THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 101:309-334, 1995 December

© 1995. The American Astronomical Society. All rights reserved. Printed in U.S.A.

GENETIC ALGORITHMS IN ASTRONOMY AND ASTROPHYSICS

P. CHARBONNEAU
High Altitude Observatory, National Center for Atmospheric Research,' P.O. Box 3000, Boulder, CO 80307-3000;
paulchar @hao.ucar.edu
Received 1994 December 30; accepted 1995 June 9

ABSTRACT

This paper aims at demonstrating, through examples, the applicability of genetic algorithms to wide classes of
problems encountered in astronomy and astrophysics. Genetic algorithms are heuristic search techniques that
incorporate, in a computational setting, the biological notion of evolution by means of natural selection. While
increasingly in use in the fields of computer science, artificial intelligence, and computed-aided engineering de-
sign, genetic algorithms seem to have attracted comparatively little attention in the physical sciences thus far.

The following three problems are treated: (1) modeling the rotation curve of galaxies, (2) extracting pulsation
periods from Doppler velocities measurements in spectral lines of § Scuti stars, and (3) constructing spherically
symmetric wind models for rotating, magnetized solar-type stars. A listing of the genetic algorithm-based general
purpose optimization subroutine PIKAIA, used to solve these problems, is given in the Appendix.

Subject headings: galaxies: kinematics and dynamics — methods: numerical — stars: mass loss —

stars: oscillations

1. INTRODUCTION: GENETIC ALGORITHMS

The class of computational techniques that form the subject
matter of this paper addresses problems of optimization. Per-
haps the most common mathematical optimization tasks are
minimization and maximization, i.e., finding extrema of a
function. Optimization is typically first encountered in a cal-
culus class and is often remembered as a boring exercise in
differentiation. What is perhaps not widely appreciated is that
many classes of problems arising in the physical sciences can
be recast in the form of optimization problems. Data fitting
using least-squares is clearly an optimization ( minimization)
problem. Root finding problems for nonlinear, coupled sys-
tems of equations can be recast in the form of minimization
problems. Any algebraic system of equations (including ma-
trix systems arising from the discretization of differential
equations) can actually be solved as a residual minimization
problem.

It is therefore no surprise that most introductory textbooks
on numerical analysis devote a substantial part of their dis-
course to optimization. Especially in the area of continuous
function optimization, some very powerful numerical tech-
niques have been developed, the archetype being conjugate
gradient methods (see, e.g., Pressetal. 1992,§ 10.6). However,
these powerful techniques can sometimes fail miserably on
problems that are readily solved by hand using the “set the
derivative to zero and solve for x> time-proven strategy. It is
important to understand how and why this happens in order
to later better appreciate the power and versatility of genetic
algorithms-based optimization.

1.1. A Model Optimization Problem

It will prove useful to begin by constructing an optimization
problem that, while conceptually straightforward, presents for-

' The National Center for Atmospheric Research is sponsored by the
National Science Foundation.

309

midable difficulties for many classical optimization methods.
Consider the following function of two variables:

f(x,y)=[16x(1 — x)y(1 — y)sin (n7x) sin (n7y)]*,

x,y€[0,1], n=1,2,--- (1)
and the associated optimization task of finding the pair of val-
ues [ Xmax» Vmax | r€turning the maximum evaluation of /. Ana-
lytically, this is a straightforward, if somewhat tedious, exercise
in partial differentiation. Numerically, the steepest ascent
method represents a particularly simple mean of achieving the
same result. Starting from an initial guess for [x,, o], one
computes the local gradient Vf( x, y) to establish the direction
of maximum slope. One then takes a small “step” in that di-
rection, reevaluates the new local gradient, takes another step,
and so on until the maximum is reached. Clearly, steepest
ascent/descent algorithms—or any other type of hill climbing
technique such as the conjugate gradient method—are local
methods that will work well if (1) the landscape is relatively
well behaved, i.e., f(x, y) is a smooth function that can be
differentiated at least once, and (2) a single maximum exists in
the domain under consideration.

Figure 1 is plot of the function defined by equation (1) for
n =1 (Fig. 1a) and n = 9 (Fig. 1b). It reveals immediately
why the associated optimization problem, numerically, is an
absolute nightmare for large n. Equation (1) with # = 9 defines
a function having 81 local maxima in the domain under con-
sideration. To make matters worse, many local maxima differ
very little in function value and are separated by deep “valleys”
in the two-dimensional landscape. In this context, the steepest
ascent method is analogous to flipping the two-dimensional
surface upside down, dropping a ball somewhere ([xp, }o]) in
the (inverted) landscape, and letting it roll all the way down to
the lowest point. In the case of Figure 14, this will work without
difficulties. But clearly, in the case of Figure 15 this strategy
will succeed only if the ball is dropped in the (very restricted)

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

310 CHARBONNEAU

eSS e
O e .
O©© >

o

S = >

el e o

e e
) ©©©° . .

) u'i \r.fi\' i
‘“\\ \‘ | ‘M‘ I /,'u;\ ,
“ M H‘“ ‘l'\\\“‘u

&= -

n I\\u l‘“;/:‘_'
i u“ ! \Nl‘m'”u\ ,:\M\‘\ o.\h

o
’u‘ A .\ ‘.‘ "f‘

F1G. 1.—Surface and contour plots of the function f( x, ) defined by
eq. (1) with (a) n =1 and (b) n = 9. In this latter case there are 81 local
maxima in the domain x, y € [0, 1]. In both cases the absolute maximum
is/(0.5,0.5) = 1.

interval (9 <x=< 9, 9 =y=< 9) centered on (x, y) = (0.5, 0.5).

Any other starting point will cause the steepest ascent method
to find a secondary maximum. A number of options are avail-
able to circumvent this difficulty. One can repeatedly restart
the algorithm at other randomly chosen points, keeping track
of all extrema located in this fashion. Such iterated hill climb-

Vol. 101

ing schemes become impractical as the dimensions and com-
plexity of the search space are increased. In fact, for a M-di-
mensional generalization of equation ( 1) one can readily show
that the probability of a randomly chosen starting point land-
ing within reach of the central maximum scales as 1/x#™. Iter-
ated hill climbing schemes are in principle global, but they lack
efficiency.

Another line of attack consists in incorporating in the search
process problem-specific a priori knowledge (for example, con-
cerning the overall structure of parameter space, such as as-
ymptotic behavior, periodicities, etc.). Such fixes can be easy
to design, but often end up requiring repeated manual inter-
vention on the part of the modeler if applied to a wide spec-
trum of problems. In other words, these modified hill-climbing
techniques lack robustness.

Ideally, what is needed here is a method that is both robust,
efficient, and global. One class of such techniques are the sim-
ulated annealing methods (see § 10.9 of Press et al. 1992, and
references therein). These methods are based on an analogy
with thermodynamics, namely, the way in which a liquid that
is slowly cooled crystallizes into what can end up being a highly
organized large-scale molecular structure that corresponds to a
global minimum energy state for the ensemble of molecular
constituents. Simulated annealing has successfully solved a
number of difficult global optimization problems, including
the (in)famous traveling salesman combinatorial problem,
but in many instances the performance of the method depends
rather sensitively on the so-called annealing schedule, and on
the specification of a suitable set of alternate pseudothermody-
namic states for the algorithm to choose from (see Press et al.
1992, § 10.9). This is probably in part why the technique has
not yet attracted much attention in astronomy and astrophys-
ics, although it has been successfully applied to a few problems
of interest (see, e.g., Jeffrey & Rosner 1986b).

Like simulated annealing, the techniques discussed in this
paper are global, but their underlying motivation lies in the
realm of biology, rather than physics.

1.2. Biological Evolution as an Optimization Problem

Darwin’s 1859 Origin of Species brought natural selection to
the forefront of evolutionary thought. Natural selection is the
process whereby individuals better adapted to their environ-
ment (i.e., “fitter”’) tend to produce more offspring, on aver-
age, than their less well-adapted competitors. Darwin saw very
well that two additional key ingredients were needed in order
for natural selection to lead to large-scale evolution: (1) inheri-
tance, or parents somehow “passing on” their fitness to their
offspring, and (2) variation, or the existence of a fitness spec-
trum in a given population, so that natural selection can actu-
ally operate. The understanding of how variation is main-
tained and inheritance mediated, however, had to await the
rediscovery of Mendel’s law at the turn of this century, and
the subsequent rise of experimental and mathematical genetics
(see Stebbins 1966; Watson et al. 1987, chap. 1; Maynard
Smith 1989).

The starting point of this discussion is to establish the dis-
tinction between genotype and phenotype. The genotype refers
to the genetic makeup of an individual, stored on chromo-
somes in the form of linear gene sequences. The phenotype is

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

No. 2, 1995

the outward manifestation of the genotype, i.e., the individual
that actually feeds, competes, and breeds in real space. At the
level of the individual, the relationship between phenotype and
genotype is very much unidirectional. The phenotype is simply
adecoded version of its genotype, the decoding being what one
usually refers to as development and growth (which implies,
incidentally, that there exists in general environmental influ-
ences on the phenotype that are not encoded in the genotype).
However, because high (low) phenotype fitness translates, on
average into high (low) reproductive success, the phenotype
has a direct influence on the “gene pool” (i.e., the ensemble
of genotypes) of the next generation; high fitness phenotypes
“copy” their genotype more frequently into the next genera-
tion, which leads to an increasingly higher proportion of high
fitness phenotypes in the population. For fixed environmental
conditions, the population as a whole will naturally (!) con-
verge on the highest fitness genotype present in the original
gene pool. How fast this convergence process operates is a
function of selection pressure, the functional relation between
fitness and reproductive success.

If this were all there is to evolution the initial spectrum of
variation present in the population would gradually be annihi-
lated. Once convergence is completed, severe changes in envi-
ronmental conditions may suddenly alter the rules of the game,
and make all individuals extremely unfit, with potentially di-
sastrous consequences. This is has certainly happened in the
geological past, as evidenced by the numerous episodes of mass
extinction laid out in the fossil record. But the very fact that
life has evolved—and continues to evolve—in response to
changing environmental conditions implies that variation is
maintained. It turns out to be maintained to a large extent by
the very process of inheritance. Sexual reproduction is not an
exact copying of the parent genotypes into the offspring. It fre-
quently entails large-scale recombination of genetic material by
the processes of chromosomal crossover and inversion (see,
e.g., Stebbins 1966, chap. 3). Further variations are introduced
by mutation, either in the form of copying mistakes or true
random events affecting a gene in isolation.

Genetic algorithms are a class of heuristic search techniques
that incorporate these ideas in a nonbiological, computational
setting. Strictly speaking, genetic algorithms are not function
optimizers (De Jong 1993), although they turn out to be ex-
tremely well suited for that task. Nevertheless, throughout this
paper the term “genetic algorithm” (or “GA”’) will sometimes
be used as a shortcut for what should formally be referred to
as “genetic algorithm-based optimizer”. The following (brief)
presentation is in part adapted from Davis (1991), a highly
recommended tutorial text. Goldberg (1989) is the standard
textbook on the subject. The monograph by Holland (1975) is
the classical reference on genetic algorithms.

1.3. A Basic Genetic Algorithm

In their most basic implementation, genetic algorithms
make use of the following simplified version of the biological
evolutionary process: the gene pool (and associated pheno-
typic population ) evolves in response to (1) differential repro-
ductive success in the parent phenotype population, (2) cross-
over (recombination at the chromosome level) at breeding,
and (3) random mutation occurring directly at the gene level.

GENETIC ALGORITHMS 311

Admittedly, evolutionary biologists are actively engaged in a
number of debates concerning many aspects of evolutionary
theory, including the molecular biology of genetic recombina-
tion (e.g., Watson et al. 1987, chap. 19), the tempo and mode
of evolutionary change (Eldredge 1985; Gould 1989), gene
versus individual as the focal point of the evolutionary process
(Dawkins 1982), to name but a few. Nevertheless, the basic
aspects of the process, as embodied in genetic algorithms, are
beyond dispute.

A top-level view of a genetic algorithm is as follows: given a
target phenotype and a tolerance criterion,

1. Construct a random initial population and evaluate the
fitness of its members.

2. Construct a new population by breeding selected individ-
uals from the old population.

3. Evaluate the fitness of each member of the new popula-
tion.

4. Replace the old population by the new population.

5. Test convergence; unless fittest phenotype matches target
phenotype within tolerance, goto step 2.

In the case of the model problem of Figure 1, an individual
(phenotype) is an (x, y) pair, and fitness could simply be (but
does not have to be) the evaluation of /( x, y). In themselves,
the steps listed above define only an adaptive plan or evolution
program, with nothing obviously “genetic” about the whole
thing. In fact, steps 1-5 look more like some variation on the
Monte Carlo theme. Genetic algorithms actually differ from
random heuristics in three essential ways, all related to breed-
ing (which is also where the “genetic”’ comesin). First, what is
being bred in step 2 are not the phenotypes, but the genotypes
that encode the selected phenotypes. Second, new genotypes
are produced by applying crossover and mutation operators to
the parent genotypes, processes with distinct random attri-
butes, as opposed to a deterministic scheme such as, e.g., aver-
aging. Finally, the probability of an individual being selected
for breeding is proportional to its “fitness.”

Figure 2 illustrates the details of the breeding procedure, in
the case of breeding two ““solutions” to the optimization prob-
lem of § 1.1, with the target phenotype being the pair (0.5, 0.5)
for which f(x, y) = 1. The first step consists in encoding the
two parent phenotypes Ph(P1) and Ph(P2). Lines [02]
through [04] in Figure 2 illustrate this procedure for Ph(P2).
Here the genotype consists of a single chromosome of length
16, where each of the 16 “genes” can assume an integer value
between zero and nine.? Breeding is a multistep procedure. Be-

2 Classical implementations of genetic algorithms most often make use
of binary encoding, whereby phenotype values are converted to binary
numbers, and concatenated into what ends up being a long string of <0
and “1.” The encoding scheme illustrated on Figure 2 functions in base
10 instead. One could argue that there is an inherent simplicity in binary
encoding that makes it zhe fundamental encoding scheme. Yet one may
also recall that DNA-based life, which includes all known biological life
forms with the exception of some classes of viruses and possibly my next-
door neighbor’s roommate, is encoded in base four (the digits being A-T-
C-G: yes indeed, those unforgettable Adenine, Thymine, Cytosine, and
Guanine of high school biology . . .). The choice of an encoding scheme
is far from a trivial issue, as it is known to affect the performance of genetic
algorithm to varying degrees, depending on the problem at hand. Consid-
erable effort has gone into developing encoding schemes based on floating
point representation together with suitably altered genetic operators, and

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

312 CHARBONNEAU Vol. 101

Ph(P1) x=0.14429628 y=0.72317247 [01]
Encoding: Ph(P2) x=0.71281369 y=0.83459991 [02]

y y
71281369 83459991 [03]
Gn(P2) 7128136983459991 [04]
Breeding: Gn(P1) 1442962872317247 [05]
Gn(P2) 7128136983459991 [06]

(a) Crossover (gene=4):
144|[2962872317247 [07]
1
712(8136983459991 [o8]
144 [B136983459991 [09]
712 (2962872317247 [10]
Gn(01) 1448136983459991 [11]
Gn(02) 7122962872317247 [12]
(b) Mutation (Offspring=02, gene=10):

Gn(02) 7122962872317247 [13]
712296287[2]317247 [14]
712296287[8] 317247 [15]
Gn(02) 7122962878317247 [16]
Decoding: Gn(02) 7122962878317247 [17)
71229628 78317247 [18]

4
Ph(02)  x=0.71229628 y=0.78317247 [19]
Ph(01)  x=0.14481369 y=0.83459991 [20]

FiG. 2.—Encoding, breeding, and decoding in genetic algorithms. Phenotypes are defined in terms of two real numbers and are encoded as a string of 16
decimal digits (eight per real number). “Ph(P1)” means “phenotype of parent P1,” “Gn(02)” is “genotype of offspring 2,” and so on. Encoding is shown
only for Ph(P2), and decoding for Gn(O2). Note that a breeding event produces two offspring, and that both crossover and mutation operations occur only

if a probability test yields true (see text).

gin by copying the parent genotypes Gn(P1) and Gn(P2)
(lines [05]-[06] in Fig. 2). Whether or not crossover is to oc-
cur depends on the outcome of a probability test; this may con-
sist in generating a random number R € [0, 1] and applying
the crossover operator (line [07]-[12]) only if R is inferior to
some preset crossover rate p. (<1, in fact a probability
measure); if the probability test yields true, select randomly a
gene (the fourth here) and cut both parent chromosomes at
that point (lines [07]-[08]). Interchange the chromosome
segments right of the cutting point to form the offspring geno-
types Gn(O1)and Gn(0O2) (lines [09]-[12]). This completes
the crossover operation.? The genotype of each offspring now

assessing their performance as compared to binary representation. Empir-
ical evidence suggests that floating point-based schemes do at least as well
as conventional binary-based schemes on many classes of optimization
problems (see Wright 1991; Michalewicz 1994, chap. 5).

