 115 R�.
The companion is a 4 M� star. Compute the maximum orbital period at which case
A mass transfer ocurs in this system, and the maximum orbital period for case B.

Computer Exercise 1. Write a computer code to compute the projected orbit
of a visual binary, and check it correctness with your intermediate and final results
in Exercise 10.

Computer Exercise 2. A binary of two brown dwarfs has he following pa-
rameters: orbital period 9.77962,d, semi-major axis 8.8R�, eccentricity 0.333 and
inclination 89.2◦. The brown dwarfs have radii and effective temperatures 0.68R�
and 2725 K for dwarf 1, 0.49R� and 2899 K for dwarf 2. (Thus the smaller dwarf is
hotter!) In the following you may assume that the stars are spherical. The binary
has a distance of 460 pc.
a. compute the flux fI near Earth of the binary out-of-eclipse.
b. use your computer code to compute ρ as a function of orbital phase, and deter-
mine the phases during which the binary is eclipsed.
c. compute the eclipse lightcurve
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Chapter 4

Fundamental parameters of stars
derived from binaries

Fundamental parameters as mass, radius, luminosity and effective temperature are
most accurately derived from binaries. In this chapter we discuss some examples
to illustrate the derivation of such parameters, and some uncertainties inherent in
these derivations, on the basis of an article on visual binaries (by Hummel et al.
1995) and an article on double-lined eclipsing binaries (by Andersen 1991). We also
discuss three additional binaries to illustrate various additional methods, and the
application of binary studies in distance determinations of clusters.

4.1 Visual binaries

With this section, read Hummel et al. (1995). In working the examples, we use the
best parameter values; in actual scientific practice one should also propagate the
errors on these parameters to errors in the derived fundamental parameters.

4.1.1 Deriving the masses: πAnd

Dividing the mass function for the primary (Eq. 3.13) by its equivalent for the sec-
ondary, and entering the values of Ki for πAnd from Table 4.1 we obtain the mass

Table 4.1: Parameters of three binaries discussed in the article by Hummel et al .
(1995) and used in the worked examples in this section. The velocity amplitudes Ki

and period P are from spectroscopic observations, the eccentricity e and inclination
i are from the visual orbit.

binary: πAnd βAur θAql
K1 (km/s) 47.5 107.75
K2 (km/s) 117.4 111.25
P (d) 143.6065 3.96 17.1243
e 0.552 0. 0.607

i (◦) 103. 76. 143.5
a (′′) 0.00669 0.0033 0.0032

fV (10−12watt m−2nm−1) 0.663 6.81 2.00
fV 1/fV 2 1.45 1.20 4.09
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ratio M1/M2 = K2/K1 = 2.47. We rewrite the mass function of the primary as

f(M1) =
P

2πG
K1

3
(
1− e2

)3/2
= M2 sin3 i

1(
M1

M2
+ 1
)2 (4.1)

and enter the mass ratio and the values from the visual orbit in it, to findM2 ' 12M�
and thus M1 ' 29M�. As discussed by Hummel et al. these masses are much too
high to be compatible with the observed spectral type. The reason for this wrong
result is probably that the value for the velocity of the secondary is spurious.

This serves as a warning that published velocities and velocity amplitudes are not
always as accurate as advertised. It is always advisable to read the observational
article carefully and form an informed opinion on the reliability of the results.

4.1.2 Deriving the distance: β Aur

Eq. 3.12 gives the semi-major axis of the primary; adding to this the equivalent
equation for the secondary we obtain

a sin i = (a1 + a2) sin i =
P

2π

(
1− e2

)1/2
(K1 +K2) (4.2)

Entering the values for Ki from the spectroscopic orbit and the period, eccentricity
and inclination from the visual orbit of βAur (Table 4.1) we immediately obtain the
physical semimajor axis a = 0.082 AU, which we may compare with the semimajor
axis in arcseconds from the fit of the visual orbit (Table 4.1). The combination of
these two values for the semimajor axis gives the distance of the binary. Noting
that 1′′ at 1 pc corresponds to 1 AU, hence that 0.0033′′ at x pc corresponds to
0.0033xAU, we find x = 0.082/0.0033 = 24.8 pc.

