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In this lecture we discuss how one can describe observations, and how one can
compare measurements with model predictions. We start with some preparatory
discussions about commonly occurring distributions, and discuss various definitions
of the average and the spread around the average. We also discuss error propagation.

Next, we discuss the criteria that should be used to decide which fit of a data set
is considered to be the best, for the case where the errors are distributed according
to the Gauss-function. We describe fitting procedures specific for the least squares
criterion, both for the linear case and for the non-linear case.

We also discuss best-fit criteria for the case where the errors are Poissonian, and
two fitting procedures which are general, and which may may be applied both for
least squares and for the case where the errors follow a Poissonian distribution.

The lecture notes also contain a practical part, which explains simple program-
ming in Python



Figure 1: How not to do statistics. . .



Figure 2: Illustration of the difference between the parent distribution (solid line)
and the distribution (dotted line) derived from a finite number (in this case 100)
of measured values (histogram). The parent distribution is a Gaussian (Eq. 1) with
average µ = 3.0 and width σ = 1.0. The parameters derived with Eqs. 7 ,8 from
the unbinned data (shown as vertical lines on top) are x = 3.03 and s = 1.06. The
parameters derived after binning depend on the number of bins (!), even though the
measurement set is identical

1 Parent distribution: the concept

We may discriminate between the correctness and the precision of an experiment.
The correctness of an experiment is a measure of how close the result of an exper-
iment comes to the true value. Therefore, it is a measure of the correctness of the
result. The precision of an experiment is a measure of how exactly the result is
determined, without reference to what that result means. It is also a measure of
how reproducible the result is. The absolute precision indicates the magnitude of
the uncertainty in the result in the same units as the result. The relative precision
indicates the uncertainty in terms of a fraction of the value of the result.

Suppose we have a quantity x which we measure. If we measure it many times,
the measurements will show a certain distribution. The distribution that one would
obtain by measuring an infinite number of times is called the parent distribution.
The more often one measures, the better this distribution is approximated. In
practice, of course, one measures a finite number of times, and thus quantities of
the parent distribution can only be determined approximately.

It is general usage to indicate quantities of the parent distribution with Greek
letters (e.g. µ, σ) and quantities determined from a finite number of measurements
with Latin letters (e.g. x, s).

As an illustration consider a Gaussian distribution with an average µ and width
σ:

G(x, µ, σ) ≡ 1

σ
√

2π
e−(x−µ)

2/2σ2

(1)

This distribution is shown in Figure 2, for µ = 3 and σ = 1. We now simulate a
measurement of the quantity x by drawing 100 random values from this distribution,
and bin them in bins of width 0.5. The distribution of the measurements is also
shown in the figure. We estimate – with Eqs. 7,8 below – the average and width of the
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parent function, and find that the values of x as estimate for µ and s as estimate for
σ, depend on whether we bin, and on the number of bins. The Gaussian distributions
with these values for µ and σ are also shown in the figure, and differ somewhat from
the actual distribution.

It is useful to discriminate two reasons why we obtain a distribution of the mea-
surement results, rather than one single value. One reason may be that the quantity
we measure is intrinsically distributed. If we determine the income of arbitrarily se-
lected Dutch people, we will obtain a range of values because there is a range of
incomes, i.e. not all incomes are the same. Another reason may be that the mea-
surement has a finite accuracy. If we determine the charge of an electron, we will
find a distribution of values which reflects the precision of the measurement. In
many measurements, both reasons apply. Whichever is the dominant reason, we
can always describe the set of measurements in terms of an average and a spread
around the average, and it is with this that we will start.

1.1 Characterizing a distribution with average and spread

Suppose we have a distribution of the measurable quantity x. As illustrated in
Figure 2, a finite number of measurements will only approximate the parent distri-
bution. In general we want to know what probable or characteristic values of x are,
and what the spread of individual measurements xi is.

We first define several characteristic values for the distribution.
The average or mean µ of the parent distribution is given by

µ ≡ lim
N→∞

1

N

N∑
i=1

xi (2)

The median value µ1/2 of the parent distribution is that value at which there
are equal numbers of values higher and lower than it. Expressed differently, the
probability that an arbitrarily selected value is higher than the median is 50%, and
the probability that an arbitrarily selected value is lower is 50% also:

P (xi > µ1/2) ≡ P (xi < µ1/2) ≡ 0.5 (3)

Finally, the most probable value µmax of the parent distribution is the value at
which the distribution peaks:

P (µmax) ≥ P (xi 6= µmax) (4)

For symmetric distributions with a single maximum, like the Gauss function,
the average, median and most probable value are all the same. They are generally
different in asymmetric functions, as for example in the Maxwellian (Figure 3).

To know how broad a distribution is, we can also define various quantities that
indicate the width. A simple one is the average absolute value of the deviation from
the average, i.e.

α ≡ lim
N→∞

1

N

N∑
i=1

|xi − µ| (5)

The absolute value is required, because the straightforward average deviation from
the average is zero by definition. Whereas α is a useful quantity, it is difficult to
handle mathematically because of the occurrence of an absolute value.
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Figure 3: Illustration of various definitions of the average, illustrated for the
Maxwellian f(x) = x2G(x, 0, 25) where G(x, µ, σ) is the Gauss-function of Eq. 1.
For explanation see text.