3 What has been described is one-point crossover. Other types of cross-
over operators, involving multiple splicing points, can also be defined (see,
e.g., Goldberg, chap. 4). One-point crossover seems to be the dominant
mode of crossover recombination in the few natural genetic systems stud-
ied in detail to date (e.g., the E-coli bacterium and the fly Drosophila).
Note also that in natural systems, crossover refers to exchange of segments

contains discrete, intact chunks of chromosome material from
each parent. Now for each offspring, run a probability test for
each gene making up the chromosome. If the test yields true,
apply the mutation operator (lines [13]-[16], shown here op-
erating on the 10th gene). This consists in replacing the corre-
sponding gene value by a random integer in the range [0, 9]
(““8” here, line [15]). This completes the mutation operation.
Something has been inserted in the offspring genotype that was
present in neither of the parents.

Comparing the parent phenotype pair [(0.14429628,
0.72317247), (0.71281369, 0.83459991)] to the offspring
phenotypes [(0.71229628, 0.78317247), (0.14481369,
0.83459991)], it is clear that a substantial jump in parameter
space has taken place. The magnitude of the effects of crossover
and mutation clearly depends on the genes at which these op-

between two homologous chromosomes during cell division (cf. Watson
1987, chap. 1); exchange between nonhomologous chromosomes is re-
ferred to as translocation and is usually deleterious. Strictly speaking, the
form of crossover implemented in genetic algorithms—exchange between
two parent chromosomes at breeding—has no direct counterpart in bio-
logical systems.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

No. 2, 1995

erations take place. In the case illustrated in Figure 2, mutation
can induce variations by factors of order 1, down to one part in
103. Because each gene has equal probability of being affected,
there results a logarithmic distribution of effects in x or y val-
ues, which can translate into almost anything in terms of func-
tion evaluation (eq. [1]) given the nonlinear nature of f( x, y).
Crossover is harder to quantify. Typically, the numerical value
of a single component of the decoded genotype is again
affected. But complete components are also interchanged, as
compared to the parent genotypes. In the case considered on
Figure 2 this amounts to exchanging the (intact) y values of
the parent phenotypes. But in cases where the relationship be-
tween phenotype and decoded genotype is less direct, the
effects of crossover on the offspring phenotypes can be subtle
and far reaching. Note that there is in general a finite probabil-
ity that neither crossover nor mutation occurs during a breed-
ing event, in which case the two offspring are true replications
of the two parents.

1.4. A Solution to the Model Problem: Introducing PIKAIA

The Appendix to this paper gives a listing and description of
PIKAIA, a genetic algorithm-based general purpose optimi-
zation subroutine. Figure 3 shows a genetic solution to the
model optimization problem defined equation (1) with n =
9 (cf. Fig. 1b), obtained with PIKAIA. A population of 100
individuals evolved over 100 generations with crossover and
mutation rates of 0.65 and 0.003, respectively. Figure 3a shows
the spatial distribution of the initial (random) population. Few
individuals lie anywhere near the tallest, central peak in the
landscape, or even near the summit of any major peak. More
important, none are lying close enough to the central peak for
local hill climbing methods to find the absolute maximum. Af-
ter only 10 generations (Fig. 3b) the part of the population
initially occupying the outer, low-altitude regions of the land-
scape has been effectively decimated, and the population con-
verges on a few peaks that do not, however, include the central,
highest peak. As the next few subsequent generation are bred,
mutation and crossover catapult a few individuals on the slope
of the highest peak, where a foothold is rapidly established. By
the 20th generation (Fig. 3¢), a few individuals have attained
heights on the central peak exceeding the maximal altitude of
neighboring peak. Natural selection now favors this subgroup,
so that differential reproductive success gradually populates
the central peak at the expense of its neighbors. By the 40th
generation (Fig. 3d), the population as a whole resides on the
central peak, with only a few (doomed ) mutants appearing oc-
casionally in other locations. From this point on most individ-
uals have nearly identical genotypes, so that crossover in itself
supplies fewer novelties to the gene pool. The occasional favor-
able mutation, however, is rapidly disseminated through the
population if selection pressure is maintained. The population
as a whole then gradually shifts closer and closer to the summit
(Fig. 3e). Figure 3 f'shows the corresponding evolution of the
fittest individual of a given generation (solid line), and median
individual in the ranked population (dashed line). The key
mutation event occurring between Figures 36 and 3¢ does not
produce, in itself, a sharp increase in fitness (i.e., a drop in

1-£).

GENETIC ALGORITHMS 313

The evolutionary process can be subdivided into two more
or less distinct phases. The first is characterized by a large-scale
exploration of parameter space, made possible by the action of
crossover on the extreme variety of genotypes making up the
gene pool. This phase of rapid evolution effectively comes to a
close when a large subset of the population has “found” the
highest peak in the landscape. From that point on evolution
occurs more slowly and leads to slow, incremental improve-
ments in the population’s fitness as favorable mutation be-
comes fixed in the population. Note that in Figure 3 fhow in
this evolutionary phase a generational delay always exists be-
tween the appearance of a favorable mutation (the solid line
for the fittest individual dropping down significantly), and its
spread throughout the population (as evidenced by the dashed
line for the median-fitness individual dropping down later, but
to the same level).

The final accuracy (i.e., the evaluation of ffor the fittest in-
dividual of the last generation of the run, here foh. =
£(0.498456, 0.503658) = 0.987335) of the solution shown in
Figure 3 is not particularly impressive, although 100 genera-
tions is a very short evolutionary run. It is also important to
realize that the rate of convergence of the algorithm varies from
one run to another, and the final accuracies can easily vary by
an order of magnitude. “Convergence” can only be defined in
a statistical sense here. The solution shown on Figure 3 is actu-
ally somewhat worse than a “typical” solution; it was chosen
because it illustrates an important operational advantage of ge-
netic algorithms, namely, the capability of moving away from
secondary maxima through crossover and mutation.

Figure 4 shows the effects of various assumptions concerning
mutation and crossover rates, selection pressure, and popula-
tion size. Each curve is a 100 run average and so is now more
representative of the true performance under each set of con-
ditions. A crossover rate p. = 0.65 means that crossover hap-
pens (on average) for 65% of all breeding events; a mutation
rate p,, = 0.003 means that in a given offspring, 0.3% of all
chromosome locii (on average ) are affected by mutation. High
selection pressure (SP = H) means that the probability of being
selected for breeding is heavily weighted toward the top end of
the population’s fitness distribution, while low selection pres-
sure (SP = L) means that even very unfit individuals have a
significant probability of breeding. A more quantitative de-
scription of how selection pressure is defined is given in the
Appendix (§ A3).

1t would appear from Figure 4 that an optimal genetic algo-
rithm should work on a large population, maintaining high se-
lection pressure and high rates of mutation and crossover
throughout the evolution. This is not so. Genetic algorithms
mimic life and, very much like life, are complex and unpre-
dictable. Crossover, mutation, selection pressure, and popula-
tion size interact in ways that are extremely nonlinear and,
moreover, cannot be cleanly separated, as may superficially ap-
pear to be the case in Figure 4. For example, a large population
converges rapidly at first, to a large extent because the proba-
bility of one individual in the random initial population land-
ing very close to the target is directly proportional to the popu-
lation size. However, during later evolutionary stages, a large
population has a lot of inertia when the possibility arises to
spread a favorable mutation. High mutation rates are a mixed

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

o 1017 7300T)

i
=4l
Ly
(=]

L

(A) Initial random populatlon

1T Nax<b.43v661 - .

08[%, @@©‘@@0 i
"00PEOO
5! DOOCBOB®
2 °0@@@"@@°:‘
04{+,00@@BOO ¢

- PQOOEDO °

[, 0dOOOBdO | | CO®E@GOe
00l2 e, ‘.‘-.'.. T s %

(C) 20" generation (D) 40" generation
1.0 T ———

(B) 10* generation
Max=0.8989%1 -

P COOEOOO |
©OO@OOOOG
‘@.‘@@'©”
“.@ DO@SO -

@O0O©MOO0 -
@@@'@.@{

' Max=0.91647%32 - _
0sf 0COO@OOO ]
©0000ROG
st 0OCEOBOO - |
~ |- 000@@ao -

Max=0.978332 -

[ 0OO0OB®OO®O |
[ @O@O©
000 -
- ©OO0E@O0O00O -

1

4 - 0@O@OEEO | [ 0OOOOO®O -
©0OG@O0 ! ©0PeOOO
¥ 00OO®O©O ] | COO®O®O
00l i RN .

(E) gotr generatlon (F) Evolution
1.0 1.00 " T T T

Max=0.986835 -

08} O©©'©©O .
00RO ®

s} - 0@E@OOMO®O
~ 1- 0000000 - |
4 0@O@O@O@O®O 1
©00O@OO !

0.10

0.01F

2 0@O®O©Oo — — 1-med(f)
- o - 1-max(f)
0.0 1 1 1 | i 1 TS Y|
0.0 0.2 0.4 0.6 0.8 1.0 0 20 40 60 80 100
X Generation

FIG. 3.—A genetic solution to the model optimization problem of § 1.1. The first five panels show the population distribution in space, overlaying
elevation contours of constant f, starting with the initial (random genotype) population in (a) and proceeding on through the 90th on (e). The large filled
circle is the fittest individual of its generation. The contours values are 0.05,0.15, 0.3,0.5, 0.7, and 0.9. (/) The evolution of the fittest phenotype (solid line,
measured as one minus its associated function evaluation), and the median-fitness individual (dashed line) in each generation.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

GENETIC ALGORITHMS 315

(B) SP=M, p_=0.003, N=100

1.00F

— — - p_=0.016
p_=0.003

(A) SP=M, p =0.65, N=100

1

" FEERE Y sl 1

(D) SP=M, p =0.65, p_=0.003

1.

5 0.10

mn'y max

1-f(x

0.01F

(C) p.=0.65, p_=0.003, N=100
00 Ty T Tl T T T

T

-"\,.‘
I e W YRS Ja AR L e ot Y

1 1 1 1

200 300 400
Generation

0 100

500 O 100 200 300 400 500

Generation

FIG. 4.—Fitness [as measured by 1 — f( x, )] vs generation count under various (@) mutation rates, (») crossover rates, (¢) selection pressures, and (d)
population sizes. Each curve corresponds to the fittest individual averaged over 100 runs of the genetic algorithm.

blessing; they enhance the exploration of parameter space, but
can impede accuracy. In fact, the optimal way to explore pa-
rameter space rapidly and efficiently involves a small popula-
tion subjected to high mutation rates and moderate selection
pressure.

The downhill simplex method of Nelder & Mead (1965) is
formally a local optimization method and as such should not
be expected to do particularly well on the model problem (Fig.
1b). Somewhat surprisingly, it turns out to do quite well, in
fact, it exhibits pseudoglobal behavior, in the sense that the
method (routine amoeba of Press et al. 1992, § 10.4) manages
to locate the absolute maximum at (0.5, 0.5) over a wide range
of sizes and locations of the initial simplex. This is probably
due at least in part to the low dimensionality of the search
space, since the set of “moves” executed by a two-dimensional
simplex actually leads to a rather efficient exploration of two-
dimensional space if the starting simplex is large enough. Sim-
ulated annealing, as embodied in the routine amebsa of Press
etal. (1992, § 10.9), also succeeds in locating the global maxi-
mum of Figure 15, as long as the annealing schedule is suitably
defined. This is easy to do if prior information exists as to the

relative depths of secondary extrema, but can be more prob-
lematic when no such information is available.

1.5. Additional Strategies and Techniques

The use of decimal—as opposed to binary—encoding ex-
cepted, what has been described up to this point could be la-
beled a “canonical genetic algorithm,” in the sense that it in-
corporates the basic set of genetic operators originally
suggested by Holland (1975). The solutions discussed in the
preceding section were obtained by forcing PIKAIA to operate
in this basic mode. In most cases, however, this is not optimal
for numerical optimization. Numerous other operators and
strategies have been developed to improve the performance of
genetic algorithms in that context, as discussed for example in
Davis (1991, chaps. 3 and 4) and Goldberg (1989, chap. 5).
While such techniques can easily accelerate convergence—and
improve final accuracy—many often require precise fine tun-
ing of some model parameters and perform well only for a spe-
cific subclass of problems. In other words, they lack robustness.
The following is a brief description of a few generally robust

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

316 CHARBONNEAU

strategies and techniques that are incorporated as options in
PIKAIA.

Fitness is Ranking.—Ranking, i.e., equating breeding prob-
ability to fitness-based rank in the population (as opposed to
fitness value) is a useful way to maintain adequate selection
pressure throughout the evolutionary run. Consider, for exam-
ple, the solution shown on Figure 3; in the initial random pop-
ulation, the fittest and median individuals have function eval-
uations f = 0.437661 and 0.015896, respectively. If this is
directly taken as a measure of breeding probability, then the
fittest individual has a probability of being selected for breed-
ing 28 times greater than the median individual. This seems
fine, since the fittest individual is clearly superior, but consider
what happens later in the evolutionary run. At the 40th gener-
ation, the fittest and median individuals have evaluations f =
0.978322 and 0.930098, giving them essentially identical
breeding probabilities, even though the fittest is still much
closer to target in a relative sense. A related problem occurs
when, early in the evolution, one individual happens to have
much higher fitness than its fellow population members. Mak-
ing breeding probability equal (or linearly proportional) to
fitness has the consequence that this one “‘superindividual”
breeds too often for the health of the population, with the cor-
responding genotype rapidly dominating the gene pool. The
loss of variation resulting from what rapidly becomes inbreed-
ing often causes premature convergence to secondary extrema,
with only mutation left to save the day. Ranking, on the other
hand, ensures a constant fitness differential across the popula-
tion, independently of what the distribution of absolute (true)
fitnesses actually is. Ranking is the strategy used in PIKAIA.