4.1.3 Radius and temperature: θAql

The visual flux fV of θAql relates to the added fluxes fV i of both stars1. The visual
flux ratio has been derived from the eclipse depths (see Table 4.1). The total flux of
the binary may be written

fV = fV 1 + fV 2 = fV 1

(
1 +

fV 2

fV 1

)
(4.3)

Entering fV and fV 1/fV 2 from Table 4.1 we obtain fV 1 = 1.61×10−12watt m−2nm−1.
Analogous to the example for βAur, we can derive the distance to θAur as

76.9 pc, and we use this to compue the visual luminosity of the primary, LV 1 =
4πd2fV 1 = 1.14 × 1026 watt nm−1 = 203LV�. We assume here, mainly because of
the small distance, that interstellar absorption may be ignored. Deriving in the
same way the blue flux fB1 we obtain the primary colour fV 1/fB1 = 0.511.

To progress from here, we must obtain the bolometric correction, i.e. the ratio
of bolometric to visual luminosity (L/LV ), and the effective temperature from tab-
ulated stellar atmosphere model spectra. Stellar atmosphere model spectra depend

1We could also have writeen f550, i.e. the flux at 550 nm; but we prefer fV to indicate that the
flux is a weighted average over the V-filter; we will also write U (for 365 nm), B (440 nm) and I
(806 nm).
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Figure 4.1: Modern relation between colour and temperature (leftt) and bolometric
correction (right), from Bessell et al. (1998, solid lines). For comparison some old
values are also shown with symbols as indicated, from Mihalas & Binney (1981),
who took their numbers from Allen (1973) and Strand (1963), who in turn compiled
from others. . . . The dotted line indicate the Planck function.

on the effective temperature Teff , on the gravitational acceleration g (usually given
as log g), and on the metallicity (or more accurately, the abundances of all relevant
elements). Hummel et al. note that both stars of θAql have the same colours, and
use logL/LV (L�/LV�) = 0.156 and Teff = 10800 K for both.

Thus one obtains for the primary L1/L� = 100.156LV 1/LV�, hence L1 = 291L�.
With

log
L

L�
= 2 log

R

R�
+ 4 log

Teff

T�
where T� ' 5780 K (4.4)

we obtain R1 = 4.9R�.
In general one will find that the masses are more accurate than the luminosities

or temperatures. The reason for this is one needs models to convert from colours
to bolometric luminosities or effective temperatures, and that this conversion can
have large uncertainty: it changes with author and with time. This is illustrated in
Figure 4.1 where a modern, much used set of values are compared with those from
an excellent textbook from 1981, which in turn based its tables on much older books,
which in turn. . . . It is seen that at some colours, the differences are appreciable. In
applying conversions with use of tables, one must also make sure to use the same
calibrations for the fluxes that were used by the astronomers who compiled the
tables.

4.2 Double-lined spectroscopic, eclipsing binaries

With this section, read Andersen, 1991. The extra information provided to a
double-lined spectroscopic orbit by eclipses is the inclination, and through this the
absolute dimensions of the stars and the binary orbit. As Andersen remarks, the
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main problem in assessing uncertainties of the derived parameters are systematic
errors: in practice this implies that the actual errors are rather bigger than the
formal errors given by the fitting procedure.

Velocities can be measured from individual lines of known laboratory wavelength,
by fitting the line profile. Problems that arise with this procedure are the possibility
of blends; and the possibility that different lines arise at different depths in the at-
mosphere, and thus give different velocities! Balmer lines are especially troublesome;
experience shows that errors as large as 30% may arise from the use of Balmer lines
as the main velocity indicators. It is clearly better to use relatively narrow lines.
A consequence is that velocities can be measured much less accurately for O stars
than for G stars.