The most commonly used measure of the width of a distribution is the variance

σ2 ≡ lim
N→∞

1

N

N∑
i=1

(xi − µ)2 (6)

In practice we always have a limited number of measurements, and thus can only
approximate the average and variance for a series of observations, as follows. For
the average we take

µ ' x ≡ 1

N

N∑
i=1

xi (7)

and for the variance

σ2 ' s2 ≡ 1

N − 1

N∑
i=1

(xi − x)2 =
1

N − 1

(
N∑
i=1

xi
2 −Nx2

)
(8)

In estimating the average with Eq. 7 we assume that all measurements xi are
independent. In estimating the variance with Eq. 8 we note that we already have
used the xi values to estimate the average, which implies that we have N − 1 inde-
pendent measurements left. (If we know N −1 values of xi and x, we can determine
the one remaining xi.) This is the reason that the sum of (xi − x)2 is divided by
N − 1 (instead of by N). Indeed, if we only have one measurement, i.e. N = 1,
then the best value for the average is given by this one measurement, but we have
no measure for the variance.

Take x as a variable in Eq. 8; to find the value of x for which s2 is minimal, we
set the derivative of s2 with respect to x to zero:

∂s2

∂x
=
−2

N − 1

N∑
i=1

(xi − x) =
−2

N − 1

(
N∑
i=1

xi −Nx

)
= 0 (9)

From the last two terms we obtain once more Eq. 7. This shows that the definition
Eq. 7 for the sample average minimizes the sample variance given by Eq. 8.
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When the measurements are binned, as is always the case if we have digital
measurements but also often in other cases, we find the average and its variance from
the binned data. We write the number of bins as B, and denote the value of x in
bin b as xb and the number of measurements in that bin as Nb, where b = 1, . . . , B.
We normalize the number of measurements in each bin on the total number of
measurements, to find the probability that a measurement from the sample falls in
bin b as Pb ≡ Nb/

∑B
b=1Nb, and rewrite Eqs. 7,8 as

x =
B∑
b=1

Pbxb (10)

and

s2 =
N

N − 1

(
B∑
b=1

Pbxb
2 − x2

)
(11)

Higher order moments of distributions with points far from the average (’out-
liers’) are very sensitive to outliers: a large xi − x value dominates much more in
the distribution of the (xi − x)2’s than in the distribution of |xi − x|’s.

For an analogous reason, it is strongly recommended never to use even higher
moments, such as the third order moment or skewness and the fourth order moment
or kurtosis. For completeness, here are the definitions of these moments:

Skewness ≡ 1

Nσ3

∑
(xi − µ)3 ' 1

Ns3

∑
(xi − x)3 (12)

and

Kurtosis ≡ 1

Nσ4

∑
(xi − µ)4 − 3 ' 1

Ns4

∑
(xi − x)4 − 3 (13)

where σ is the standard deviation, defined in Eq. 6. The subtraction of 3 in the
kurtosis is made so that the kurtosis of a Gauss distribution is zero.

In this lecture we will stick to the common practice of mainly using the variance.

1.2 Common distributions

In this section we discuss distributions which often occur or are postulated to occur in
nature, or in measurement series. We briefly discuss computer programs to compute
these distributions.

1.2.1 The binomial and Poisson distributions

An observer tries to detect photons during a certain time interval. The expected
number of photons to arrive in this interval is µ. How many photons will the
observer detect? To answer this question, we start by dividing the interval in n
equal sub-intervals. In each sub-interval the probability that a photon arrives is
thus p = µ/n (a correction to this statement follows below!); the probability that no
photon arrives is 1−p. The measurement of the observer can thus be considered as a
series of n trials to find a photon, each trial having probability p of succeeding. The
probability that k photons will be detected is thus given by the binomial function

PB(k, n, p) =

(
n
k

)
pk(1− p)n−k (14)
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Figure 4: Binomial distributions for n = 10, p = 0.5 (left) and n = 10, p = 1/6
(right).

The binomial function also describes processes like flipping a coin, or throwing dice.
For example, when we flip a coin the probability of getting head is p = 1/2, and
the probability of getting k times head when we flip the coin 10 times is given by
PB(k, 10, 0.5). When we throw 10 dice, the probability of getting k times a 1 is given
by PB(k, 10, 1/6). These examples are illustrated in Figure 4.

We now return to the experimenter measuring the arrival of photons. If the sub-
interval is large, there is a finite probability that more than 1 photon will arrive in it,
which is not taken into account in the above argument. To suppress this probability,
we take the limit of letting the number of trials n go to infinity, keeping the product
np ≡ µ constant. In this limit the binomial distribution changes into the Poisson
distribution, in which the probability of obtaining k photons is given by

PP (k, µ) =
µk

k!
e−µ (15)

The derivation is given in the intermezzo. The exponent makes sure that the sum∑
PP (k, µ) over all probabilities from k = 0 to k =∞ is 1 (remember ex = 1 + x+

x2/2! + x3/3! . . . .).
Our observer does an infinite number of observations (this is a thought exper-

iment. . . ), and should then on average detect µ photons: k = µ. The variance
σ2 ≡ (k − µ)2 also equals µ. The derivations are given in the intermezzo. Two
examples of the Poisson distribution are given in Figure 5.

Intermezzo: derivations

From De Moivre or binomial to Poisson:

P (k) =

(
n
k

)
pk(1− p)n−k = n!

k!(n− k)!

(µ
n

)k (
1− µ

n

)n−k
(16)

=
µk

k!

n(n− 1)(n− 2)..(n− k + 1)

nk
(1− µ/n)n

(1− µ/n)k
=
µk

k!
1
e−µ

1

Average and variance of Poisson distribution:

1 =

∞∑
k=0

µk

k!
e−µ (17)
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Figure 5: Poisson distributions for µ = 10 (left) and p = 10./6 (right). The dashed
lines show Gaussian approximations to the Poisson function: these underestimate
the probability of large deviations.