Elitism.—This consists in ensuring that the fittest genotype
of generation 7 is copied at least once without alteration into
generation n + 1. This extremely simple procedure signifi-
cantly improves the performance of GA-based optimizers, es-
pecially when used in conjunction with variable mutation
rates.

Variable mutation rate.—Another useful strategy consists in
gradually increasing the mutation rate once the difference in
fitnesses between the median and fittest individuals falls below
20% (say). This represents a particularly simple way of main-
taining variability in the gene pool and avoiding premature
convergence of the population. This strategy should however
be used in conjunction with elitism, so as to avoid destroying
favorable genotypes through the effects of overly enhanced
mutation rates.* Variable mutation rate with elitism are default
settings in PIKAIA.

Reproduction plans: generational replacement versus
Steady-State.—The algorithm outlined at the beginning of this
section does not impose a priori restrictions on how step 4 is to
proceed. A reproduction plan is needed to control how newly
bred offspring are inserted in the population. One can imagine
two extreme strategies: (1) offspring are accumulated in tem-

“* A related technique known as dynamical or nonuniform mutation
(Michalewicz 1994, § 6.2) consists in using mutation rates that vary in
time and as a function of position along the chromosome, so that genes
corresponding to least significant digits have higher mutation rates than
those mapping onto the most significant digits. Efficient use of this tech-
nique, however, requires the introduction and adjustment of some addi-
tional parameters.

Vol. 101

porary storage, and once enough offspring have been bred they
replace the entire parent population; this goes under the name
of full generational replacement. (2) Alternately, offspring can
be inserted in the population as soon as they are bred. This is
known as steady state reproduction. Under this alternate plan,
one must further specify how older individuals are to be de-
leted from the population in order to make room for newly
bred individuals. Full generational replacement is the default
in PIKAIA.

1.6. Hybrid Methods

In choosing values for genetic algorithm parameters or
adopting one or the other specific technique described above,
one typically strives to maintain adequate balance between ex-
ploration and exploitation. Efficient exploration of parameter
space is a defining characteristic of global optimization
schemes, but this requirement often conflicts with the exploi-
tation of the characteristics of the current best solution to pro-
duce accelerated convergence to the true optimal solution. The
general shape of the “convergence curves” in Figures 3 fand 4
is quite typical for GA-based optimizers and, more interest-
ingly, markedly different from the corresponding curves for
conjugate gradient-type techniques. The latter tend to be char-
acterized by slow convergence in the first few iterations, fol-
lowed by rapid convergence (often at a well-defined rate) once
in the vicinity of the nearest extremum. This is because conju-
gate gradient-type methods are often specifically designed to
efficiently make use of local and prior information (values of
local derivatives, “memory” of previous conjugate directions
in parameter space, etc. . . .). Genetic algorithms, on the other
hand, converge rather slowly near extrema, since they rely pri-
marily on mutation to generate small incremental changes in
the population. But the crossover operation, acting on a di-
verse gene pool, constantly produces large jumps through pa-
rameter space (cf. Fig. 2), And so favors exploration.’ This
suggests that if high accuracy is required, it would likely be
advantageous to use a GA solution as a starting guess for more
standard schemes such as conjugate gradient methods. Al-
ternately, one can incorporate hill climbing-like capabilities
within the genetic algorithm. The resulting Aybrid algorithms
combine the best of both classes of techniques, namely, the
good exploratory capabilities of GAs with the rapid con-
vergence of more conventional techniques in the vicinity of
extrema.

1.7. Defining Fitness

In the model problem that has been the focus of attention
thus far, there is a direct correspondence between “altitude,”
as returned by the evaluation of f( x, y), and “fitness,” as im-
plemented in the genetic algorithm. But the correspondence
need not be that direct. Consider a standard fitting problem,
where one is given a discrete set of N data points [x;, y;] with
associated measurement errors g; = o(y; ), and is asked to con-
struct the best possible fit to these data using a specific func-
tional form for the fitting function, e.g., y(x) = mx + b for a

5 That crossover achieves this exploratory effect is a central aspect of
genetic algorithm theory, as embodied in the schemata theorem. See chap.
2 of Goldberg ( 1989) for further discussion.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

No. 2, 1995

linear fit. How well the linear function generated by a given
[m, b] pair fits the data can be quantified via the x > merit func-
tion:
N 2
Xi;m,b)—yi
Kim, b) = 3 [HHRLAT )

i=1

Calculating the x? for all possible values of [m, b] defines a
“landscape” in the two-dimensional [m, b] parameter space.
The task becomes one of minimizing x?, but the procedure is
conceptually identical to the maximization problem consid-
ered above.

The following sections illustrate the use of genetic algo-
rithms in treating three real astronomical and astrophysical ap-
plications. The purpose is not to provide a technical discussion
of the application of genetic algorithms to this or that specific
problem, nor to carry out systematic comparisons of their per-
formance against that of conventional methods. Instead, the
aim is simply to demonstrate, through examples, the power
and versatility (as well as the shortcomings) of genetic algo-
rithms as a class of robust, general-purpose optimization tech-
niques. The following three problems, as well as the model
problem of this section, were all treated with the GA-based op-
timization subroutine PIKAIA listed in the Appendix.

2. FITTING ROTATION CURVES OF GALAXIES
2.1. Problem Statement

The rotation curve of a galaxy refers to the variations of the
orbital velocity of stars and gas about the galactic center with
galactocentric distance 7 in the galactic plane. The shape of a
galaxy’s rotation curve is usually interpreted in terms of an
equilibrium between gravitational and centrifugal accelera-
tions. If this is the case, then the rotational velocity v at galac-
tocentric distance r is related to the gravitational potential ®(r)
by the relation

2y =22
v =ross (3)

where ®(r) is the gravitational potential of all mass located
within a sphere of radius r. The rotation curves of galaxies thus
provide, in principle, the means to determine their total mass,
including mass that is not directly detectable optically. Early
studies of galactic rotation curves immediately suggested the
presence of “missing mass” or “dark matter” surrounding
most galaxies, and extending to much larger galactocentric dis-
tances than the optically visible mass components (Faber &
Gallaher 1979). Four distinct mass contributions are usually
taken into account in modeling galactic rotation curves: (a) a
bulge component, sometimes weak or even insignificant but
in other cases dominating the mass distribution near galactic
center, (b) a disk component, usually dominating the rotation
curve throughout the optically visible portion of galaxies, (¢)
an interstellar gas component, primarily neutral hydrogen, and
(d) a halo component composed of dark matter. In the nonrel-
ativistic limit the total gravitational potential can then be writ-
ten as

®(r) = ®p(r) + p(r) + Be(r) + 2u(r). (4)

GENETIC ALGORITHMS 317

In view of equation (3), this linear addition implies that the
corresponding contributions to the total velocity curve add
quadratically:

v2(r) = v3(r) + v3(r) + vE(r) + v5(r) . (3)

In practice, the brightness profiles for the bulge and disk are
obtained observationally. The conversion to mass (and thus
gravitational potential and then velocities) requires a knowl-
edge of the mass-to-light ratios (M/ L) for the stellar popula-
tions making up the disk and bulge. While in principle these
ratios can be estimated if the age and mass functions of the
populations are known, in practice they are both treated as ad-
justable parameters in the fitting procedure. Considerable un-
certainties exist as to the functional form of the halo’s mass
distribution and corresponding contribution to the total veloc-
ity. The following two-parameter form, used by Kent (1986),
is amply adequate here:

vi(r) = 202[1 - (ﬁ) tan~! (%)] , (6)

but other prescriptions are possible (see, €.g., Carignan & Free-
man 1985). Here ¢ is a velocity dispersion, and « a character-
istic length scale. The contribution from neutral hydrogen
(H1) is often measured directly at radio wavelengths (see, e.g.,
Carignan et al. 1990). The fitting of rotation curves is thus,
in general, a four-parameter fitting problem for which genetic
solutions can be obtained. The fitting is nonlinear, in the sense
that the rotation curve is a nonlinear function of the fitting
parameters; equation (6), defining the halo contribution in
terms of o and o, is a nonlinear function of « and is added
(quadratically) to other contributions in order to produce the
phenotype (eq. [ 5]) whose fitness is then evaluated in terms of
its closeness to the data, as quantified by the x 2.

A final point of importance concerns the allowed ranges for
the fitting parameters. For the fitting problem under consider-
ation, a minimal constraint is to require that the fitting param-
eters be positive quantities. But there are physical constraints
that can (and often must) be taken into account. For example,
aratio M/ Ly < 1 would imply that the stellar population mak-
ing up the disk is of a rather peculiar sort. Unless there is strong
evidence to the contrary, one may argue that a constraint of
the form 1 S M/ Lp < 5 (say) should be introduced. The “max-
imum disk” procedure (e.g., Carignan & Freeman 1985) con-
sists in pushing M/ Ly to the largest possible value consistent
with a reasonable fit of the rotation curve close to galactic cen-
ter. As the following example demonstrates, such additional
constraints may override choices of “best” fit based solely on
minimal x 2 values.

2.2. A Fit to the Rotation Curve of NCG 6946

NGC 6946 is a well studied late-type (Scd) spiral galaxy,
having an extended rotation curve with a well defined flat outer
portion, effectively no bulge, and a significant H 1 component
(Carignan et al. 1990). The rotational data and the contribu-
tions from the various visible components are shown on Figure
5. Because there is no bulge contribution, the fitting of the ro-
tation curve reduces to a three (instead of four) parameter fit-

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

318

CHARBONNEAU

Vol. 101

T T T

Y= 165
a= 2.05, 0=102., M/L =0.68

2001

1200

150

100

50

X2=I58'2 T T T T
| a=48.44, 0=244,, M/L =1.12

0 5 10 15 20 25
r [kPc]

100017 T T T
s Constraint: none

Best

— — — Median

|
1100 \ <
W

1 Il 1

000F

10 L I ! !

20 40 60 80
Generation

100 20 40 60 80

100
Generation

F1G. 5.—Two genetic solutions to the rotation curve fitting problem. (a, ¢) The optimal solutions on which the algorithm has converged after 100
generations. The filled circles are the data, and the solid line the fits evolved genetically. The corresponding halo, H 1, disk, and halo contributions are also
plotted. Fit (@) is unconstrained, while for fit (¢) the restriction M/ L, > 0.9 has been enforced. (b, d) the corresponding x ? evolution for the fittest individual
of each generation (solid line), and median individual (dashed line). The dotted line is the number of degrees of freedom present in the fit. While in terms
of x2 fit (a) is clearly superior to (), the latter is to be preferred on physical grounds (see text).

ting problem for M/ L, the mass-to-light ratio of the disk, and
the two halo parameters ¢ and «.

Figure 5 shows two genetic solutions obtained by evolving
a population of 100 individuals over 100 generations, using
crossover and mutation rates of 0.65 and 0.003, respectively.
These two solutions differ only in the allowed M/Lp range;
except for the basic positivity requirement, the fit shown in
Figure 5a is otherwise unconstrained. The fit in Figure 5¢, on
the other hand, was obtained under the constraint that A/
L, = 0.9, in the spirit of the maximum disk procedure. The
final fitting parameters are (M/Lp, , 6) = (0.68, 2.05, 102.),
yielding x % = 16.5 for fit (Fig. Sa), and (M/Lp, a, o) = (1.12,
48.4,244.), yielding x> = 58.2 for (Fig. 5¢).

With an average rms deviation of ~5 km s™! for velocities
of ~200 km s™!, both these fits “look good.” Estimating good-
ness of fit via “x-by-eye,” however, is a guaranteed recipe for
disaster. Among the various deterministic criteria available
(see, e.g., Press et al. 1992, chap. 15) a particularly simple
one—and one sufficient for the present purpose—consists in
comparing the x 2 of the fit to the number of available degrees
of freedom in the fitting procedure, defined simply as

v=N—-M, (7)
where N is the number of data points to be fitted and M the
number of parameters involved in the fit. If x2 ~ », one has a
moderately good fit. x2 > » indicates that either (1) the error
estimates o; are larger than assumed and/ or the errors are not
normally distributed or (2) there is something wrong and/or
incomplete about the model that is being used to fit the data.
For the fitting problem of Figure 5 one has N = 20 and M = 3,
so that » = 17, corresponding to the horizontal dotted lines on
Figures 5b and 5d. In this light, fit (Fig. 5a) is clearly a better
fit than (Fig. 5¢). Or is it? Should one be fooled in accepting fit
(Fig. 5a) and rejecting fit (Fig. 5¢) solely on the basis of x2
considerations? Probably not. There are no compelling reasons
to believe that the mass distribution of the halo should strictly
obey equation (6) (or be any absolutely smooth function of r,
for that matter!). It may well be that both fits on Figure 5 are
good enough after all. So which one is to be preferred?

The existence of sets of widely different fitting parameters
yielding fits of similar quality is actually a common occurrence
in fitting rotation curves of galaxies. A casual exploration of

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

(o8
(=]
&
o
'
=

SOOI

i
15{]
Ly
(=]

L

No. 2, 1995

parameter space reveals that many secondary minima are pres-
ent, but this difficulty is compounded by the fact that the min-
ima are clustered in a long, flat-bottomed valley with very little
“contrast” between neighboring local minima (see, e.g., Fig. 8
of Carignan et al. 1990). This situation arises when the rota-
tion curve does not extend very far beyond the peak in the
disk’s light curve, a common state of affairs in this business (see
Kent 1986). There exists then a series of tradeoffs between M/
Lp, a, and o that yield very similar rotation curves, as exem-
plified on Figure 5. This is no moot point, as the physical pa-
rameters defining the various “acceptable” fits are markedly
different and lead to very different pictures of the mass budget
among the various components, and so to very different esti-
mates for the mass of galactic dark matter. Only if the rotation
curve extends well beyond the peak in the light curve can the
contributions from disk and halo be unambiguously separated.
Otherwise various physically based arguments, such as the
maximum disk conjecture, must be put forth to pick “the” so-
lution among the subset of low-x 2 solutions (see discussions in
Kent 1986 and Carignan et al. 1990). For NGC 6946, M/
Lj, = 0.68 is likely unreasonably low, so that fit (Fig. 5b) is to
be preferred; fitting rotation curves of galaxies is just trickier
than simply finding the lowest possible x 2.

With or without additional constraints, genetic algorithms
do find the absolute minimum in parameter space without
difficulty, even though the fitting landscape is rather ill be-
haved; more interestingly, this problem illustrates another im-
portant operational advantage of GA-based optimization,
namely, the easy handling of constraints. Many constraints can
be incorporated directly in the encoding procedure. For the
solution of Figure 5 (C/D), this simply involved writing M/
Ly =0.9 + x, and encoding x (=0) in the usual way (cf. Fig.
2), a procedure that admittedly could be applied just as well to
other methods. But the idea of “hardwiring” constraints di-
rectly at the encoding/decoding level is readily generalized to
other classes of constraints that are much harder to accommo-
date within conventional optimization methods (for some spe-
cific examples, see chap. 7 of Michalewicz 1994).

3. FITTING A MULTIPLY PERIODIC SIGNAL
WITH NOISE AND DATA GAPS

Fitting time-series data is perhaps one of the most common
tasks in observational astronomy. Simple examples include the
computation of orbital elements for spectroscopic binaries, pe-
riod determination in pulsating stars, photometric determina-
tion of the rotation periods of late-type stars, and so on. The
growing field of asteroseismology (see Brown & Gilliland
1994) is producing an ever-increasing set of fitting problems
involving multiply periodic signals. The fitting of such signals
using genetic algorithms is the topic of this section.