It is more common nowadays to determine the velocity from a cross-correlation of
the observed spectrum with a template spectrum, as discussed in Chapter 1. For the
template in the cross-correlation, one can use a model spectrum. Troublesome parts
from the spectrum (e.g. with Balmer lines) are excluded from the cross-correlation.
The advantage of this method is that the depth of the cross correlation improves not
only with the correct velocity, but also with the correctness of the spectrum. This
means that the cross-correlation also provides information on the parameters that
set the spectrum: effective temperature, gravitational acceleration, metallicity, and
rotation of the star. If no model spectrum is available, one can determine the average
of all the spectra that one has taken from the object and use this as a template. In
this case iteration is necessary: having determined a preliminary set of velocities,
one constructs a new template by shifting all spectra to the same rest-wavelength,
and then does a new cross-correlation. This procedure already converges after a few
iterations.

To provide information on the temperature of the stars, the photometry must
be obtained for at least two bands. A source of uncertainty is the reddening of
the system. Most systems listed by Andersen are very nearby, and the reddening
is small, so that the uncertainty is also small. With CCDs, photometry is often
very accurate – depending on the flux of the star; the dominant uncertainty in the
monochromatic luminosities is usually the distance. This means that the ratio of the
monochromatic luminosities is generally much more accurate than the luminosities
themselves. In Figure 4.2 the radius and luminosity are shown as a function of mass
for main-sequence stars. The values come from double-lined spectroscopic eclipsing
binaries. The Sun is also shown.

The radii show appreciable spread at each mass; probably mainly due to evolu-
tion. The zero-age main-sequence radius may be approximated as

R

R�
=

(
M

M�

)n
(4.5)

where n = 0.6 for M > M� and n = 1 for M < M�. The theoretical mass-radius
relation for stars of sub-solar mass is still problematic. Baraffe & collaborators have
shown that for low-mass stars on must incorporate full atmosphere models into the
stellar structure equations to obtain a correct model.

The luminosities of main-sequence stars are well-defined as a function of mass;
and may be approximated with

L

L�
=

(
M

M�

)3.8

(4.6)
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Figure 4.2: Radius and luminosity for main sequence stars as a function of mass.
Only values known with an accuracy of ≤ 2% are used in this Figure. Data from
Torres, Andersen & Giménez (2010); Masses and radii for HAT-TR-205-013 are
added (Beatty et al. 2007), the luminosities for these very cool stars are not well-
known. Dashed lines give the ZAMS mass-radius relation according to Eq, 4.5 and
mass-luminosity relation according to Eq. 4.6.

Table 4.2: Parameters of main-sequence stars as function of spectral type. Masses,
radii, luminosities and spectral type from Andersen (1991); from these, log g and
Teff are computed, and the colors for these parameters are found in Bessell et al.
(1998). Some quantities are normalized on solar units; LV� = 5.6× 1023watt nm−1.

SpT M R logL Teff logLV logL/LV log log log
(M�) (R�) (L�) (K) (LV�) (L�/LV�) fB/fU fV /fB fI/fV

Main sequence
O8V 22.0 7.90 5.10 38900 3.71 1.39 -0.68 -0.38 -0.66
B2V 9.0 4.30 3.63 22400 2.77 0.86 -0.57 -0.35 -0.63
B5V 5.0 2.90 2.66 15600 2.16 0.49 -0.46 -0.33 -0.60
A0V 2.5 1.80 1.51 10200 1.42 0.09 -0.25 -0.27 -0.56
A5V 1.9 1.50 1.06 8590 1.08 -0.02 -0.19 -0.22 -0.50
F0V 1.5 1.30 0.67 7420 0.71 -0.04 -0.22 -0.15 -0.41
F5V 1.3 1.20 0.43 6800 0.46 -0.03 -0.23 -0.10 -0.35
G0V 1.2 1.10 0.30 6470 0.33 -0.03 -0.22 -0.07 -0.32
G5V 1.0 1.00 0.00 5780 0.00 0.00 -0.15 0.01 -0.25
K0V 0.9 0.85 -0.33 5180 -0.39 0.06 -0.01 0.08 -0.18
M1V 0.6 0.55 -1.22 3860 -1.64 0.42 0.28 0.29 0.12
M4V 0.4 0.40 -1.87 3110 -2.80 0.92 0.29 0.35 0.56
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From the mass, radius and luminosity one may compute the gravitational ac-
celeration g and effective temperature Teff of the atmosphere; and from atmosphere
models (which are calibrated with accurately measured stars) one may then ob-
tain the absolute monochromatic luminosities and colours. The results are given in
Table 4.2.