⇒ ∂

∂µ
1 = 0 =

∞∑
k=0

k
µk−1

k!
e−µ −

∞∑
k=0

µk

k!
e−µ =

1

µ

∞∑
k=0

k
µk

k!
e−µ − 1 =

1

µ
k − 1 = 0⇒ k = µ

∂

∂µ
µ =

∂

∂µ

∞∑
k=0

k
µk

k!
e−µ ⇒ 1 =

∞∑
k=0

(
k2
µk−1

k!
e−µ − kµ

k

k!
e−µ
)

=
1

µ

∞∑
k=0

k2
µk

k!
e−µ − µ (18)

⇒ µ2 + µ = k2

hence

σ2 ≡ (k − µ)2 =
∞∑
k=0

(k − µ)2P (k) =
∞∑
k=0

k2P (k)− 2µ
∞∑
k=0

kP (k) + µ2 =
∞∑
k=0

k2P (k)− µ2 = µ

Alternative derivations:

k =
∞∑
k=0

k
µk

k!
e−µ = e−µ(0 + µ+ 2

µ2

2!
+ . . .) = e−µ(µ+

µ2

1!
+
µ3

2!
. . .) (19)

= e−µµ(1 +
µ

1!
+
µ2

2!
+ . . .) = e−µµeµ = µ

∞∑
k=0

k2
µk

k!
= 0 + µ+ 2µ2 + 3

µ3

2!
. . . = µ(1 +

µ

1!
+ 3

µ2

2!
. . .) = µ(1 +

µ

1!
+
µ2

2!
+ . . .

µ

1!
+ 2

µ2

2!
+ . . .)(20)

= µ(eµ + µ[1 +
µ

1!
+
µ2

2!
+ ..]) = µeµ + µ2eµ

hence

σ2 ≡ (k − µ)2 =
∞∑
k=0

k2P (k)− µ2 = e−µ
∞∑
k=0

k2
µk

k!
− µ2 = µ+ µ2 − µ2 = µ

1.2.2 The Normal and Gaussian distributions

If µ is large, the Poisson distribution is well approximated by the normal distribution

PG(x)dx =
1√
2π

exp

[
−1

2
x2
]
dx (21)
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Figure 6: The Lorentzian distribution for µ = 25 and Γ = 5.

We added a finite interval dx here, because in a continous distribution the probability
of getting exactly x (i.e. with an infinite number of decimals. . . ) is zero. The more
general Gaussian distribution

PG(x, µ, σ)dx ≡ 1

σ
√

2π
e−(x−µ)

2/2σ2

dx (22)

is easily converted into the normal distribution Eq. 21 by applying the transforma-
tion z = (x− µ)/σ. The standard normal distribution is the same as the Gaussian
distribution for µ = 0, σ = 1. The Gauss and normal function have the computa-
tional advantage over both the binomial and the Poission distribution that it is easy
to compute; it does not contain such expensive calculations as the factorials. It also
describes (or is assumed to describe. . . .) the distribution of measurements in many
physical experiments.

1.2.3 The Lorentzian distribution

Spectral lines, or resonance reactions, can often be described with the Lorentzian
function

PL(x, µ,Γ) =
1

π

Γ/2

(x− µ)2 + (Γ/2)2
(23)

This is a symmetric function around the average µ with a half-width Γ. The integral
of the Lorentzian for −∞ to +∞ is 1, as can be verified using the coordinate
transformation z = 2(x− µ)/Γ:∫ ∞

−∞
PL(x, µ,Γ)dx =

1

π

∫ ∞
−∞

dz

1 + z2
= 1 (24)

The Lorentzian has very broad wings. As a result, the integral∫ ∞
−∞

(x− µ)2PL(x, µ,Γ)dx =
1

π

Γ2

4

∫ ∞
−∞

z2dz

1 + z2
(25)

is unbounded.
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Figure 7: Comparison between the Poisson (solid) and gaussian (dashed) distribu-
tions for increasing values of the average. The similarity increases with the average.

1.3 Cumulative probabilities

If we wish to compute the probability of a certain measurement, we must usually
compute a cumulative probability. The following argument may illustrate this. Sup-
pose that someone throws a die 3000 times, and obtains a six 500 times. This is
obviously an allowed result for a good die. However, if we compute the probability
that exactly 500 sixes are obtained, we will obtain a low probability (about 2%),
as this does not take into account the spread of about

√
500 around the expected

number of 500 sixes we may obtain in any single trial. A much better measure for
the probability is therefore to compute the probability of getting ’k or less’ if we
think the obtained number k is too small; or ’k or more’ if we suspect the obtained
number k is too big.

First we note that the factorials, necessary in calculations with binomial and
Poisson function, are closely related to the gamma function

Γ(z) =

∫ ∞
0

tz−1e−tdt (26)

For integer z, the gamma function equals the factorial, with an offset of one in the
argument:

n! = Γ(n+ 1) (27)

For small values of n, the factorial can be computed directly as n! = 1×2×3 . . . n;
for large values we can use the gamma-function. For large n there is the danger that
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the factorial is larger than the largest number allowed by the computer language
that you use. In that case it is better to calculate the logarithm of the factorial (or
equivalently, the logarithm of the gamma function).