3.1. Problem Statement and a Synthetic Example

Consider a multiply-periodic signal defined by

2—”+¢k). (8)

N
f(H=A4,+ > Aksin(
Py

k=1

One such function is defined by N amplitude/period/phase
triplets ([Ax, Pk, ¢x]), plus the base level constant 4,, for a

GENETIC ALGORITHMS 319

total of 3NV + 1 parameters. The dotted line on Figure 6a is the
time series of total length At = 240 resulting from setting N =
5 in equation (7), with 4y = 5, {4,} = {0.8, 0.75, 0.5, 0.4,
0.85}, { P} ={9.6,12,18,21.6,30}, and { ¢} = {0.4,0.15,
0.1, 0.2, 0.25} X 2m. The solid dots are “data” generated by
sampling the dotted curve over a period Ps = 24, with gaps of
duration Az, = Pg between successive_sampling events, and
with random noise at the level ¢ = 1/ V12 also thrown into the
signal. Such regularly spaced gaps are meant to mimic the day/
night cycle plaguing all (low-latitude) single-site astronomical
observations of variable stars. The fitting problem is again non-
linear, as the right-hand side of equation (8) involves nonlin-
ear functions of some fitting parameters. The “cleaning algo-
rithm” is a standard analysis technique for such multiply-
periodic signals and proceeds as follows:

1. Compute the power spectra of the signal and identify the
dominant period

2. Perform a least-squares fit to the data to obtain the am-
plitude and phase of the mode whose period was identified in
step (1).

3. Construct the time series corresponding to that single
mode, and subtract it from the original signal to obtain a new
signal.

4. Repeat steps 1-3 until convinced that all that is left is
noise.

Step 4, wisely deciding when to stop, is one of the aspects
that make multiply-periodic signal fitting somewhat of an art.
It may also happen that the order in which periods are succes-

Eoeee Original signal essssss Data — Genetic solution  (A)]

Signal
o M A& O o

0 50 100 150 200

I I
,,,,,,,,, Original signjal

Amplitude

100
Period
FIG. 6.—A noisy time series with data gaps. Panel (a) shows the time
series, and panel (b) their power spectra. The dotted lines refer to the orig-
inal signal (cf. eq. [8]), and the filled circles synthetic “data” generated
from the original signal. The thin solid line at the bottom of the panel is
S —f*,ie., the difference between the original signal and the fitted signal.
The thick solid line in (a) is a genetic fit to the data, and the vertical dashed
lines in () indicate the periods “found” by the genetic algorithm.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

(o8
(=]
&
o
'
=

RIS T

(54
Loy
(=]
[=h

320 CHARBONNEAU

sively extracted from the signal ends up affecting the final set
of periods and amplitudes fitted to the signal.

The thick solid line on Figure 6a is a genetic solution f* to
the fitting problem defined by the “data,” and the thin solid
line the difference between the original signal and the fitted
signal. This solution was obtained by evolving 200 individuals
over 200 generations under full generational replacement, us-
ing a variable mutation rate with elitism. With x2 = 812, this
is a decent fit, as v = 750-22 = 728 here, and 200 generations
being a rather short evolutionary run. In fact, the original sig-
nal used to construct the noisy “data” of Figure 6 returns x> =
778, hardly better than the fit! The genetic solution was set up
so that seven periods be sought (although N = 5 in the synthetic
signal, but one is not supposed to know that). The periods
found by the algorithm are { P } = {9.5998, 12.013, 17.879,
21.480, 21.588, 30.012, 77.674}, with corresponding ampli-
tudes {47} = {0.6997, 0.8999, 0.4589, 0.2869, 0.1611,
0.9453, 0.0519}. Note how one of the original periods (P, =
21.6) has been “divided” into two contributions (P = 21.480,
P¥=21588), with 4 + A¥ ~ A,. The genetic solution has
also “found” a period P5 = 77.674 absent in the original sig-
nal, but with an amplitude 45 = 0.0519 this hardly contributes
to the total signal and is most likely a leftover of an earlier
evolutionary phase.

Although one may rejoice in the fact that all periods present
in the original signal have been properly detected and fitted by
the genetic solution, readers seasoned in the art of time series
analysis will not be overly impressed, and rightfully so; despite
noise and data gaps, the power spectrum of the data (solid line
in Fig. 6b) still carries rather clearly the signature of the five
periods present in the original signal, whose power spectrum is
shown as a dotted line on Figure 6b. Although some of the
peaks in the data power spectrum exceed in amplitude two of
the components of the original signal, all five true periods re-
main clearly delineated. In other words, fitting the data of Fig-
ure 6a is a fairly straightforward task for the standard cleaning
algorithm.

It is certainly reassuring that the genetic algorithm does as
well as more conventional techniques on easy problems, and
noteworthy that the genetic fit proceeds completely autono-
mously (i.e., without outside intervention on the part of the
modeler); but can genetic techniques do significantly better on
hard problems? More difficult signals, for example signals
where the sidelobes of one strong period completely wash out
neighboring periods of small amplitudes, are not so well fitted
by the standard genetic algorithm (although they can also be
quite difficult to fit with the cleaning algorithm). More worri-
some, in many trial runs on harder synthetic problems the ge-
netic algorithm often misses completely small amplitude,
short-period components that, disturbingly, stand out quite
clearly in the corresponding power spectrum. There is indeed
very important information in power spectra, but unlike the
cleaning algorithm, direct genetic fitting does not know about
Fourier space. One potential solution lies with hybrid algo-
rithms, 1i.e., algorithms that incorporate the standard genetic
algorithm within the cleaning algorithm (for example). An-
other possibility is to use a standard genetic algorithm, but in-
corporate a goodness-of-fit measure for the power spectrum
(i.e., do x? minimization in Fourier space and in real space
simultaneously).

3.2. Fitting Pulsation Periods in 6 Scuti Stars

The & Scuti stars are Population I post-main-sequence ob-
jects, showing complex multiply periodic brightness varia-
tions, typically in the 10-100 millimagnitude range (Matthews
1993). Their position in the H-R diagram coincides with the
low-luminosity extension of the Cepheid instability strip,
which suggests that the k-mechanism is responsible for the
driving of the pulsations. Observationally, pulsations show up
photometrically and/or as Doppler shifts in strong spectral
lines. With multiple periods in the range 0.5-6 hr, é Scuti are
particularly sensitive to the day/night cycle problems dis-
cussed above (compare the “data” of Fig. 6a herein to Fig. 1 in
Matthews 1993).

The Hyades star §? Tau is a particularly well-observed
6 Scuti star. Figure 7a shows Doppler velocity measurements
determined from multisite observations of 2 Tau, spanning 4
days and obtained as part of the MUSICOS campaign (Catala
et al. 1993). Figure 7b shows the corresponding power spec-
trum. It is a mess. A superposition of closely spaced modes
likely gives rise to the complex structure at P ~ 2 hr, and hints
of low-amplitude signals at P ~ 0.9, 4, and possibly 1.2 hr are
also present. Using an implementation of the cleaning algo-
rithm due to Breger (1980), Kennelly et al. (1995) find in these
data the following set of periods and amplitudes:

P, ={2.042,1.948,1.811,1.751,1.675} hr, (9a)

A, ={0.50,0.62,0.48,0.50,0.21} kms™', (9b)
with, however, low confidence level for the actual existence of
Ps (E.J. Kennelly, personal communication ).

The solid line on Figure 7a is a genetic fit, obtained by trying
to fit seven sinusoidal components to the data. In obtaining this
fit, four out of the seven available periods were initialized to
{0.870, 1.120, 1.820, 1.950} hr in half the individuals of the
initial (no longer completely) random population. This was
based on a casual inspection of the data power spectrum, and
represents one particularly simple way in which information
obtained from the power spectrum can be introduced in the
genetic algorithm. Except for this initialization, the genetic fit
is a standard one, evolving 200 individuals over 1000 genera-
tions under moderate selection pressure and with a variable
mutation rate. Figure 7 ¢ shows the evolution of a normalized
x 2 (the data came without error estimates, so that ¢ was as-
signed an arbitrary value of 1 for all data points). Note how the
x2 of the median individual (dotted line) remains approxi-
mately constant beyond the 100th generation, while the x 2 for
the fittest individual (solid line) continues to decrease. This is
due to a gradual increase in mutation rate beginning at about
the 50th generation. High variability is then maintained in the
gene pool, which, in combination with elitism, allows favor-
able mutations to appear at a relatively high rate and become
fixed in the “top end” of the population. After 10> generations,
the genetic solution is characterized by the following set of pe-
riods and amplitudes:

Py = {7.612,2.065,2.025, 1.941,
1.816, 1.756, 1.741} hr, (10a)

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

[oh
(2]

8'

P!

SOOI

id
K1
L0y
2,
]|
L

— 3E
T 2
nw 1E
£ OF
& -1E
> “&[]
— —i
T 2E
w 1
g O0OF
= -1E
> &
= 3
2 :
£ Of
-1

> :§

v [km s7)

[ P [br] A [km/s] : (B)] : Best
06k 7612  0.14 ] A Median
Pl 1.741 0.44 ;
o [ 1.816  0.48 :
3 [ 1.941 8'82 ;_
oot | 2.065 . o Foooary ':':':v'lr"'n‘ l‘- .;"ht 4 A "
2 040 1786 017 R R it A
£ | 2.025 0.47
<
0.2
asl A e P S S S Y l(lCI)lllilllAllLL‘l.JL
1 10 0 200 400 600 800 1000
Period [hr] Generation

FiG. 7.—Genetic fit to the velocity variations observed in the & Scuti star #2 Tau. (a) Data obtained as part of the second MUSICOS campaign ( circles:
Kitt Peak /McMath telescope, USA; triangles: Observatoire de Haute-Provence, France; diamonds: William Herschel telescope, Canary Islands; squares:
Xinlong Observatory, China). The zero point of the timescale corresponds to JD8964.0. The solid line is a 103 generations, 200 individuals genetic fit. (b)
The data power spectrum, together with a listing of periods and amplitudes found by the genetic algorithm. The dotted line segments indicate the positions
of the periods. (¢) The evolution of the (normalized) x 2 for the fittest and median individuals in the population.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

[}
(=]

e

ST IT0LS

pJ

(={]
L0y
(=]
[=h

322 CHARBONNEAU

Ay ={0.14,0.06, 0.47, 0.49,
0.48,0.17,0.44} kms™'.

i
Note how two of the periods artificially introduced in the initial
population have disappeared, while the other two have been
slightly altered. Identifying Px* = {P}, Pi, P%,
P%} as the relevant subset of periods, the genetic solution is
compatible with the first four modes found by Kennelly et al.
(1995) within an accuracy

(10b)

AP, ={—1.1,0.36,-0.28,0.57} (%), (lla)

A4, ={6.0,21,0.0, 12} (%). (11b)
This represents a rather impressive agreement. What is perhaps
equally noteworthy is that the fit “evolved” in a completely
autonomous fashion, without human intervention.

4. MAGNETOHYDRODYNAMIC WIND MODELS WITH
MULTIPLE CRITICAL POINTS

It was claimed in the introductory paragraphs of this paper
that a large number of problems can be cast in terms of mini-
mization problems even though they may not look like classi-
cal “fitting problems,” such as the ones dealt with in §§ 2 and
3; this third and final example is chosen to illustrate precisely
this point.

4.1. Problem Statement

The existence of a continuous, more or less radial and steady
corpuscular outflow (or wind) emanating from the Sun results
from the impossibility of maintaining the hot (7 ~ 10° K)
solar coronal gas in hydrostatic equilibrium in the Sun’s gravi-
tational field (see, e.g., Parker 1963, Chap. 10). The in situ
detection of the solar wind by early Earth-orbiting satellites was
a truly spectacular confirmation of the wind model earlier de-
veloped by Parker (1958). The early solar wind models were
strictly hydrodynamical, in the sense that they neglected the
dynamical effects of magnetic fields. These were first incorpo-
rated into hydrodynamic wind models by Weber & Davis
(1967 see also Belcher & MacGregor 1976). Although it in-
volves some rather restrictive assumptions concerning the as-
sumed geometry of the magnetic field, the Weber-Davis model
applied to the solar case yields flow speeds and densities in
good agreement with observations at 1 AU (Pizzo et al. 1983),
and remains to this day the primary (deterministic) model
used to estimate quantities such as mass and angular momen-
tum loss from rotating, magnetized stars (see, e.g., Charbon-
neau, Schrijver, & MacGregor 1995, § 4).

A detailed description of the mathematical formulation of
the MHD wind problem would entail an overly lengthy digres-
sion, and so is only outlined here. The solutions are con-
structed in the framework of single fluid magnetohydrodynam-
ics. Adopting spherical polar coordinates (r, 6, ¢), the
solutions sought are steady (d/dt = 0), axisymmetric (3/d¢ =
0) and restricted to the equatorial plane (8/96 = 0 and v, = 0).
Quantities such as the rotation rate Q, the base temperature,
density, and radial magnetic field strength (T, po, and B,)
are assumed known at some fiducial reference radius 7, (X Ro,

Vol. 101

typically), and the solution is to be constructed in r > r,. The
interested reader is referred to Weber & Davis (1967) and
Belcher & MacGregor (1976) for further discussion and for a
listing of the basic governing equations of single-fluid magne-
tohydrodynamics. Belcher & MacGregor show that the r-com-
ponent of the equation of motion can be manipulated into the
form:

>

v, _ (v,\[ (07 —A2)(2cF +v] — GMo/r) +20,0,4, 4,
o \r (v7 — AD) (v} — ¢§) —viA]

(12)

where ¢ = ap/p is the polytropic sound speed with a the poly-
tropic index, and A,y = B,(4)/(47p)'/? are Alfvén speeds.
Equation ( 12) is basically the magnetohydrodynamic equiva-
lent of F = ma, i.e., a statement of momentum conservation
governing the dynamics of the flow. This expression can be
integrated once to yield

E(r,0) =5 (0} + ) - e

+ C?O (ﬂ)a—l_(gr)ArAnﬁ, (13)

a—1 Po r
where E(r, v,) is a constant, corresponding to the total energy
per unit mass in the flow, so that equation (13) simply ex-
presses energy conservation. The right-hand side of equation
(12) looks like it may diverge if there exists values of v, for
which the denominator vanishes. This (unfortunately) does
occur, whenever v, becomes equal to the phase speed of either
the fast or slow magnetosonic wave mode, corresponding to
two distinct ways in which information can be transmitted in a
magnetized, electrically conducting, compressible fluid. De-
note the corresponding radial position by ryand r,. Now, diver-
gence of the right-hand side means dv,/dr — oo, implying in-
finite accelerations and other related nastiness which are best
avoided. There is one avenue open to save the day, namely
ensuring that the numerator on the right-hand side of equation
(12) also vanishes at r; and r(the corresponding pairs of posi-
tions and fluid velocities, [rs, v,s] and [r;, v,/], are critical
points of the governing differential equation). Denoting by N
and D the numerator and denominator within the square
brackets on the right-hand side of equation (12), one then re-
quires that

N(rpv)=0, (14a)
D(r;,v7)=0, (14b)
N(rs,v5)=0, (14c)
D(rs,v5)=0, (14d)
complemented by the constraints
E(rpv0)= E(v,0,70), (14e)
E(rs,v5) = E(v,0, 1), (14f)

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

No. 2, 1995

so that the solution conserves energy. Equations ( 14a)—( 14f)
must be solved simultaneously for the elements of the solution
6-vector

W=(U,0, v¢0srsa Uyss rfa vrf)- (15)

These six quantities turn out to fully determine the wind solu-
tion, as shown by Belcher & MacGregor (1976).