For very cool objects, the bolometric corrections are unknown; for very-low-
mass stars and brown dwarfs, observers derive absolute monochromatic luminosities,
rather than effective temperatures or bolometric luminosities. For such stars, instead
of the mass-luminosity relation, one has the mass-monochromatic-luminosity M−Lλ
relation.

4.3 Some interesting binaries

In this section we discuss binary studies that illustrate variants on the analysis meth-
ods discussed above, and that are interesting for a variety of reasons. The binary
HAT-TR-205-013 illustrates the use of rotational velocity in the determination of the
parameters of the lowest-mass main-sequence star. The binary 2MASSJ05352184-
0546085 gives the parameters of two brown dwarfs. The binary HD 23642 gives the
distance to the Pleiades. We give brief descriptions here, and refer to the original
papers for more detail. The variant techniques are flagged in the margin.

4.3.1 The lowest main-sequence mass: HAT-TR-205-013 B

One of the methods to detect planets around other stars is to look for transits of
the planet. If a planet has a radius Rp and passes in front of the star with radius
R, a fraction (Rp/R)2 of the stellar surface is covered, and flux that we detect is
reduced accordingly. Analysis of the transit lightcurve provides information on the
limb darkening of the star.

Interestingly, a Jupiter-like planet has a size comparable to that of low-mass
main-sequence stars, and some candidate planets found from transits turn out to
be stars of spectral type late M. They are easily distinguished from planets because
they cause much larger variations in the radial velocity of the primary.

In the case of HAT-TR-205-013, Beatty et al. (2007) determine the parameters
of the late dwarf, as follows. (HAT stands for Hungary-made Automated Telescope;
to discover transits a network of six 11 cm telescopes is used, see Bakos et al. 2004;
205 is the number of the survey field.) The parameters determined first are a, a1, R2,
R1, and i. The transit lightcurve provides three relations between these parameters.
Roughly speaking, the length of the eclipse in units of the orbital period depends
mostly on R1/a, the eclipse depth on R2/R1, and the lengths of ingress and egress
on s = a cos i, the closest projected distance of the star centers 2. (See Exercise 16
and Figure 4.3.) A fourth relation is given by the radial velocity curve of star 1,
which shows that e = 0, and gives a1 sin i (see discussion leading to Eq. 3.13). If
star 2 contributes significantly to the spectrum, its radial velocity provides the fifth
relation between the parameters. Here, however, star 2 is not seen in the spectrum, rotation

velocityand the required fifth relation is found from the observed (i.e. projected) rotation
velocity vrot,o of star 1. It is assumed that the rotation of star 1 is locked to the orbit,

2Beatty et al. write this in dimensionless from, with b ≡ s/R1
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Figure 4.3: Slightly simplified geometry to show the effect of the impact parameter
s on form of the transit lightcurve. The left graph shows the definition of s: it is
the shortest projected distance of the center of star 2 to the center of star 1. LoS
is the line of sight towards the Earth, and a the distance between the stars. The
middle graph shows the path of star 2 in front of star 1; it is simplified (assuming
R1 � a) because in reality the path between ingress I and egress E should be slightly
curved (part of an ellipse if the orbit is circular), with the pericenter in the middle.
The ingress is shown in more detail in the right graph, where the line through IK
is the edge of the star; the short stretch of the circular edge is approximated with a
straight line (assuming R2 � R1). The resulting lightcurve is shown schematically
in the lower graph. As the center of star 1 moves along BD, ingress starts (ends) at
B (D), where its projected circle first (last) touches the edge of star 1. Mid-ingress
is at I. Since BID is along IE (see middle graph), and BK is parallel to IC, we
have s/R1 = KI/BI =

√
1− (R2/BI)2. This shows that the length of ingress,

proportional to BI, depends on s. For s = 0 BI = R2. (For s close to 1 the
approximation that the edge of the star is a straight line breaks down.)