The cumulative binomial probability that a binomial process leads to k or
more in n trials with probability p is given by the incomplete beta function Ix(a, b):

PB(≥ k, n, p) ≡
n∑
j=k

(
n
j

)
pj(1− p)n−j = Ip(k, n− k + 1) (28)

where

Ix(a, b) ≡
(∫ x

0

ta−1(1− t)b−1dt
)
/

∫ ∞
0

ta−1(1− t)b−1dt (29)

The cumulative Poisson probability that a Poisson process with expected
value x will lead to a result k−1 or less is given by the incomplete Gamma function
Q(a, x):

PP (< k, x) ≡
k−1∑
j=0

PP (j, x) = Q(k, x) ≡ 1

Γ(a)

∫ ∞
x

ta−1e−tdt (30)

The complement of this function is also called the incomplete gamma function (which
is somewhat confusing. . . ):

P (a, x) ≡ 1−Q(a, x) ≡ 1

Γ(a)

∫ x

0

ta−1e−tdt (31)

Finally, the cumulative probability of the Gauss function (see Eq. 1), can
be computed from the error function:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (32)

Equally useful is the complementary error function

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt (33)

The error functions are given by the incomplete gamma functions:

erf(x) = P (1/2, x2) (x ≥ 0)

erfc(x) = Q(1/2, x2) (x ≥ 0)

1.4 Remarks on the use of the gaussian

Error distributions are never pure gaussians. However, if a measurement involves
a number of processes, each with its own error distribution, the resulting overall
error distribution will approximate a gaussian. This theorem is called the central
limit theorem. Indeed, measurement error distributions may often be approximated
with a gaussian. It never hurts to check whether the errors of your data have a
gaussian distribution. . . It is to be expected that the gaussian approximation is best
near the average, and becomes worse the further one moves from the average. In
other words, the gaussian gives a correct value at 3-σ, say, but cannot be trusted in
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detail at 10-σ. This implies that the difference between, for example, probabilities
of 0.01 and 0.001 is significant; but the difference between, for example, 10−20 and
10−30 usually is not. In general, very small probabilities should not be considered
exact.

Many measurements produce integer numbers. This is the case for example if
one measures the number of people as a function of height, and also if one measures
with a CCD the number of fotons as a function of position on the detector. If
the numbers are large enough, their error distributions may be approximated with
gaussians; however, for small numbers this approximation is bad, and one should
use the Poisson distribution. This is illustrated in Fig. 7. For large deviations
from the average, one should also use the Poisson distribution: in general, the
probability for large deviations is higher in the Poisson distribution that in the
gaussian distribution.

As a rule of thumb, one may use the gaussian approximation of the Poisson
function if the expectation value is higher than 20. Even in this case, there is a
systematic difference between the results obtained with the two distributions. For
this reason, and because computers are fast enough to compute Poisson probabilities,
it becomes more common to use the Poisson distribution also for large numbers.

If the errors are distibuted according to a Gaussian Eq. 22, we can compute how
often it happens that the measurement is more than 1, 2 or 3 σ from the expected
value. The fraction of values more than nσ above the average value is given by∫ ∞

nσ+µ

1√
2πσ

e−(x−µ)
2/(2σ2)dx =

1√
π

∫ ∞
n/
√
2

e−t
2

dt (34)

where we made a transformation

x− µ√
2σ
→ t⇒ x = µ+ nσ → t =

n√
2

(35)

Similarly, we may compute the fraction below −nσ from the average. This is the
same as the fraction above nσ from the average, as follows from the symmetry of
the problem, and also from an explicit transformation analogous to the one just
made. Thus the total fraction more than nσ, above or below, from the average
value is given by the error function Eq. 33. Some values for these fractions are given
in Table 1, together with the n-values for fractions of 90, 99 and 99.9 %.

1.5 Some analytical examples

1.5.1 Average of two measurements

As a first example we consider two measurements N1 and N2. Assuming that both
are drawn from a Poisson distribution with the same m, we want to compute the
most probable value for m. From Eq. 15 we obtain the combined probability as

L =
mN1e−m

N1!

mN2e−m

N2!
(36)

To find the most probable m we set the derivative of L with respect to m equal to
zero, and for computational simplicity we first take the logarithm:

d lnL

dm
= 0 =

N1 +N2

m
− 2 ⇒ m =

N1 +N2

2
(37)
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Table 1: Fractions for the Gauss function between the average and ±nσ (in) and
outside this range (out)

n in out n in out
1 0.6827 0.3173 1.645 0.90 0.10
2 0.9545 0.0455 2.575 0.99 0.01
3 0.9973 0.0027 3.890 0.999 0.001

The answer is not unexpected, but nonetheless warrants a closer look, which we
will take in Sect. 4.2.1.

1.5.2 Birth ratios of boys and girls

One of the earliest interests of Laplace in statistics is related to the observations
that more boys are born than girls. (This is described in Stigler, 1986, pp. 134 sqq.,
from which we take the observed numbers for the births.) We will not follow Laplace
in tackling this, but a modern description.
a. Between 1745 and 1770 in Paris 251 527 boys were born and 241 945 girls. Is the
difference significant? To decide this, we assume that the probability for a boy to
be born is p = 0.5. Then the probability to have N1=251 527 boys or more on a
total of NP=493 472 births is (from Eq. 14)

P =

NP∑
j=N1

(
NP

j

)
0.5NP

This sum of binomial probabilities can be computed with the incomplete beta func-
tion (for which see Numerical Recipes, Sect.6.4, also the very end of that section).
Entering the values for N1 and NP (N.B.: the routine expects these numbers as real
numbers!) we find a probability of 1.1 × 10−42. We may safely conclude that the
probability for a boy is larger than 0.5.
b. In London 737 629 boys and 698 958 girls were born from 1664 to 1757. Is the
ratio of boys to girls in London, 1.0553, significantly higher than that in Paris,
1.0396? To answer this question we first derive the best guess for the ratio, under
the assumption that it is the same in both cities. Write the number of boys born
in London as N2 and the total number of births in London NL, we can write the
combined probability

P =

(
NP

N1

)
pN1(1− p)NP−N1

(
NL

N2

)
pN2(1− p)NL−N2
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To find the best guess for p, we take the derivative of the (logarithm of the) proba-
bility, and put it equal to zero:

d lnP

dp
=
N1 +N2

p
− (NP +NL)− (N1 +N2)

1− p
= 0⇒ p =

N1 +N2

NP +NL

Entering the numbers we find p = 0.5125 and with this the probability that the
number of boys in Paris is N1 or higher,

PP = P =

NP∑
j=N1

(
NP

j

)
0.51255N1(1− 0.51255)NP−N1

is almost 1, but the probability for London for N2 or higher is 0.012. (We compute
this again with the incomplete beta function.) Thus the probability that the birth
ratio in London is the same as in Paris is about 1%.