4.2. Recasting the Solution Procedure as a
Minimization Problem

Equations (14) define a six-dimensional nonlinear root
finding problem for a set of six coupled equations. Unfortu-
nately, there are just no robust, efficient algorithms to solve this
kind of root finding problem. Section 9.6 of Press et al. (1992)
contains a brief, yet accessible and insightful discussion of why
this is the case. Belcher & MacGregor (1976) actually tackle
the problem directly, using a conjugate gradient method. Not

“surprisingly, the technique converges well as long as a very
good starting guess can be provided. In general, sufficiently
good guesses can only be made in some very specific asymp-
totic limits. To construct a wind solution for a strongly mag-
netized rapidly rotating Sun (say) starting from a (known) so-
lar-type solution, Belcher & MacGregor use a continuation
scheme whereby one of the solution’s input parameters (e.g.,
the rotation rate) is increased by a small amount, a new wind
solution computed and used as a starting guess after the input
parameter is further incremented, and so on, until the desired
value for the input parameter is attained. The procedure is then
repeated for the other input parameters (e.g., magnetic field
strength), as needed. For small enough increments the proce-
dure works quite well and can be automated to a large degree.
But it becomes rather time consuming if large distances need
be traveled through parameter space, and requires some degree
of premeditation on the part of the modeler. Clearly, a more
robust and efficient technique would be preferable.

An alternate approach consists in converting the root finding
problem defined by equations ( 14a)—( 14f) to a minimization
problem. This begins by defining a function

f(W)= {Nz(rf, vf)+D2(rf, vf)+N2(rS, ’US)
+ Dz(rsa v:) + [E(rf’ vf) - E(U,o, rO)]2
+ [E(rs, v5) — E(v0,10)1%},  (16)

so that the root finding problem is now simply
Sw)=0, (17)

which already looks friendlier, although it must be kept in
mind that one has six quantities to adjust, as opposed to one,
in order to find the root. Clearly any root (a 6-vector wy where
f(wg) = 0) is also a minimum since f(w) > 0 by construction.
The root finding problem can be then cast as a minimization
problem for a single, strongly nonlinear multidimensional
function, which is usually easier than a root finding problem
for a set of coupled nonlinear equations. However, while all
roots of equations ( 14a)—( 14f) will correspond to a minimum
(in fact, a zero) of f(w), not all minima of f(w) should be

GENETIC ALGORITHMS 323

expected to be roots of equations ( 14a)—-( 14f). Furthermore,
it is generally the case that f(w) has a /ot more secondary min-
ima than equations ( 14a)—( 14f) have solutions (simultaneous
roots). One is facing a familiar difficulty (cf. the model prob-
lem of § 1); to avoid getting “stuck™ in a minimum that is not
a zero one will want to either (1) have a pretty good starting
guess for w, in which case one may as well use Belcher & Mac-
Gregor’s original method, or (2) have available a scheme that
can efficiently explore parameter space and climb out of sec-
ondary minima . . . enter genetic algorithms!

4.3. A Genetic Algorithm Solution

The construction of the function to be minimized is clearly
not unique, and other options than the quadratic sum of
equations ( 16) may yield better results. A series of experiments
indicate that in the present context the following is preferable
to equation (16):

Sw) =[IN(rr, v)|"* + | D(rp, vp)| V% + | N(r5, v5)| /2
+ | D(rs, v)|'2 + | E(rp, v) — E(0y0, o) | /2
+ | E(ry, v5) — E(v,0, 10) |21, (18)

This function is also positive definite by construction, and the
exponent 1/2 (instead of 2 in eq. [16]) helps to maintain a
better balance between the six distinct contributions on the
right-hand side as the solution evolves. Figure 8a shows the
evolution of the elements of the solution 6-vector. This genetic
solution was obtained under full generational replacement,
with variable mutation rate and elitism. After 500 generations,
the fittest of 100 individuals has a phenotype

w¥ = {0.0122779, 0.0140085, 6.59223,
0.668323, 31.5335, 1.34764}, (19)

where lengths (r;and r,) are normalized to the reference radius
ro, and velocities (v,9, 040, V5, and v,,) to the base sound speed
¢s0. For comparison, the corresponding values obtained using
the method of Belcher & MacGregor are

wo = {0.0122947, 0.0140226, 6.60039,
0.676146, 29.5224, 1.37785} (20)

and are shown as horizontal line segments on Figure 8a. The
numbers in square brackets are the percent difference between
the two solutions. Figure 85 shows the evolution of f(w¥ ) for
the best and median individual. As on Figure 7 ¢, the lack of
convergence of the population as a whole, revealed by the fact
that the “median” curve never joins the “best” curve, can be
traced to the gradually increasing mutation as the genetic solu-
tion evolves.

It may appear surprising that relatively good accuracy
(~0.1%) could be obtained for three elements of the solution
6-vector, while the remaining three (W} = v,5, Wi =r,, wg =
v,,) are markedly less accurate (1%-10%). This can be traced
to the lack of contrast in the [v,,, 1y, v,/] hyperplane of param-
eter space for this solution. This situation can be corrected by

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

324 CHARBONNEAU
100.000 FTTTITTTIITIT ARAAAAAN ARARAAAN LARARARARM [ARARRARE LARARARARN E
Fii [T T, 3
e —=r [ 681]
10.000f ¥ .
R i r [-0.12] E
F ]
ookt -l T T T Tt T T o e8]
E.‘.MJ ................................................ v, [-1.18] E
C %

0.100

covnl

R v, [-0.10]
_I ........................................................................... o1

0.001 Livawsiiny Liveoniin, Lovesieins Leviiaenys Livssnaiag [T [T "

0.010

|

10.0F T T T T T T =

Median 4

"‘,.a-ﬂ:'::"*‘-J-"';“‘i%-‘ﬁ*‘\:“\.*".)-‘"\i'ﬁ“ﬁ g."'-*s."“?".j;"'
$F $ SRR

* Best 1

(B)

0.1 . . . . 1 1
0 100 200 300 400 500 600 700

generation

FIG. 8.—A genetic solution to the Weber-Davis MHD wind problem.
(a) The evolution of the six elements of the solution six-vector (cf. eq.
[15]) over 500 generations for a population of 100 individuals. The hori-
zontal line segments on the right indicate the values obtained using the
conjugate gradient method, iterating to a tolerance 10~%. The numbers in
square brackets are the percent difference between the genetic and conju-
gate gradient solutions. (5) The evolution of the function value f(w) for
the best and median individual.

introducing weights to the six contributions to f(w), for exam-
ple by replacing equation ( 18) by

fw)=[a,|N(rp,v)|""* + ay| D(rs, v)|V/* + a3| N(rs, v,)| 2
+ a4| D(rs, v5) | 12 4 ale(rf, vy) — E(vy0, ro)| 12
+ ag| E(r, v5) — E(v,0, 1)1 '?], (21)

where the weights a,, . . ., a¢ are adjusted so that proper con-
trast is maintained along all dimensions of parameter space.
This trick works, but in practice lacks robustness, in the sense
that solutions for other input parameters (e.g., a “young Sun”
rotating at 25 times its present rate ) require a different set of a,
values for comparable accuracy. This is yet another situation
where a hybrid algorithm would appear optimal. This may in-
volve, for example, running a genetic algorithm over a few
hundred generations, and then using the resulting best pheno-
type to initialize a conventional conjugate gradient run.
Simulated Annealing (specifically, routine amebsa of Press
et al. 1992) failed repeatedly on the six-dimensional minimi-
zation problem defined by equation (18). However, this may

Vol. 101

reflect nothing more than my own lack of experience with this
class of techniques, in particular in the design of suitable an-
nealing schedules.

5. CONCLUSION: GENETIC ALGORITHMS IN ASTRONOMY
AND ASTROPHYSICS

In hailing the power and virtues of genetic algorithms, the
discussion in the preceeding sections has focused primarily on
aspects related to robustness and versatility. There exists, in
addition, a number of operational advantages to GA-based op-
timizers, as compared to conventional optimization methods.
In their standard incarnation, genetic algorithms are easy to
code and modify. From the model problem of § 1.4 to the We-
ber-Davis MHD wind problem of § 4, all genetic solutions pre-
sented in this paper were obtained using the same basic code,
with a single subroutine being replaced in going from one prob-
lem to the next. While GA-based optimization can be CPU
intensive, the memory requirements are usually quite moder-
ate, as no large matrices need to be constructed and stored.
Genetic codes can thus easily run ( perhaps overnight) on fairly
small computers/workstations. Because they do not require
the computation of derivatives with respect to modeling pa-
rameters, GA-based optimizers are essentially impervious to
ill-behaved search spaces having vanishing derivatives and
other similar nastiness leading to singular behavior in Jacobian
and Hessian matrices; all that is required is that a relatively
unambiguous measure of fitness be computable for any point
in parameter space.

In practical terms, genetic algorithms can be expected to
complement, rather than displace, conventional optimization
techniques. The resulting hybrid algorithms can combine the
best of both classes of techniques, namely, efficient and adap-
tive exploration of parameter space (genetic algorithms), com-
bined with rapid convergence to high accuracy in the neigh-
borhood of extrema (e.g., conjugate gradient methods). The
problems treated in §§ 3 and 4 are cases in point. Where GA-
based optimization stands with respect to other optimization
schemes is not easy to ascertain as yet. Ackley (1987) applied
seven global optimization methods (including GA-based opti-
mizers, simulated annealing, and various incarnations of
iterated /stochastic hill climbing) to six test problems of vary-
ing difficulty. While carefully restraining from granting supe-
rior status to one method over another, his results do confirm
that GA-based optimizers are a strong and promising
contender in the field of global optimization.

Like Monte Carlo methods, GAs are characterized by a very
high level of intrinsic parallelism. In most applications, the two
most CPU-intensive subtasks are phenotype construction and
fitness evaluation. These two steps can be carried out com-
pletely independently for each individual comprising the pop-
ulation with, ideally, one processor assigned per individual.
Communication between processors is minimal, being only re-
quired (1) for ranking individuals once fitness has been com-
puted for each individual, and (2) at breeding, when the two
parent phenotypes are used to construct the two offspring ge-
notypes.

Again like Monte Carlo methods, GAs can be an attractive
alternative for some difficult inverse problems. Examples of
such problems abound in astronomy (see Craig & Brown 1986;

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

No. 2, 1995

Jeffrey & Rosner 1986a), including the determination of
plasma physical properties from spectroscopic emission mea-
sures, Doppler imaging, helioseismic inversion, etc. In all these
cases, the inverse problem is hard and computationally inten-
sive, while the corresponding forward problem is often a much
simpler and faster task. Genetic techniques require only the
solution of the forward problem for fitness evaluation, making
them particularly attractive if the forward problem is very
much easier than the original inverse problem. Constraints
such as positivity, often requiring an iterative approach in con-
ventional inversion methods, can be trivially hardwired at the
encoding level, and so pose no difficulty. Hakala (1995) has
successfully used GAs, in conjunction with maximum entropy
constraints, to perform inverse modeling of the brightness dis-
tribution along the accretion stream of eclipsing AM Her sys-
tems. Tomczyk et al. (1995) have recently applied genetic
techniques to the reconstruction of the internal solar differen-
tial rotation profile from the observed amplitudes and split-
tings of p-mode frequencies ( Christensen-Dalsgaard, Gough &
Toomre 1985; Gough & Toomre 1991). Their results, while
having still much to be improved upon, nevertheless suggest
that GAs can be a powerful complement to conventional he-
lioseismic inversion methods.

I cannot help ending this discourse on a more personal note.
In playing with various incarnations of genetic algorithms, I
have often monitored the convergence of genetic solutions in
animation form. This may involve, for example, plotting the
best phenotype of successive generations along with the “data”
of Figure 6a, and subsequently animating the resulting se-
quence of images. There is something deeply fascinating, if not

GENETIC ALGORITHMS 325

troubling, about watching a genetic run search for, lock on,
and pin down an optimal solution. This is perhaps because
conceptually, genetic algorithms embody the very mechanisms
that led to our own existence. Such mystical considerations
notwithstanding, genetic algorithms offer an extremely robust
and completely different way to do optimization. In the de-
lightful introductory essay at the beginning of his monograph
on genetic programming, Koza (1992) identifies seven basic
principles of good conventional optimization techniques: cor-
rectness, consistency, justifiability, certainty, orderliness, par-
simony, and decisiveness. He then goes on to argue that genetic
algorithms incorporate norne of these presumably sound prin-
ciples. This may explain why, while being increasingly popular
in the fields of artificial intelligence and computer-aided engi-
neering design, genetic algorithms have only been making slow
headway in other scientific fields. Yet the bottom line, if there
is to be one, is that genetic algorithms work, and often fright-
fully well. If the examples and discussion herein have managed
to awaken the curiosity of even only a few of my readers, then
this paper has served its purpose.

I wish to thank Claude Carignan and Ted Kennelly for
kindly making available to me the data shown on Figures 5
and 7. Constructive comments and suggestions by the referee,
Melanie Mitchell, are also gratefully acknowledged. Special
thanks are due to Barry Knapp, who put his software design
expertise to the gruesome task of converting (and improving)
my original opaque incarnation of the PIKAIA code to the
user-friendly subroutine listed in the Appendix.

APPENDIX
A SHORT USER’S GUIDE TO PIKAIA

Al. INTRODUCTION

The subroutine PIKAIA described in this Appendix maximizes a function f(x) in the n-dimensional parameter space x = (x;,
X2, .., Xy). PIKAIA is meant primarily to be a learning instrument, not a production code. In most instances, where conflict arose
between efficiency and clarity, the former was sacrificed for the sake of the latter.

PIKAIA adheres strictly to the ANSI FORTRAN-77 standard, with the exception of (1) the use of lowercase alphabet and (2)
the use of implicit none statements. Readers having strong allergic reactions to FORTRAN and/or interested in more elabo-
rated genetic algorithm packages may wish to take a look at the Genetic Algorithm Archive Web Page (http://
www.aic.nrl.navy.mil/galist) for listings and directions to various public domain GA packages available electronically.

A2. CALLING SEQUENCE AND I/0
The calling sequence for PIKAIA is

call PIKAIA ( funk,n,ctrl,xb, fb,status) ,

where funk is the name of a user-supplied external function to be maximized, and n is the parameter space dimension, i.e., the
number of adjustable parameters in funk. For example, the model problem of § 1.1 requires n=2, the fitting problem of § 2.2 n=3,
that of § 3.2 n=21, and so on. The maximum allowed size for n is set in a PARAMETER statement within PTKATA, and in the listing
below is set at 32. Ideally, the user should set this value equal to n, so that PIKAIA does not defines its internal arrays as having sizes
larger than necessary. The floating point array ctrl has length 12 and contains flags and parameter values that control PIKAIA’s
evolutionary behavior; a detailed description of each element of ctr1 is given below.

PIKAIA first calls subroutine SETCTL to perform a minimal set of run-time tests on its input parameters. Note that if any element
of the control vector ctr1l is negative, then PIKAIA will supply its own default values. If any invalid but positive values are supplied,
PIKAIA aborts and returns with a positive (nonzero ) value for the status output variable. One or many warning messages will be
issued if some combinations of parameter values, while formally valid, risk producing an inefficient algorithm. It is important to

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

326 CHARBONNEAU Vol. 101

realize that only a very basic set of tests is carried out, as optimal parameter settings are usually to some extent a function of the
problem under consideration. Consequently, it is impossible to guarantee that all potentially inefficient combinations of parameters
will elicit a warning from PIKAIA. Upon successful termination PIKAIA returns with status=0. Additional run-time informa-
tion can be routed to standard output by choosing appropriate settings of the control flag i vrb, as described below.