Table 4.3: Measured quantities and parameters of the binary HAT-TR-205-013, from
Beatty et al. (2007).

a/R1 5.9(1) M1 (M�) 1.04(13)
R2/R1 0.1309(6) M2 (M�) 0.124(10)

s/R1 = a cos i/R1 0.37(5) R1 (R�) 1.28(4)
vrot sin i (km/s) 29(1) R2 (R�) 0.167(6)
K1 (km/s) 18.3(5) a (R�) 7.5(3)
P (d) 2.23074(1)
e 0

hence vrot = ΩR1 = (2π/P )R1, hence

vrot,o = vrot sin i =
2π

P
R1 sin i ⇒ P

2π
vrot,o = R1 sin i (4.7)

Once the parameters a, a1, R2, R1, and i are determined, the total mass and the
individual masses can be found with Kepler’s third law, Eq. 2.45, and from the ratio
a1/a.
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Figure 4.4: Eclipse lightcurve and radial velocity curve of the brown dwarf binary
2MASSJ05352184−0546085. Note the effect of ingress and egress on the theoretical
radial velocity curve of the eclipsed star. From Stassun et al. (2007)

Table 4.4: Parameters of the brown-dwarf binary 2MASSJ05352184−0546085 and
of the Pleiades binary HD 23642 (Stassun et al. 2007, Groenewegen et al. 2007)

2MASS HD 2MASS HD
K1 (km/s) 18.5(7) 99.2(3) M1 (M�) 0.057(5) 2.22(3)
K2 (km/s) 29.3(8) 140.8(3) M2 (M�) 0.036(3) 1.57(2)
P (d) 9.77962(4) 2.4611335(7) R1 (R�) 0.68(2) 1.84(4)
e 0.333(6) <0.002 R2 (R�) 0.49(2) 1.59(4)

i (◦) 89.2(2) 77.6(2) L1 (L�) 0.022(2)
a (R�) 8.8(2) 11.95(2) L2 (L�) 0.015(2)
T2/T1 1.064(4) 0.768(4) T1 (K) 2725 9950

4.3.2 The brown-dwarf binary 2MASSJ05352184−0546085

Cool stars and brown dwarfs are best discovered in the infrared. The 2µ All Sky
Survey is an efficient source for new discoveries of such objects. Stassun et al.
(2007) analyse an eclipsing binary in the Orion Nebula Cluster. Radial velocities
are measured through a technique of Broadening Functions, which is a variant of broadening

functionsthe cross-correlation technique; it works better when the velocity difference between
the stars is comparable to the resolution of the observed spectra (Rucinski 1999).
The broad-band I light curve is analysed assuming that the surfaces of the stars
radiate as black bodies. Radial velocities and lightcurve are analysed with the
Wilson-Devinney code, and give the parameters listed in Table 4.4.

A first remarkable result is that the brown dwarfs are rather large for their mass:
this can be understood by their young age. The Orion Nebula Cluster is thought to
be ∼ 1 Myr old, and in this time brown dwarfs have not relaxed to their equilibrium
radius.

A second remarkable result is that the less massive star is hotter: this follows
immediately from the observation that the eclipse of the less massive star is deeper.
Since the temperatures of both stars are almost equal, it is unlikely that this result is
the consequence of the difference between real brown-dwarf atmosphere spectra and
Planck spectra. Stassun et al. suggest that the lower temperature of the primary
can be explained if it is ∼ 0.5 Myr older than the secondary.
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Membership of the Orion Nebula is in agreement with the systemic radial veloc-
ity (γ) of the binary: 24.1(4) km/s, compared to the velocity 25.0±1.5 km/s of the
cluster. It is also in agreement with the distance derived from the luminosity and
spectrum. The spectral type M6.5 for the primary implies (through measurements
of the M6.5 star LHS 292) a temperature of 2725 K, and a bolometric correction
L/LK = 3800 (the K-band is around 2µm). The temperature of the secondary is
found from T2/T1. The luminosities of the stars derived from their radii and effective
temperatures are given in the Table. The bolometric flux can be derived from the
K-band out-of-eclipse flux fK = 1.59× 10−18watt m−2nm−1 and the bolometric cor-
rection. Comparison of these numbers gives the distance of the binary as 456±34 pc,
compatible with the distance to the Orion nebula of 480±80 pc.