1.6 Computing the various distributions

In the bad old days, one was forced to use tables in thick, heavy books whenever
one used the distributions described above. Nowadays, fast computers allow us to
compute the quantities we need, with relative ease. Chapter 6 of Numerical recipes
(2nd edition) contains good explanations of these functions. A good introduction
for using these functions in Python may be found in:

www.codeproject.com/Articles/38402/Getting-started-with-the-SciPy-Scientific-Python-l

1.7 Exercises

Exercise 1. Show analytically that the average and the variance of the Gauss
function Eq. 1 are given by µ and σ2.

1.8 Computer exercises

Computer Exercise 1. We start with an exercise related to the machine accuracy
of the computer. It is adapted from Meeus, Astronomical Algorithms2 (2000).
Write a code, which first sets x = 1/3 (x is a real) and then n times replaces x
with (9x + 1)x− 1, writing each replacement to the screen. Run the code. Do you
understand how the error spreads?

Computer Exercise 2. For this exercise, use the functions available in numpy.
a. Write a computer programme which computes the binomial probability for given
k, n, p. To check your program, verify the following statement: if one throws 10
dice, the probability that precisely 7 three’s are up is 2.48× 10−4.
b. Write a computer programme which computes the Poisson probability for given
k, µ. To check your program, verify the following statement: if the expected number
of arriving counts is 15, the probability of measuring 30 counts is 2.21 × 10−4, the
probability of measuring 0 counts is 3.06× 10−7.
c. Write a computer programme which computes the Gauss function for given x,
µ, σ. To check your program, verify the following statement: if one estimates
the probabilities calculated in b) by approximating the Poisson function with a
Gaussian, one finds 5.70× 10−5 for both.
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Computer Exercise 3. Write a code to verify the computations in Sect.1.5.2
Computer Exercise 4. A pulsar, short for pulsating radio source, is observed

with an X-ray satellite, and 13 photons are detected from the source position. The
data are folded on the known pulse period, and binned in 5 bins. It is then found
that 8 of the 13 photons fall in one bin.
a. Describe how one can determine what the probability is of finding (exactly) 8
of 13 photons in bin one (of five). Which parent distribution must you use? Write
a computer code to compute this probability. Write two versions: one which takes
the input numbers from the command line; and one which prompts for the input
numbers while executing the code.
b. Argue that the probability that one finds 8 counts in any of the five bins is five
times the result of a). Nota bene: suppose in a) we had computed the probability
of finding 5 or more counts in bin one. In that case the probability of finding 5 or
more counts in any bin cannot be found by mulitplying the probability for one bin
with five. Why not?
c. Argue that the correct probability to compute is the cumulative probability
of finding 8 or more counts in any of the five bins. Extend your computer code
to compute this probability, by explicitly summing from 8 to 13 (inclusive). The
correct answer is 0.006. Then, use the function for the incomplete beta-function in
scipy.special

This Exercise is based on an observation with the ROSAT (Roentgen Satellite) of a
pulsar in the globular star cluster M 28. The original authors claimed a probability
of about 3× 10−4 that the 8 photons are in one bin due to chance. It turns out that
the 13 photons are not from the pulsar, so that the apparent pulsation of the X-ray
photons is really due to chance! (Verbunt, 2001, Astronomy and Astrophysics 368,
137; sect. 3.44.)
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1.9 What is wrong?

The Moon causes tides in the oceans on Earth, and because of friction in these tides,
angular momentum is transferred from the rotation of the Earth to the orbit of the
Moon. This implies that the rotation of the Earth slows down (the length of the
day increases by about 0.002 s/century), and the distance to the Moon increases by
about 3.84 cm/yr).

Can one measure the length of the day in the distant past? In 1973 it was
suggested that one can use the variation of the thickness in layers of chalk in some
fossil shells. The idea was that a shell adds a layer every day, and that the thickness
of the layer depends on the amount of light, which changes with the season of the
year. Thus, by carefully counting the number of layers one can determine the number
of days per year. Since the length of the year is (virtually) constant, one thereby
determines the length of the day. I have taken the values with error estimates from
a review on this topic, and show them in Figure 8, together with a theoretical curve
(dotted line). From this figure it is immediately clear that the ‘observed’ numbers
have been doctored. Explain how you can see this.

Figure 8: The number of days per month and per year as determined from counts
of chalk layers in fossil shells. The dashed lines gives the theoretical curve, the dots
the measurements with 1-σ error bars.

For more detail see: http://www.astro.ru.nl/∼fverbunt/binaries/earth.pdf
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2 Error propagation

Suppose we have a function f of a number of variables u, v, . . .:

f ≡ f(u, v, . . .) (38)

We want to know how we can estimate the variance of f ,

σf
2 ≡ lim

N→∞

1

N

N∑
i=1

(fi − f)2 (39)

from the variances σu, σv, . . . of the variables u, v, . . .. To derive this we will make
the assumption, which is usually only approximately correct, that the average of f
is well approximated by the value of f for the averages of the variables:

f = f(u, v, . . .) (40)

We make a Rayleigh-Taylor expansion of f around the average:

fi − f ' (ui − u)
∂f

∂u
+ (vi − v)

∂f

∂v
+ . . . (41)

to write the variance in f as

σf
2 ' lim

N→∞

1

N

N∑
i=1

[
(ui − u)

∂f

∂u
+ (vi − v)

∂f

∂v
+ . . .