PIKAIA is currently set up to produce minimal output, but this is an area where the user may wish to tailor the code to his/her
specific needs. In addition to the status variable, the only output returned as arguments by PIKAIAis (1) a real array xb of length
n, containing the n parameter values associated with the best phenotype in the final population, and (2) a floating point scalar fb
corresponding to the evaluation of funk for that phenotype. In many cases it can be useful to output more information to file, for
example the best and median phenotypes at each generation together with their associated fitness values, or maybe even the com-
plete phenotype population. A logical place to output such information is at the end of the main generation loop, as indicated in
the PIKAIA listing provided below. Internally, the population is stored in the two-dimensional array o1dph (the two-dimensional
array newph is only used as temporary storage when operating under full generational replacement). The ranking array ifit
allows access to the population in terms of rank; the fittest phenotype is stored in o1dph (1:n,ifit (np) ), the second fittest in
oldph(l:n,ifit(np-1)),andsoon allthe waytooldph(1l:n,ifit (1)) forthe worst. The complementary array j£it
contains the actual ranks: j£it (i) is the rank of the individual stored in o1dph ( 1:n,1i). The array f itns contains the true
fitness (i.e., funk evaluation) for each population member, with again the evaluation for the fittest being stored in
fitns(ifit(np)),etc., asforoldph.

A3. DESCRIPTION OF INPUT QUANTITIES

Internally, PIKAIA associates the control vector ctrl to the following flags and parameters:
ctrl(1l:12)=(np,ngen,nd,pcross,imut, pmut, pmutmn, pmutmx, fdif, irepp,ielite,ivrb) .

These correspond to the following:

Population number [np (=ctrl (1) ); default is np=100].—The number of individuals in the population. Note that this
remains constant throughout the run. The population size is internally restricted to np < 512.

Number of Generation [ngen (=ctrl (2) ); default is ngen=500].—PIKAIA evolves the population over a predetermined
number of generations set by the value of the parameter ngen, instead of trying to meet a preset tolerance criterion. The latter
approach is potentially dangerous when approaching a new problem, in view of the usual convergence trends exhibited by GA-
based optimizers (cf. Figs. 3 fand 4).

Encoding accuracy [nd (=ctrl (3 ) ); default is nd=5].—This sets the number of digits retained in encoding the phenotype
into a genotype. This is internally restricted to nd < §8; in most real applications, if more than 4 digits accuracy are required it would
generally be preferable to use a 4 digit-accurate genetic solution as a starting guess for a more conventional optimization method.
Note that the genotype ends up being an integer array of length n*nd, where each element (“gene”) takes values in the range
[0, 9]. The encoding scheme used in PIKAIA is clearly far from optimal in terms of efficient use of storage, but it is easy to code,
understand, and modify . . . and to keep track of when something goes wrong,

Crossover rate [pcross (=ctrl (4) ); default is pcross=0.85].—Once two parents have been selected for breeding, a ran-
dom number R € [0.0, 1.0] is generated, and the crossover operation (cf. Fig. 2) is applied only if R < pcross.

Mutation mode [ imut (=ctrl (5)) default is imut=2].—Integer flag controlling the behavior of the mutation operator. Set-
ting imut=1 enforces a constant mutation rate, at a value set by pmut (see below). For imut=2, the mutation rate varies in the
range [ pmutmn, pmutmx ] throughout the evolution, with starting value pmut. The mutation rate increases (decreases) only when
the relative difference in the absolute fitnesses of the best and median member of the population falls below (exceeds) the value
rdiflo (rdifhi). The mutation is varied by logarithmically constant increments delta, i.e. pmut<pmut *delta (pmut/
delta). The values rdif 10=0.05, rdif hi=0.25 and delta=1.5 are set in a PARAMETER statement in subroutine adjmut,
inspection of which should further clarify how variable mutation rate is implemented. Depending on the fitness contrast in param-
eter space, the user may wish to adjust the values of rdifhi and rdiflo.

Initial mutation rate [pmut (=ctrl (6)); default is pmut=0.005].—By convention, the value of pmut corresponds to the
probability (<1) that a given gene be affected by a mutation at breeding. For every gene a random number R € [0.0, 1.0] is
generated, and mutation is carried out only if R < pmut. The mutation itself consists in generating a random integer K € [0, 9],
and setting the gene value to K; note that there is 1:10 probability that K be equal to the original gene value, in which case mutation
has effectively no phenotypic effect.

Minimum mutation rate [ pmutmn (=ctrl (7)) ); used only if imut=2; default is pmutmn=0.0005]: Minimum mutation rate
attainable under variable mutation mode.

Maximum mutation rate [pmutmx (=ctrl (8) );used only if imut=2; default is pmutmx=0.25]: Maximum mutation rate
attainable under variable mutation mode. Typically, pmut and/or pmutmx must be much smaller than unity, otherwise near
complete randomization is likely to occur in every offspring. Under full generational replacement (see reproduction plan below)
and unless elitism has been turned on (by setting ielite=1), PIKAIA will issues warnings if pmut > 0.05, or if imut=2 and
pmutmx > 0.05.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

No. 2, 1995 GENETIC ALGORITHMS 327

Fitness differential [£dif (=ctrl (9));defaultis £dif=1.0]: PIKAIA makes use of ranking to assign fitness (see § 1.5).
Individuals are first ranked as [1, 2, . . ., np], according to “true” fitness, where by definition the fittest individual has rank 1 and
the least fit rank np, respectively. The breeding probability of the ith individual in the population is then defined as

1/np+ fdif*(np+1—2#*jfit(i))/(np*(np+1)),

where jfit (i) is the rank of the individual stored in the ith column of the population array oldph, as described before. This
defines a /inear relationship with slope £dif between rank and breeding probability. Note in particular that setting £di£=0.0
corresponds to no selection pressure (i.e., equal breeding probability for everybody), while £dif=1.0 directly equates breeding
probability to rank. On Figure 4 for example, high selection pressure (SP = H) was produced by setting fdif=1.0, moderate
pressure by setting fdif=3./5. and low-pressure fdif=1./3. . PIKAIA will issue a warning if £dif is set to a value inferior
to 1./ 3., which would correspond to a fitness differential too low for most practical applications. All breeding probability calcu-
lations are carried out internally in subroutine select.

Reproduction plans [irepp (=ctrl (10)); default is irepp=1].—Integer flag controlling the choice of either one of the
reproductive plan discussed in § 1.5. Setting irepp=1 selects full generational replacement, and irepp=2 or irepp=3 steady
state reproduction. In these latter cases, an offspring is inserted only if (1) its fitness is superior to that of the least-fit population
member and (2) its genotype differs in at least one gene from any genotype already present in the population. This latter restriction
is an important safeguard against inbreeding. The two steady state reproduction plans differ only in how individuals from the old
population are deleted to make room for new offspring fit enough for insertion; under irepp=3, the least fit is deleted. If, on the
other hand, irep=2, an individual from the old population is chosen at random and deleted, independently of its actual fitness.
When operating under a steady-state reproduction plan, a “generation” is not a well-defined concept. Internally, PIKAIA defines a
generation as a group of np individuals. One should note, in particular, that if a user-supplied output subroutine is inserted within
the generation loop in PIKAIA (see above), this routine will be called once every time np individuals have been bred, independently
of how many of them have actually been inserted in the population. As a rule of thumb, going from irepp=1 through irepp=2
to irepp=3 represents to some extent a transition from enhanced exploration to enhanced exploitation, but neither plan seems to
be clearly superior to the others in a general sense (see, e.g., Syswerda 1991). Both reproduction plans operate under the assumption
of a fixed-sized population, and make use of the roulette wheel algorithm for parent selection (see, e.g., chap. 1 of Davis 1991;
numerous other sampling mechanisms are possible, for a discussion see chap. 4 of Goldberg 1989, or § 4.1 of Michalewicz 1994).

Elitism [ielite (=ctrl(11)); default is ielite=1].—Integer flag controlling the use of elitism. Elitism is enforced if
ielite=1, otherwise no action is taken. Under irepp=2, setting ielite=1 ensures that the fittest individual cannot be selected
for random deletion. This flag has no effect under irepp=3 (“delete-worst” steady state reproduction plan).

Verbose mode [ixrvb (=ctrl (12) ); default is ivrb=0].—Integer flag controlling the generation of additional run-time out-
put to the screen. Setting ivrb=1 or ivrb=2 generate a listing of input parameters, as well as information concerning the current
status of the population. This latter output work is carried out by subroutine report. The first line of output generated by report
contains ( 1) the generation count, (2) the number of individuals inserted in the last round of breeding activity, and (3 ) the fitnesses
of the best, second and median individuals in the current population. This is followed by n lines listing the phenotypes for the best,
second, and median individuals. Under ivrb=3 this information is printed at every generation. Under ivrb=2 it is printed only
if either (1) the mutation rate has been adjusted (under imut=2) or (2) the fitness of the best individual has improved since the
last generation (under irepp=1) or pseudogeneration (under irepp=2 or irepp=3).

A4. USER-SUPPLIED FUNCTIONS AND SUBROUTINES

Random number generator.—PIKAIA requires a random number generator function that returns random or pseudorandom
deviates from a uniformly distributed sequence in the interval [0.0, 1.0]. This function must be called urand and must be declared
and called without arguments, i.e., function urand (), r=urand( ), and so on. urand must also be declared as REAL and
EXTERNAL in the program calling PIKAIA. Any required initialization of urand should also be carried out by the calling program.
The use of generic system-supplied random number generators is not recommended. More robust generators, such as routine ran2
of Press et al. (1992, § 7.1), should be used instead.

Ranking subroutine.—The user must supply a subroutine that accepts as input a floating point array arrin of length n, and
return an integer array indx of identical length, where element indx (i) is a key index giving the location in arrin of the ith
smallest value in arrin (this is equivalent to the integer array if it described above). This subroutine is called only in subroutine
rnkpop. The calling sequence included in the listing below corresponds to a call to subroutine indexx in Presset al. (1992, § 8.4),
arecommended choice.

Fitness evaluation function.—The function funk to be maximized must be declared as REAL and EXTERNAL in the calling
program. funk must accept as argument a single integer n (the dimension of parameter space) and a single floating point array of
length n (a point in parameter space). The evaluation of funk must return a positive-definite quantity that measures fitness (high/
low values = high/low fitnesses, goodness of fit, etc.). PIKAIA searches a bounded nondimensional search space spanning the
range [0.0, 1.0] in all n direction of parameter space. funk must consequently carry out internally all appropriate scalings to
dimensional variables. Likewise, all values in the “best phenotype” array xb returned by PIKAIA upon successful termination
(status=0)are in the range [0.0, 1.0] and so must be rescaled to dimensional values in the same way.

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

328 CHARBONNEAU

Initialization subroutine (optional) . —The function funk will be called npXngen in the course of the evolutionary run, and so
should be coded in as efficient a manner as possible. Any secondary computation in funk that is independent of its arguments
should be carried out once and for all before calling PIKAIA, and the computed quantities passed to funk via one or more
appropriately defined labeled COMMON blocks. The initialization subroutine would also be a logical place to read in data, and so on.

A5. CODE LISTING

Following the reference section is a reduced listing of the subroutine PIKAIA. The complete subroutine PIKAIA contains many

more explanatory comments lines than the listing given here.

Following this listing is an example of a driver program xpikaia that seeks to maximize a two-dimensional function two__d, a
listing of the latter being also provided. The function two__d is qualitatively similar to the test function of Figure 1 but actually a

bit harder from the numerical optimization standpoint.

REFERENCES

Ackley, D. H. 1987, in Genetic Algorithms and Simulated Annealing, ed.
L. Davis (London: Pitman), 170

Belcher, J. W., & MacGregor, K. B. 1976, ApJ, 210, 498

Breger, M. 1980, ApJ, 237, 850

Brown, T. M., & Gilliland, R. L. 1994, ARA&A, 32, 37

Carignan, C., Charbonneau, P., Boulanger, F., & Viallefond, F. 1990,
A&A, 234,43

Carignan, C., & Freeman, K. C. 1985, ApJ, 294, 494

Catala, C,, et al. 1994, A&A, 275, 245

Charbonneau, P., Schrijver, C. J., & MacGregor, K. B. 1995, in Cosmic
Winds and the Heliosphere, ed. J. R. Jopikii, C. P. Sonett, & M. S. Gi-
ampapa (Tucson: Univ. of Arizona Press), in press

Christensen-Dalsgaard, J., Gough, D., & Toomre, J. 1985, Science, 229,
923

Craig, 1. J. D., & Brown, J. C. 1986, Inverse Problems in Astronomy,
(Bristol, UK: Adam Hilger)

Davis, L. 1991, Handbook of Genetic Algorithms (New York: Van Nos-
trand Reinhold)

Dawkins, R. 1982, The Extended Phenotype (Oxford: Oxford Univ. Press)

De Jong, K. A. 1993, in Foundations of Genetic Algorithms 2, ed. L. D.
Whitley (San Mateo: Morgan Kaufmann), 5

Eldredge, N. 1985, Time Frames (New York: Simon & Schuster)

Faber, S. M., & Gallaher, J. S. 1979, ARA&A, 17, 135

Goldberg, D. E. 1989, Genetic Algorithms in Search, Optimization, & Ma-
chine Learning (Reading, MA: Addison-Wesley)

Gough, D., & Toomre, J. 1991, ARA&A, 29, 627

Gould, S. J. 1989, Wonderful Life. The Burgess Shale and the Nature of
History (New York: W. W. Norton)

Hakala, P. J. 1995, A&A, 296, 164

Holland, J. H. 1975, Adaptation in Natural and Artificial Systems ( Ist ed.;
Ann Arbor: Univ. of Michigan Press; 2d ed.; 1992, Cambridge: MIT
Press)

Jefirey, W., & Rosner, R. 1986a, ApJ, 310, 463

Jeffrey, W., & Rosner, R. 1986b, ApJ, 310, 473

Kennelly, E. J., et al. 1995, in preparation

Kent, S. M. 1986, AJ 91, 1301

Koza, J. R. 1992, Genetic Programming: on the Programming of Com-
puters by Means of Natural Selection (Cambridge: MIT Press)

Matthews, J. M. 1993, in ASP Conf. Ser. Vol. 42, GONG 1992: Seismic
Investigation of the Sun and Stars, ed. T. M. Brown (San Francisco:
ASP), 303

Maynard Smith, J. 1989, Evolutionary Genetics (Oxford: Oxford Univ.
Press)

Michalewicz, Z. 1994, Genetic Algorithms + Data Structures = Evolution
Programs (New York: Springer)

Nelder, J. A., & Mead, R. 1965, Comput. J., 7, 308

Parker, E. N. 1958, ApJ, 128, 664

. 1963, Interplanetary Dynamical Processes (New York: Wiley)

Pizzo, V., Schwenn, R., Marsch, E., Rosenbauer, H., Miilhduser, K.-H., &
Neubauer, F. M. 1983, ApJ, 271, 335

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992,
Numerical Recipes (2d. ed.; Cambridge: Cambridge Univ. Press)

Stebbins, G. L. 1966, Processes of Organic Evolution (Englewood Cliffs,
NJ: Prentice Hall)