4.3.3 The distance to the Pleiades from binary HD 23642

The distance to the Pleiades determined by the HIPPARCOS mission was a big sur-
prise: it was significantly closer (116(3) pc) than results found from main-sequence
fitting (about 130 pc). If correct, the HIPPARCOS distance implies that the main
sequence of the Pleiades is 37% fainter than the main sequence of stars near the
Sun!

The binary HD 23642 has been studied to resolve this discrepancy: it is a member
of the Pleiades, and by determining its distance one also determines the cluster
distance.

Groenewegen et al. (2007) first use cross-correlation techniques of model spec-
tra with the observed spectra to derive the temperatures and effective gravities of
both stars, and to derive their radial velocities as a function of phase. The fit to
radial velocities and lightcurves then provides the other binary parameters listed in
Table 4.4.

The distance is determined by comparing model fluxes in different filters with
observed fluxes. In general, for a star with radius R at distance d, the flux observed
on Earth fλ is related to the flux leaving 1 m2 of the stellar surface through:

4πR2Fλ = 4πd2fλ (4.8)

We know the observed flux fλ and from the fitting also the radius R, thus if we can
determine Fλ we have the distance. This determination can be done for either star
separately, or for the out-of-eclipse flux of the binary as a whole.

Groenewegen et al. use two methods to determine Fλ. In Method A one uses a
stellar atmosphere model, determined by the stellar temperature, log g and metal-
licity, to compute the flux Fλ at wavelength λ for 1 m2 at the stellar surface. In colour-flux

relationMethod B one uses an empirical relation between the effective temperature and Fλ,
or alternatively between the colour and Fλ. Groenewegen et al. use the colours
fV /fB and fK/fV . In both cases, a correction for interstellar absorption towards
the Pleiades must be made. The distance obtained for HD 23642 is 138.0±1.3 pc.

The consensus nowadays is that the HIPPARCOS distance is not correct.

4.4 Exercises

Exercise 15. Use the Hipparcos catalogue to find the parallaxes of βAur and θAql,
and compare with the distances derived from the visual orbit and observed fluxes.
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Figure 4.5: Below: the X-ray intensity observed from Cen X-3 (dots, upper limits
indicated with arrows); above: the time difference ∆t between the observed pulse
arrival time and the arrival time predicted for a constant pulse period.

Which distances are most accurate?
Exercise 16. Use the measured quantities listed in the left-hand column of

Table 4.3, to derive the binary parameters given in the right-hand side.
Exercise 17. We use the mass function f(M) for a circular orbit to study the

parameters of the high-mass X-ray binary Cen X-3: a binary in which an X-ray
pulsar is in orbit around a high-mass star. Consider a binary of stars with masses
M1 and M2, and orbital period Pb. The orbit is circular, the orbital inclination (i.e.
the angle between the line of sight from the Earth and a line perpendicular to the
orbital plane) is i. The radial velocity of star 1 has been determined, and it varies
as a sine wave, with amplitude K1. The mass function for a circular orbit is

f(M) ≡ M2
3sin3i

(M1 +M2)2
=

4π2

G

(a1 sin i)3

P 2
b

=
K3

1

2πG
Pb (4.9)

where a1 is the semi-major axis of the orbit of star 1 with respect to the center of
mass.
a. In Figure 4.5 we see some data of Cen X-3. A sine wave describes the time arrival
times well, i.e. the orbit is circular. The orbital period is 2.087 days, the amplitude
of the time-delay curve is 39.7466 s. Compute the mass function of Cen X-3. Show
that the mass function provides a lower limit to the mass of the companion of the
X-ray pulsar.
b. We see that the neutron star is eclipsed by its O star companion. t is the eclipse
length. Assume that the O star is a sphere (i.e. ignore its deformation by tidal
forces) and show that the ratio of the radius of the O star R to the radius of the
orbit a is given by