]2

= lim
N→∞

1

N

N∑
i=1

[
(ui − u)2

(
∂f

∂u

)2

+ (vi − v)2
(
∂f

∂v

)2

+ 2(ui − u)(vi − v)
∂f

∂u

∂f

∂v
+ . . .

]
(42)

We rewrite this by using the definitions for the variances of u and v,

σu
2 ≡ lim

N→∞

1

N

N∑
i=1

(ui − u)2; σv
2 ≡ lim

N→∞

1

N

N∑
i=1

(vi − v)2 (43)

and defining the covariance of u and v as

σuv
2 ≡ lim

N→∞

1

N

N∑
i=1

(ui − u)(vi − v) (44)

to obtain:

σf
2 = σu

2

(
∂f

∂u

)2

+ σv
2

(
∂f

∂v

)2

+ 2σuv
2∂f

∂u

∂f

∂v
+ . . . (45)

If the differences ui − u and vi − v are not correlated, the sign of their product
is as often positive as negative, and the sum in eq. 44 will be small as subsequent
terms (almost) cancel. On the other hand, if the differences are correlated, most
products (ui − u)(vi − v) will be positive, and the cross-correlation term in Eq. 45
can be large as subsequent terms add up.
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2.1 Examples of error propagation

2.1.1 weighted sum: f = au+ bv

For the partial derivatives we have

∂f

∂u
= a,

∂f

∂v
= b (46)

and substituting these in eq. 45 we obtain

σf
2 = a2σu

2 + b2σv
2 + 2abσuv

2 (47)

Note that a and b can each have positive or negative sign. Their signs only have
an effect on the cross-correlation term, which as a consequence can be negative, and
make the variance smaller! For example, if each ui is accompanied by a vi such that
vi − v = −(b/a)(uu − u), then f = au+ bv for all ui, vi pairs, and σf

2 = 0.

2.1.2 product: f = auv

With
∂f

∂u
= av,

∂f

∂v
= au (48)

we obtain
σf

2

f 2
=
σu

2

u2
+
σv

2

v2
+

2σuv
2

uv
(49)

2.1.3 division: f = au/v

∂f

∂u
=
a

v
,

∂f

∂v
= −au

v2
(50)

hence
σf

2

f 2
=
σu

2

u2
+
σv

2

v2
− 2σuv

2

uv
(51)

2.1.4 exponent: f = aebu

∂f

∂u
= bf (52)

hence
σf
f

= bσu (53)

2.1.5 power: f = aub

∂f

∂u
=
bf

u
(54)

hence
σf
f

= b
σu
u

(55)

Exercise 2. x = a ln(±bu). Give the relation between σx and σu.
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2.2 Exercizes

Exercise 3. Radiopulsar PSR J 1713 + 0747 has an observed period P = 4.5701×
10−3 s and period derivative Ṗ = 8.52 × 10−21, both with (for the purpose of this
problem) negligible errors. Two components of its proper motion µ have been mea-
sured as µα = 4.9±0.3 mas/yr and µδ = −4.1±1.0 mas/yr; its distance is estimated
from the dispersion measure as d = 1.1± 0.3 kpc.

As noted by Shklovskii, the ratio Ṗ /P must be corrected for the apparent accel-
eration due to the proper motion, so that the intrinsic ratio is:(

Ṗ

P

)
i

=
Ṗ

P
+
µ2d

c
(56)

The (intrinsic) spindown age of a radio pulsar is

τc,i =

(
P

2Ṗ

)
i

(57)

Calculate the intrinsic spindown age and its error.
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3 Errors distributed as a Gaussian and the least

squares method

Suppose we have a series of measurements yi with associated errors distributed ac-
cording to a Gaussian with width σi, i.e. each measurement is drawn from a Gaus-
sian with width σi around a model value ym. For one measurement, the probability
P (yi) ≡ Pi of obtaining a measurement yi, in an interval ∆y, is then given by

Pi∆y =
1√

2πσi
e

−(yi−ym)2

2σi
2 ∆y (58)

where we allow that different measurements have different associated errors σi. If
we have a series of N measurements the overall probability of obtaining such a series
is:

P (∆y)N ≡
N∏
i=1

(Pi∆y) =
1

(2π)N/2
∏

i σi
exp

[
−1

2

N∑
i=1

(yi − ym)2

σi2

]
∆yN (59)

The highest probability P is that for which

χ2 ≡
N∑
i=1

χi
2 ≡

N∑
i=1

(yi − ym)2

σi2
(60)

is smallest. If we wish to determine the most probable model value for ym for a
series of measurements yi, we thus must find the value(s) for ym for which the sum
of the squares (yi − ym)2/σi

2 is minimal. This is called the method of least squares
and was described first in 1804 by Gauss, following earlier work by Lagrange and
Laplace.