Syswerda, G. 1991, in Foundations of Genetic Algorithms, ed. G. J. E.
Rawlins (San Mateo: Morgan Kaufmann), 94

Tomczyk, S., Charbonneau, P., Schou, J., & Thompson, M. J. 1995, in
Proc. 4th SOHO Workshop: Helioseismology, ed. T. Hoeksema
(Noordwijk: ESA), in press

Watson, J. D., Hopkins, N. H., Roberts, J. W., Steitz, J. A., & Weiner,
A. M. 1987, Molecular Biology of the Gene (Menlo Park, CA:
Benjamin/Cummings)

Weber, E. J., & Davis, L., Jr. 1967, ApJ, 148,217

Wright, A. H. 1991, in Foundations of Genetic Algorithms, ed. G. J. E.
Rawlins (San Mateo, CA: Morgan Kaufmann), 205

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

(meu‘arzlatyrsurry‘ydpro‘ud +
‘earret‘doxt‘du‘u‘xyuN‘FF)deapis TTeo
osTe
(ydmeu‘yddtdu‘u‘yyun)deausd TTeO
weys (7-be-dexr) g1
uotyerndod ojur 3Iesur °g
((2‘1)ud‘zuld‘pu‘u)epodep TTed
((1°1)ud*Tuld‘pu‘u)epodep TTed
gedfqoue8 Sutradsyyo epooep ‘%
(zgud‘qnud ‘pu‘u)yeqeinw TTed
(tuB‘qnud ‘pu‘u)eqesnm TTed
(gud‘1ul‘ssoxod pu‘u)ssoId TTed
peeiq ‘g
(cu3‘ (zgdt‘1)ydpro‘pu‘u)epoous [Ted
(1u8‘ (1d1‘1)udpto‘pu‘u)epoous TTED
gedfyousyd juexed epodous ‘g
1z 0308 (gdr-be-1dr) 37
(zdtzrpz¢atyl¢du)roetes TTed 12
(1dtztpF¢atzl‘du)roetes Tred
squexed om3 yo1d 71
z/du‘1=dt 0z op
0=303M8U
doo7 uwotszerndod urey
uelBu‘1=81 QT op
doo7 uotgeasuen urey
(at3f“aryrsusry‘du)dodyur Tred
Topio sseuarty £q uotrjerndod TeraTUT YUy
enuUTIUOd T
(dtt)udpto‘u) 3y = (dr)suatry
8NUTIUOD z
(O puean=(dt ‘q)ydpto
u‘l=y g op
du‘i=dt 1 Op
uotserndod edfioueyd (pepunoq 3nq wopuer) Teratutr eandwo)
FTpue
uInjex
1- = snjeas
(o8xe1 003 seusd 10 ‘uorjerndod ‘sxejewexed yo zequmy . +
(x‘%x)03TIM
uweys (XVHQ'38'pu I10° XyWd 33'du -Zo* XVHN'238-W) IT
ySnous 31q oxe sfexre peuoOTSUBWIP-AT[EOOT OINS OFel
JTpue
uIinjex
(PTITRAUT (8)3ueumBIe (TI3D) I03D0A TOIIUOD . (*‘x)OITIM
ueya (O ‘eu’ snjeas) JI
(sn3e3s‘qiatesrret‘dext‘yTIPJ +
< anut ¢ anud ¢ xwynud ¢ vugnwd ¢ ssoxod ‘ pu‘ueBu‘du‘u‘ T130) +
130288 TTeD

s3Tnejep pue andutr wWoxy SOTqRTIRA TOIJUOD 38§
pueIn  TeUISIXS

pueIn ‘ (XYW ‘XVHN)Udmeu * (XVWd‘XVHN)udp1o °(Z‘XVHN)ud +
‘(XYWd)suaty ‘FrpF ‘xwinud ‘uwinud ‘anwd ‘ssoxod Teex

(XYW 3TIl ¢ (XVHd)ATIT +

¢ (XVH@*XVAN) ZU8 ¢ (XVHQ*XVHN) Tu8 ‘30ameu ‘meu ‘zdr ‘1dr +

‘8t ‘dr ‘Y ‘qaat ‘eatrer ‘dexr ‘gqnur ‘usBu ‘pu ‘du xe8e3ut
(8 = XVHA ‘TTS = XVWd ‘T€ = XVWN) JIesewered
XVHA ‘XVHd ‘XVHN 19809uT
qxodex ‘qnufpe ‘dodmeu ‘dexpis ‘dexus8 ‘eqejnm
‘g80x0 ‘epooep ‘epoous ‘joeTes ‘dodyur ‘puexn ‘Fy ‘T3938s :SASN

o}

*1667 ‘PTOUUTOY PURIISON UeA
*suY3TIO8TY O0TIOUSDH JO JOOqQPUERH ‘Pe ‘eousxme] ‘sTAR(Q

'6861 ‘LeoTsepM-uosTppy ‘Butures] suTYORH 3
‘wotgezruradg ‘yoreeg ur swyitio3Ty o13euen °J praeq ‘BI8qp1on

:890usI9yey

‘[6°0] sxeBequt

Teutoep eTdwts yo Sutajs se pepoous exe (pazrtwixew) paztuwrido
8q 03 uoraouny oYy Suturyep siejewered ‘uorzeztwrido uworzouny

JO 3X93U0d 8y} ur yH yo eouemrojred ey3z esoxdwtr 03 umouy
getd0qe11s Teo1807008 pue 8ATIONpPorder 38nqOI TRUOTITPpE MO

® Se [[eM se ‘U0oTJeinu pue I9A0880I1d jutod-suo jo sxozexsdo ypH
o1seq eyl Surjexodioour ‘xeztuwrado peseq-yn esodind Teisusl e ST
euTaNOIQNE STIY] ‘UOTIDOTOS T[eIN3eU FO sueew £q UOTINTOA® JO
uotjou Teotdororq eys ‘Surires Teuorjesndwod e ur ejexodrodour
qeys senbruyoej yoTees OTISTINSY OIe (YD) SUYITIOSTE OT30ULH

€7 Ttady G661 FO UUTSIOA

<npe* xeon - oeypddeuy>

<npe ‘- Ieon -’ oeypreyoneds

000€-L0E08 0D Iepinog

yoIeesey OoTxeydsowly I0oy I9jue) TRUOTIEN
£z03enze8qQ OPNITATY USTH

ddeuy fizeg 3 nesuuoqiey) Tned

-xeztwrydo peseq-yn e Sursn x eoeds xejewesed TeUOTSUSWIP-U
I0A0 I uorjouny perrddns-zesn Jo (UOTIBZTWIXEW) uworiezrwradg

O OVOOLVLOLOLOVOLOLOLOLVLOLVOLVLOLVLOLVLOLVOLOLOLOLOLVLOLOLVLOLVLOLVLOLOLVLOLVLOLOLVLOLOOLOLVLOLVOVO

J¥  Teuxesaxe

snajels‘u Ie8e3uT

FFOFO (WX (TT)TIIO Teex

suou arorTduwt

(snjeas‘y‘x‘TI3o‘u‘ y3)ereytd eurinoIqns

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

$ = snjess
(ET°*)03TIN
ueyls ('0°3r°ssoxod ‘xo° (-7-33-ssoxod) Fr

(¢((01)Tx20) dexr IoF enTea TeSoTTT :YOWNd )3IewIoy Zi

FTpus
0] = snjeas
(TT*)e3tTaIM

ueyy (g-ou'deir ‘pue’ g-eu'dexr ‘pue’ 7-eu'deir) T

(< ((6)T130) JTPF IoF enrea TeSoTTT :YOWWd )3Iewroy 1]

JTpuUe
6 = snjes3s
(T1°*x)03Tam

ueys ('1°'33°3TPF) 3T

(<((9)TI30) 3nuWT I03 enTesa TeIOTTT :YOWYH .)IBWIOF QT

FTpue
g = snje3s
(0T ‘*)o31aIM
uey3 (Z°'OuU’'3NWT ‘pue’ [°'OU'INWI) JFT
genTeA TOIJUOD 8WOS XO8y)
FTpUs
(V¢ :uerd uotzonpoxdey ¢ +

yaemroy

caszon-eoerder-ejess-Apeeag, (y x)eatam (g-be-dear) 3t

(uopuex-ederder-ejess-Lpeeag, (p‘x)ertam (g-be-dextr) gt

(juemeoeTdex Teuorjereusld TInJd, (H‘*)ertam (7-be-dear) gt
(V¢ :opoj uoTieany ‘ +

yaemroy g

(OTqQeTIRA, (£°x)03TIM (Z'be’snwr) 3T
«JURISUOD, (£°x)03TaIM (T'be-anwr) 3T

(¥°63° :TRTIUBISIITP SSOUITF OATIRTOY ¢ +
/ ¢.mm. :9jReI UOTIRINUW WNWIXEH ¢ +
AN mu 19381 UOTJRINW WNWTIUTH ¢ +
‘/'v6 :93eI UOTjEINW TETITUI ¢ +
AL m nhpﬁaﬁnwnoua IOA0S80I) ¢ +

‘/%1¢, :sjuemBes ewosowory) Fo yY33ue] ¢ +

‘/%1¢, :sjuomBes ewosowoIy) FO Iequmy ¢ +

A ¢ﬁ "noﬁpwuwnow xed sTenpraTpul ¢ +

/PT :8utATOA® SUOTIRISUSNH JO JoqumN +

-\\.An*avooaﬁﬂ +

‘/¢ex ‘XgT*, 3x0dey wylTIOSTY OTIOUSD VIVMId.‘XET‘(* +
/¢ (c*¢)09°XT/)eWmIOT

F1p3 ¢ xwinud ‘uvwanud ¢ anud ‘ssoxod ‘pu‘u‘du‘ueBu (z¢x)o3TIm
wey3 (0°38°qIAT) IT
Iepeey ® UTIJ
0 = snje3s
(TT)TIID = QIAT
(TT)TI30 = 83TTeT
(01) T30 = deat

4

(6)TI30 = FTPZ
(8) 1135 = xmanud
(L)113° = uwanud

(9)T139 = anud

(9) 1132 = nmt
(¥)Tx35 = ssoxdd

(€)T130 = pu

(2) 1139 = uelu

(1)T130 = du

8NUTIUO0D T
(T)170VAa=(T)TI32 (°0°3T" (T)TII0) IT
C1 1=T 1 op
/0°0°€°T1°GT" ‘9000 ‘S00°“Z‘G8" “9°00S‘00T/ 11nVdd elep
110vaa eaes
(21)11nvda Tesx
T z080qurt
o]
saTnezep pue jndutr woiy sSelJ pue seTqeIIRA TOIZUOD 18§ b)
o)
(21120 ‘zrpy ‘anud ‘xwinud ‘uwinud ‘ssoxod Teex
snjels ‘QqIar ‘e3rrer ‘dexr ‘anwr ‘pu ‘uslu ‘du ‘u Ie803uT
euou arorTdwt
(snjeas‘qaatesrrer‘dext‘ yIp; +

‘qnurt ‘ anwd ‘ xswanud ¢ wwanud ¢ ssoxod ‘pu‘usBu‘du‘u T130)  +
130308 eUT3NOIQNS
a8k 2k 3 2 o o o8 3 e 3 3K 3 ok o 3k ok ok o a3k ok ok ok ko 3 ok ok 6 ok K ok ok ok ke ke ke o ok ok ok ok ke o ok ok ok 3 e 3 ok o ok ok o e o ok o o ok ok ok ok ok ok O
pue
((du)atzT)suaty =
eNUT4UOd (F
((du)3t3T°N)udpro = ()X

u‘y=) 0g op
sseulty s3T pue edfjoueyd 3seq uanizey b
enuUTJuUOd (O]
doo7 uworjersusn urey JFO puy )
exey 03 prnodo euranox 3ndano (reuorido) perrddns-aes **kkxD
(203meu‘3r‘qnud gyt suary‘ydpro‘pu‘du‘u’ YYHN qIAT) +
3zodex TR (0°33'qIAT) JIT
;andano pxepuess 03 3xodex worjexzeusd jurad )
(anwd ‘ xmanmd ‘ uwwanwd ‘3131 suzry‘du)gnulfpe tres (g-be-anmr) 3t
;93e1 uorsesnu 3snlpe b)
(s0ameu‘smaryatyl oty +
‘gqdmeu‘ydpro‘du‘u‘yyuN‘earter 33)dodmeu TTED +
(1+be-dexr) g1
gsuotqerndod dems :jueweoerdex Teuorjereusd TTny Butuunxz It 2
eNUTIUO0D 0Z
doo1 wotyerndod urey Fo pul 2
FTpue

MOU4+3031MOU = J03MOU

330

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

(f+TT)uBsdTaor=dr
pu‘t=( z op
"Qﬁ
u‘l=T 1 op
0=TT
(PU-) %% 0T=2
z Teex
1t ‘f ‘1 “dr 10803uT

o)
[ 1> 4£x> 0] sejeurpiood £‘x sxe (y)ud b
szejewered edfjousyd ozutr edfqousl epoosep b
o]

(u)ud Teex

{(puxw)ud ‘pu ‘u Io803ut

euou j3torTdur
(ud‘u8‘pu‘u)epodep sUTINOIQNS
30 3 2 o e e e e ke e ke ol o ok o o ok ok oK 3 e e e e e B 0 K o o o o o e o o ok ok ok ok ok o ok ok 3 ok o o o ok ok o o ok o ok ok ok ok ok ok ok ok ok ok ok O
pue
uInj}ex
enurquod |
PU+TT=TT
8NUTIUOD g
01/dt=dt
(ot ‘dr)pou=([L+11)ud
1-‘1‘pu=[ g op
(zx(T)ud)qur=dr
u‘l=T T Op
0=TT
PUxx " 0T=2
z Teox
1t ‘C ‘1 “dt 1e8equUT

o)
[ T>4x> 0] sejeurpiood £‘x exe (y)ud F)
edf3oue8 1e3ejur ojur syejewered edAjousyd epoous 2
o)

(wud Teex

(puau)ud ‘pu ‘u I080quUT

euou atorTdut
(u8‘yd‘pu‘u)epoous eurinOIqNS
T P T TP T T )

koK

pue
FTpue

®NUTJU0D qT
(((z/duyatyT‘q)udproxandpu)uru +
¢ (((1-duw)at3T“¥)udprosandpu)quru +
‘(¢ dwyargrv)ydprosandpu)iuru +

(< (0TTE‘XTT) ( “x)0ITIA
w‘t=y g1 op

((g/dwyatgrysuary ((1-dwarzr)susry ‘((duw)3aryT)suary +
‘anmd ‘meuu‘3T (, (9°0TFV 9 0TI9I 9T/) ‘*)03TIA
(PUx*°07)3utu = xmdpu

KLerdstp 103 sedAjousl 1e8e3ur exem 03 Q] JO Iemod 2
ueyy (g-e3:qiat -xo° adi) JT
Itpue
‘enxy =qdx