R

a
=

√
1− cos2

(
πt

Pb

)
sin2 i (4.10)
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c. We can use Eq. 4.10 to determine R/a from t/Pb, as a function of i. Assuming
that the donor fills its Roche-lobe, we can use Eq. 3.33 to determine the mass ratio
M1/M2, and then from Eq. 4.9 both masses separately. Determine t/Pb from Fig. 4.5,
and calculate M1 and M2 for inclinations of 70◦ and 90◦. Note that the masses of the
neutron star are rather small. This is due in part by our neglect of the deformation
of the O star by tidal forces.
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Chapter 5

Tidal forces

Tidal forces lead to a coupling in the binary of the spin of the stars with the orbital
revolution. If energy is dissipated, angular momentum can be exchanged between
the orbit and the spin of the stars.

We discuss some aspects of this with use of three articles

• Hut (1980) shows on the basis of a general analysis that the minimum energy
situation of a binary is reached if the angular momenta of the orbit and of
the two stars are aligned, and if both stars corotate with the orbit, i.e. their
rotation period equals the binary period

• Hut (1981) gives simple analysis of the effect of the deformation of a star on
the evolution of the binary orbit, and provides a good physical insight into the
tidal forces. We examin only the first 5 pages of this article, which give the
outline.

• Verbunt (2007) discusses the evolution of the rotation of the Earth and of the
revolution of the Moon as driven by the spin-orbit coupling.

5.1 Exercises

Exercise 18a. Compute the total angular momentum of a binary consisting of two
stars with masses M1,2 and radii R1,2, and how that it can be separated into the
angular momentum of the orbit and the angular momenta of the two stars around
their own axex of rotation. Start from Eq. 2.42, assume that the stars are perfectly
spherical, and save on computing by clever use of anti-symmetry. The orbital angular
velocity is Ω, the angular velocities of the stars around their own axes are ω1,2.
b. Consider synchronous rotation, Ω = ω1 = ω2 and derive the condition for which
the rotation of the two stars around their own axes can be neglected.

Exercise 19. (After Counselman, C. 1973, ApJ 180, 307.) Two stars with
masses M and m, with M � m, orbit one another in a circular orbit with angular
velocity n. The star with mass M also rotates around its own axis with angular
velocity ω and its moment of inertia is kMR2. We consider the orbital energy and
angular momentum, i.e. ignore the kinetic enery and angular momentum of the
center of mass.
a. Compute the total angular momentum L′ and the total energy E ′ of this binary
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system, expressed in m, M , n and ω. Define:

σ2 ≡ GM

R3
; κ ≡

( m

kM

)1/4 (
1 +

m

M

)1/6

Ω ≡ ω

σ
κ−3; N ≡

(n
σ

)1/3

κ−1

and show

L ≡ L′

kMR2κ3σ
= Ω +N−1; E ≡ E ′

kMR2κ6σ2
=

1

2

(
Ω2 −N2

)
b. sketch lines of constant E in the N -Ω plane for E = 0,0.5,-0.5; and for constant
L for L = 0,1,2,-1,-2. Argue from this sketch that the location where a line of
constant angular momentum is tangent to a line of constant energy corresponds to
an extremum of energy for fixed angular momentum. This implies that the tangent
point is an equilibrium situation. Show that in such a point Ω = N3, i.e. ω = n
(synchronous rotation). Sketch this line in the figure as well.
c. compute in the equilibrium point from b):(

∂E

∂N

)
L=const

and

(
∂2E

∂N2

)
L=const

When is the equilibrium of synchronous rotation stable?
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[16] É. Roche. Recherches sur les atmosphères des comètes. Annales de
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