According to the assumption that the errors are gaussian, as stipulated above,
each χi is a random draw from a normal distribution; the sum of the χi

2 is called
chi-square. If we have N measurements, and we fit M parameters, we have N −M
independent measurements left. The probability distribution for χ2 is called the
chi-square distribution for N −M degrees of freedom. This distribution is what we
get if would draw N −M random samples from a normal distribution, square them,
and add the squares, and repeat this many times, each time producing one χ2. The
probability of a given χ2 can be computed with the incomplete gamma-function,
defined in Eq. 30, as follows: the probability that an observed χ2

obs or greater is
reached for N −M degrees of freedom is:

P (χ2 ≥ χ2
obs) = Q

(
N −M

2
,
χ2
obs

2

)
(61)

If the probability that we get is very small, then something is wrong. The most
obvious possibility is that the model is wrong. Another possibility is that the errors
have been under-estimated, so that we demand a better agreement with the model
than the measurement accuracy warrants. A third possibility is that the errors are
not distributed as Gaussians. This latter possibility tends to increase the observed
χ2; and often causes us to accept probabilities somewhat lower than one would
superficially expect. Thus in many cases, a probability of 0.05 is considered quite
acceptable. The reason one can do this, is that really wrong models easily produce
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much smaller probabilities, less than 0.000001, say. Also, even in a perfect statistical
process, a probability of 5% arises on average once every 20 trials, so that finding
such a probability due to chance is quite common. If one finds in a certain experiment
that one always produces low probabilities, one must look into it and try to determine
the cause.

It is worth noting that apparently significant results can arise from ignoring
negative results. The most obvious case is the winning of a lottery. Suppose the
winner is the person who has guessed the correct integer number less or equal to
one million. The probability for one person to have the winning number is one in a
million, but if several million people participate we expect several to have guessed
the correct number. A less obvious case is an experiment which is repeated many
times. A well-known case here is the stock-broker. Suppose that one starts with
ten million people, who predict how stocks change in value. After a year, select the
people who are among the ten per cent best predictors; repeat this five times (so that
six rounds have been made), then there will be (on average) ten stock brokers who
have predicted among the best 10% for six years in a row, if the prediction process is
purely random! It is thus by no means obvious that a stock-broker who has predicted
correctly for many years in a row is better than random – one can only find out if
one knows how many stock-brokers there are. . . . (Indeed, in experiments in which
a gorilla selects the stocks, the gorilla often does better than the professional stock
broker firms.)

When we make a fit of a model to a dataset, the result should always consist of
three parts:

1. the best values of the parameters a1, a2, . . .

2. the errors on these parameter values

3. the probability that the measured χ2 is obtained by chance; i.e. the probability
that the model adequately describes the measurements (Eq. 61)

It is very important always to provide all these three desiderata.
We will discuss three cases for ym, viz. i) a constant, in which ym is the same

for all i; ii) a straight line ym = a + bx where ym depends on the variable x and
the model parameters a and b; and iii) the general case in which ym depends on a
variable x and a set of parameters a1, a2, . . ., which we write as ym = ym(x;~a).

3.1 Weighted averages

If the model for is ym = a, with a a constant. The least squares method tells us that
we find the most probable value for a by minimizing eq. 60 with respect to a, i.e.

∂

∂a

[
N∑
i=1

(yi − a)2

σi2

]
= 0⇒

N∑
i=1

yi − a
σi2

= 0 (62)

Thus the most probable value for a is given by

a =

∑N
i=1

yi
σi2∑N

i=1
1
σi2

(63)

and a is called the weighted average of yi.
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To obtain an estimate of the error in a, we note that it is a function of the
variables y1, y2, . . .. If the measurements yi are not correlated, we find the variance
for a from (see eq. 45):

σa
2 =

N∑
i=1

[
σi

2

(
∂y

∂yi

)2
]

=
N∑
i=1

σi2( 1/σi
2∑N

k=1(1/σk
2)

)2
 (64)

which gives

σa
2 =

1∑N
i=1(1/σi

2)
(65)

In the case where all measurement errors are identical, σi ≡ σ, eqs. 63,65 can be
further simplified to

a =
(1/σ2)

∑N
i=1 yi

(1/σ2)
∑N

i=1(1)
=

1

N

N∑
i=1

yi (66)

and

σa
2 =

σ2

N
(67)

3.2 Fitting a straight line

We write the model of a straight line as

ym(x, a, b) = a+ bx⇒ ym(xi, a, b) = a+ bxi (68)

where the parameters to be fitted are a and b. We now wish to minimize the χ2,
according to Eq. 60, with respect to a and b, and do this by looking for the values
for which the derivative of χ2 is zero:

∂
∑N

i=1[(yi − a− bxi)/σi]2

∂a
= 0⇒

N∑
i=1

(
yi − a− bxi

σi2

)
= 0⇒

N∑
i=1

yi
σi2
−a

N∑
i=1

1

σi2
−b

N∑
i=1

xi
σi2

= 0

(69)

∂
∑N

i=1[(yi − a− bxi)/σi]2

∂b
= 0⇒

N∑
i=1

xi(yi − a− bxi)
σi2

= 0⇒
N∑
i=1

xiyi
σi2
−a

N∑
i=1

xi
σi2
−b

N∑
i=1

xi
2

σi2
= 0

(70)
The important thing to note now is that all the sums can be evaluated without
knowledge of a or b. To make the equations easier to interpret we define the sums
as

N∑
i=1

1

σi2
≡ S;

N∑
i=1

xi
σi2
≡ Sx;

N∑
i=1

xi
2

σi2
≡ Sxx

N∑
i=1

yi
σi2
≡ Sy;

N∑
i=1

xiyi
σi2
≡ Sxy; ∆ ≡ SSxx − (Sx)

2

and rewrite the above two equations as two equations for two unknowns a and b:

aS + bSx − Sy = 0

aSx + bSxx − Sxy = 0
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Figure 9: Total number of 1st-year students in the Netherlands in physics and as-
tronomy (above) and in astronomy only (below) between 1990 and 2000. Assumed
poissonian errors are indicated. Data taken from the Nederlands Tijdschrift voor
Natuuurkunde, which stopped publishing these numbers in 2000. . .