((du)atIT)8uUrTI=13388q
ueyl (3F3seq-eu ((dw)aTIT)sUITI) IT
ITpUe

‘enig - =qdx

qnud=adanud
ueya (adinwd-eu’qnud) T

‘esTRy =1dx
/0°0/ adanud‘azaseq ejep
adx Teot3071
¢ audpu I689qurt
adanud ‘3 y388q aAes
adanud‘33388q Teex
b}
andano paepuess 09 3xodex uotjereusd e3TIM 2
Yo}
qnud ¢ (du) susty‘ (du‘wrpu)gdpto Teex
mouu‘3t‘pu‘du‘u‘wrpu‘qrat’ (du)arsr Ie8e3ut

suou 3r1oTTdWT
(meuu‘3r qnud grzrsusry‘ydpro‘pu‘du‘u‘urpu‘qIat) +
2xodex sutanoxqns
AR KKK A KA R K R KK KKK o R koK o ko ok ok o oo oo oo o o o ok ok O

pue
uInjex
(¢((6)TI20) TP Fo onTea mo[ Arsnoze3uep :HNINYYM )IeWIOF 9T
ITpue
(9T ‘*)03TIN
uey3 (€€°0°3T ITPF) 3T
(e ("T=(TT)TI30 YITA WSTIT[® ©dI0JUe PTNOYS) ./ +
‘4 ((8)Tx32) xwanmd zoy entea y3ty A{snoxseSuep :HNINUVM ()IBWIOT GT
J1pue
(ST*)0a1IM

ueyy (0°be-ejrrer +
‘pue’ g0 38 xmynud ‘pue’ g-be-jnwr -pue y-be-deat) zr

(«('T=(IT)TI30 YITA WSTITT® ©2I0JUS DPTNOYS) / +
e 4((9)Tx39) anmd xoy enTea y3ty LrsnoxeBuep :HNINYVM .)IeWIOF %I
F1pue
(YT %)03TIM

ueyy (0-be-eartrer +

‘pue’ g°0'33-anwd ‘pue: 1-be‘anmr ‘puwe’ y-be-dexr) 3T
(< ((¥)T230) ssoxdd 1oy enrea TeS8TTT :YOWWH .)ICWIOF €7

FTPUL

331

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

pue

uInlex g
enuTauod |

JTpue
Z 0308
T=pepT
ueys (e21p°'88-3133I) JI
(D) arzlxg-1du) xyTpF+1dusatyaz = 27732

du‘t=1 1 op

‘0 = 3TFIX

Tdusdux ()puein = ed1p

1+du = 1du

puwein ‘3Ty3I ‘edtp Teex
T ‘1du z0809ut

pueIn :SISM

‘[T ‘deyd ‘1667 staeq ®08] sOTITTTqeqoxd ,31Y, oYl
ge sedfiousyd eys Jo S0SSOUITI SATIRTOI OUYI UYITM WUITIOST®
Toeym 933eTnox Sursn ‘uorzerndod eyl woxy auexed e s830976S

O OVOVoLvoLo

FTPF Tesx

pept ‘(du)arzl ‘du Ie8e0qut

suou 3torTdumt
(pept‘zTp3‘ats(‘du)3oeres eurinorqns

JF1pue
(" 0T*()puRIn)jut=(T)uld
ueyy (3numd:371° ()puern) JIT
PUxuU‘I=T QT OP

pueIn  TRUISIXO
pueIn Teex
T I930qUT
puexn :gisN

1007 oueld TTe 2e 3nud e3eX 3@ INDO0 SUOTIRANK

L O Lo

anud Teex

(puxu)ul ‘pu ‘u 1088quUT
euou arorTdumr
(u8‘qnud‘pu‘u)ejeinuw eUTINOIqNS

}*********************************************************************U

pue
uiniex
FTpue
enNUTIU0D
3=(T)Tud
(T)Tud=(1)ZUud
(T)zud=1

puxu‘1dsT=T QT Op

ot

sk o o ok o o o ok ok o K ok o ko o oK ok o ok sk ok o ok ok o o ok e i ok o e o 3k o o ok o e o o o ok ok o 3 o ok ok ok ok ok o ok ok O aaoqe pue Tdst e seuel3 demg 2
pue T+ (PUxUx () pueIn) aut=TdsT

uIn3ex qutod 1eaossoxd ejndwmo) b)

JF1pue uey3 (ssoxod 37’ ()puean) It
(ea1ep/anud ‘ wwanmd) xew=3nud SINDD0 ISAOSSOID ® IOYIOUM opIoep 03 L3rTrqeqoxd ieaossoxd esf 2

uey3 (TYFIPI‘e3° FTPI)FT osTe pueIn  TRUISIXS

(eatepxanud ¢ xwanud) utw=qnumd puexn Teex

ueyl (OTFTPI T  FTPI)IT 3 ‘tdst ‘T 1e8es3ut
(((z/du)3tFT)susTI+((dU)ITIT)SUITE) + pueIn :SISn 2
/(((z/du)3t3T)8uaty-((du)3T3T)SUITF) 8qQR=F TP 5
(S°T=®3T8P ‘ST 0=TUFIPI ‘GO'0=OTFTPI) Iolewered 1dst uwotatsod 3e Surirels Ieaossoxd ySnoxys sanooo Surpesiq )
e31ep ‘IYFTPI ‘OTFTPI ‘FTIPI Teex semosowoxyd Sutxdsyyo om3 0jur sewmosowoiyo juered om3 speelq b}
o)

STeNpPTATPUT URTPAW pUe 388q JO S9SSOUITF ©94NTOSqe UT 6OUSISIITP
®ATIRTOI ST UOTIOTID f03eX uotjesnu Jo jusmisnlpe Teotweulp

O OOV o

gnud ‘xwynud ‘uwanwd ¢ (du)suzry Te8x
(duyarzTr ‘du xo8e3urt

suou 3roTTdwWr

(anud ¢ xmanud ‘uwanwd 11T suaty ‘du) anwlpe euranoiqns

et ook oo oo sk sk ko o o ok oo oo oo oo ok ok s s s i Kk ok ok o ok ok oo o o oo o o s o s o ok K K ok ok ke ke ok ok ok ok ok O

pue
uInjex

enuTauU0d QF

ggoxod Teex

(puxu)Zul ‘ (puxu)juld ‘pu ‘u Ie803uUT
suou 3rotTdut
(gu8‘1u8‘ssoxod‘pu‘u)8soxd> eurjnoIqns

o 2 k3 3 3 ok o o ek ok 3 3 k3 ok 3k 8 K o o ok 3k ok ke ok o e ok o o 3o o ek ok o 3 3 o o 0 3 o o e ok o s o o ko o o ok ok ok ok ok ok ok ok O

pue

uIn3ex

eanutTuo0d
PU+TT=TT
zxdr=(1)Ud
enuTIU0d

T

4

332

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

umop 1JTUS
esTe
TIT=(T+T)3TIT
8NuUT4UO0D
(1) 3TIT=(T+X) ITIT
I-(Datrnatrl=(enarrnarzl
T-‘T+1°T-11=X gZ op
t-du=(1371)313(
dn 3314s
wey3 (JI'IT'T) IT
gfeire Suryuex ejepdn pue 3FTYs (IT)
8NUTIUO0D
(Cemyud=(rrr‘udpro
u‘t=y 1g op
313=(T3T)SUITF
(TT)3TIT = I3T
ITpue
T+((7-du) * () prean)ur=1Tt
esT®
T+ (dux () puean) uT=71
ueys (dube-t -x0° p'berearrer) FT esTe
1=1T
uweys (g-be-dext) gt
uotqerndod utr eoetd ejreradoxdde ge edfroueyd zxesutr (1)
enbtun 81 pue ‘uotrjiesur oy ydSnoue 31y sT Sutradsizo
JTpue
8nNUTIU0D
1 0308
8NUT3UO0D
9 0308 (([*®)ud-eu ((T+1)3t3T'Mudpro) IT
u‘l=y g op
uweyy (du3r’t) U
uotaerndod sys ur Lpeexre jou sT edfqoueyd 8y3 eins eyew
ueyl (((T)3TFT)suaty-a8:31y) JFU
1-‘1°du=T 0T Op
uotqerndod utr jxesur ‘yB3noue 31y IT ‘T
((F'rud‘u)zz=a13
(uoT3oUNF SSOUITJ 8, IOTTeD YaTa) sseuzry Sutadsyyo eindwod g
z1=f 1 op
0 = mMeuu
TeuI83Xe
puean ‘a3t Teex
TFT ‘1T ‘9 ‘f ‘1 z0803uT
pueIn ‘3z :sdSn

puean

(44

124

*(z=deat 1 3810mM-3deTdOx
10 j=deitr j1 wmopuei-eoerdex) ySnoue 31 oxe Leyis T ATuo
notqerndod ojur ited Sutradsyyo gxesutr :uorzonpoxdex ejeas-Apeess

(SRS IS NS ]

JF¥ Teuxelxe
(duysuaty ¢ (du‘mrpu)uydpro ¢(z‘wrpw)uyd ‘33 Teex
mouu ¢ (du)atzyl ‘(dw)atrzr ‘earrer ‘dear ‘du ‘u ‘wmripu xe8equrt
suou 3TotTTdWT

(meuu‘aryf arzr‘susry‘ydpro‘ydesrret‘deat ‘du‘u‘urpu‘yy) +
dexpiys eutanoaqns

e o0 2 0 o o o o o ok o o o oo o 3 o ok o o o o o o o o o o o o o o o ok o ok ol o ok ook o ko ko ok ok ok ol ok ok ook o ok o ok o ok ok ok ok ok O

pue

uinjex

anNuUT3uU0d
(z*M)ud=(gt‘q)ydneu
(1M ud=(11°M)ydneu

u‘y=y 1 op

T+TT=gT

T-dT*z=1T

¥ ‘gT ‘1T 1989%uUT

fexre uotjerndod
meu ojut Suradszyo ejernumode :juemedseldex Teuorjexeuwsd TIng

O O OO

(du‘mrpu)ydueu ¢ (z‘wripu)yd Teex
dt ‘du ‘u ‘uwrpu Ie893uUt

euou atorTdut

(udmeu‘yd‘dr ‘du‘u‘mrpu)derusl surinoIqns

oo 0 o 3o ok ok oo ok ok 3 o o ok o sk o ok o o o i ok oo ok ok ook o o o o o ek ok oo ok K ok ok o o 3k o ok ok ook ok ok ok ok ok ok ok ok ok ok ok ok ok

pue

uIniex

eNUTIU0D
((T)Xput)jyuex

u‘y=1 T op

IepIo Yuel oyj3 pue’ ‘"’

(XpuT ‘uUTIIe ‘U)XX8pPUT TTeD

xeput Key ey3 ejndwo) :eurinox periddns-aesp

XXepul  TeuIelxe

T x089qurt

(w)utaze Teex

(U)Yuex‘ (u)Xput ‘u J0803UT

XXopuT :SISN

T+I-U =

*kk kD

- (pexe3Te 20U ST YOTym) utxre Kexre andur Jo
Iopio Yuel pue xeput Aey eonpoxd 03 eUTINOX 1I08 TeUISIXS STTED

O OO oLo

(u)utire Teex

(u)yuwer‘ (u)xput ‘u I880quUT

suou atorTdur

(jquex‘xpurt ‘utxre‘u)dodyur eurjnoiqns

ke ook o o o o i ok oo 3 ok ok o i ok o o s o o s ok ok o ok ko oo o ok ok o ook ok ok o ok o ok s o s sk ok ok o o s ok ok ok ok ok ke O

333

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

pue
uInjex

(zeuB18/Zx*I11-)dxox (Td+UU+II)S0O=P 0M]
(TdsuuxIx)80d=33

( T**((T)X-G°0) +T**((1)¥-G'0) )3rbs=1x
doas A.ﬁ.u.w.mﬂvx..mo. .ﬂ.u.w.A.CNV It
(6=uu‘g1- 0=gewd 18 ‘9e59z6G1H1 £=1d) ze3eurered
p-omy ‘xx ‘(u)x ‘geuwdrs ‘1d Teex

uu‘u  xe8ejut

euou 31oTTdwT

(edeospueT p-z UT epn3TiTe) uoTaoUNy sseustry erdwes eqndwo)

o

(w)x Te0x
(x‘u)p~omM3 UWOTIOUNF

pue
1 0308
$TI20 ¢ )3euwIoy
TI30 (0Z°x)83Tam
Fe i3 ¢ (x‘x)03TIM
X4, X ¢ (*‘x)e3TaIM
snjels‘, :snjeas , (*‘x)93TaIM
s3Tnsex eyl UTId
Amnpmpm.H.N.Hupo.d.vlospvmﬂmxﬂm 1Te°
eteqtd TTeo MON
enuIIuU0d
T- = (T)TI30
C1‘1=T OT op
(s3Tnegep osn) soTqeTIea TOIJUOD 38§
(po®8)3TUT pURIn TTed
(pees)sqe~ = pess
pees (x‘x)pesx
¢ i(bxI) poos zequmu wopuey . ((($V/)‘x)eiTIm
_(uotgeorrdde sTy3 103 pextnbex WOTIEZTTETITUT ISYIO OU)
I0qeIoued IeqQUNU-WOPUEI 8Y3} S©ZTTRTITUT ‘ISITJ
PToM3 TRUIOIXO
pTomy ‘F ‘(U)X ‘(ZT)TIIO Teex
(g=u) zejzewered
snjeas ‘1 ‘pees ‘u xeBeaut
suou 3totrTduwt

(9°TTF9 X0T/9"TTF9*,

0T

(028

*okkkD

pees wmopuel e I0J xesn eyl Suradwoxd ‘p~om3 peweu
uwoTaouny g-gZ ® 3o uworjezrurxeuw pejeedex smroyred wexBoxd styl

yreteytd 1oy weiBoxd IeaTap 88T1dI8Xy

SIS IS RN S S RS

ereytdx wexBoaxd

pua
uIn3ysx
(atzlfearzr surry‘du)dodyux TTed

I1opxo yuwex sseuztry uorjerndod meu ezndwod b}
eNUTaUOd g
((r‘1)udpro‘u) F3=(T)sUITI
woTqoUNg SSeuaTF §,I9TTeO Bursn sseulry 303 E)
anuUTaUO0D I
(r*q)ydmeu=(1‘x)ydpto
u‘y=y ¢ op
du‘y=1 ¢ op
uotgerndod eoerdex o)
FTpUS
1-MOUU = MAUU
anUT4UO0d 1
((duyatgTN)ydpro=(1‘¥Y)udasu
u‘i=x | op
woys (((dw)aTFT)SUATI AT ((F‘T)udmen‘u)zy ‘pue’ y-be-eirrer) It
(eoe1dex 03 )
ST 3T TeNpTATPUT oy3 JO sseulrj weys zejesxd yr) uorzerndod )
pToO 7o 31883313 uworserndod Meuw ut eonporauUT ‘wsT3TTe Jursn JT )
du = meuu
X ‘t xe803uTt
dodyuz ‘33 :sdSn >
b}
syuex 3 sesseusty seandmwodex (meu £q uotserndod pro seoerdex b}
o)

JI  Teuxeaxe
(du‘mtpu)ydmeu ¢ (du‘wrpu)ydpto ‘(duysuzty ‘y¥ Teoax
mouu ¢ (dwyatzl ¢(du)atyT ‘e3rrer ‘u ‘du ‘wrpu xe303UT
euou 31oTTduT

(wouu‘surtry‘atyfaryrydmeu‘ydpro‘du‘u‘wrpu‘edTIetr §3)  +

dodmeu suranoxquns

***************’*************i*************’*************************}O

pue
uInjex
8nuTIuU0d
oNUTIUO0D
JTpUS
1 0308
T+MOUU = MBUU
FTpuU®
TIT=(T)31IT
oNUTIUO0D
(N ATFT=(T-A)3ITIT
1+(EDatInatEl=(natrnarsl
TT+71=X € 0P
1+1-du=(7131) 213l

T
0T

X4

334

© American Astronomical Society * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1995ApJS..101..309C