with the solutions

a =
SxxSy − SxSxy

∆
(71)

b =
SSxy − SxSy

∆
(72)

To find the errors in a and b, we note that a and b depend on the independent
parameters yi, such that

∂a

∂yi
=
Sxx − xiSx
σi2∆

;
∂b

∂yi
=
xiS − Sx
σi2∆

(73)

and use Eq. 45 to obtain (after some rewriting)

σa
2 =

Sxx
∆

; σb
2 =

S

∆
(74)

As the third ingredient of our fit we determine the probability that a good fit
would produce the observed χ2

obs or bigger as

P (χ2 ≥ χ2
obs) = Q

(
N − 2

2
,
χ2

obs

2

)
(75)

As an illustration of some more subtleties we have a look at Figure 9, where the
number of new physics and astronomy students in the Netherlands are plotted for
the last decade of the 20st century. The first point concerns the errors in measured
integer numbers. It is assumed in the figure that the error on the number of students
is given by the square root of the number, and these errors are shown. The reader
may be surprised now, and say: ’Why is there an error? After all, we know exactly
how many students there are in a given year!’. The answer is that for the purpose of

21



fitting a model the numbers of students can vary due to chance, and that the actual
number in a year is drawn from a distribution (poissonian in this case) around the
expected value. Similarly, if an X-ray experiment detects N photons in a given time
interval, in a given energy range, then the error that we assign to this number when
we fit it in a model is not zero – even though we know exactly how many photons
were measured!

The second point concerns a good choice of a and b. If we fit the number of
students as N(t) = a + bt where t is the year, then a gives the number of students
for the year 0. Apart from the fact that this number is meaningless in the current
context, there are two other problems associated with this choice. The first one
is that the sums involving xi-values in Eqs. 71–74 are very large numbers, so that
subtracting them from one another (as in computing ∆) easily leads to roundoff
errors, and thus to wrong results. The second one is that in this choice of a and b
there will be a very strong correlation between the errors: if we change b a little, a
changes dramatically in one direction. Both these problems can be circumvented by
centering the time interval around the point of fitting, i.e. by effectively fitting N =
a+ b(t−1994). Now, the sums involve smaller numbers, and the pivot point around
which a and b vary is such that the correlation of their variations are minimized.

Also for non-linear fits, it is good practice in astronomy to define the time with
respect to some fiducial point somewhere near the middle of the measurements.

3.3 Non-linear models: Levenberg-Marquardt

When our model involves a parameter a which enters the ym, and through this the
χi, non-linearly, we cannot execute a summation without having (an estimate for)
the value of a. As an example, consider the function y = sin(ax), which has (see
Eq. 60)

∂χ2

∂a
= −2

N∑
i=1

[yi − sin(axi)]xi cos(axi)

σi2
(76)

and we see that the summation cannot be executed without a value for a.
In general, this means that a model y(x,~a) which is non-linear in ~a can be fitted

to a set of data only iteratively, in the sense that one needs a first set of values for
~a, and then finds successive improvements of these values.

To understand how this is done, we discuss first a one-dimensional case where
there is one parameter a that is fitted, so that χ2 = χ2(a). We are then looking for
the value of a for which χ2(a) is minimized.

When one is far from the minimum, we can use the derivative ∂χ2/∂a to decide
in which direction to look for the improved value:

an+1 = an −K
∂χ2

∂a
(77)

where K is a constant (the value of which we discuss below).
Once we get close to the minimum of χ2, this way of stepping towards a better so-

lution becomes less efficient, since near the minimum the first derivative approaches
zero. Close to the minimum we approximate χ2 as a quadratic function of a:

χ2(a) = χ2(amin) + q(a− amin)2;
∂χ2

∂a
= 2q(a− amin);

∂2χ2

∂a2
= 2q (78)
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where amin is the parameter value at which χ2 has its minimum. We combine the
derivatives to find

(a− amin)
∂2χ2

∂a2
=
∂χ2

∂a
⇒ an+1 = an −

∂χ2/∂a

∂2χ2/∂a2
(79)

Now make the step to a more-dimensional case, i.e. with more than one param-
eter, and write for model ym = ym(x,~a):

∂χ2

∂ak
= −2

N∑
i=1

[yi − ym]

σi2
∂ym
∂ak
≡ −2βk (80)

and
∂χ2

∂ak∂al
= 2

N∑
i=1

1

σi2

[
∂ym
∂ak

∂ym
∂al
− [yi − ym]

∂2ym
∂ak∂al

]
≡ 2αkl (81)

The second term on the right hand side is expected to be small with respect to
the first one, because yi − ym will almost equally often be positive as negative, and
subsequent terms in the summation will almost cancel. To save computing time, one
can drop the second term. It often turns out that the iteration to the best solution
becomes more stable by doing this.

For the more dimensional case we can write for Eq. 79:

βk =
M∑
l=1

αkl∆al; ∆al = al − al,min (82)

If the diagonal terms in α are much bigger than the off-diagonal terms, this reduces
to the linear case

βk = λαkk∆ak (83)

which is similar to Eq. 77, when we scale the proportionality constant K with the
second derivative, with scaling parameter λ.

The Levenberg-Marquardt method now continues by adding the two last equa-
tions:

βk =
M∑
l=1

α′kl∆al where α′kl = αkl (if k 6= l); α′kl = αkl(1 + λ) (if k = l) (84)

For large λ Eq. 84 approaches Eq. 83, and for small λ it approaches Eq. 82.
The solution of the equation then proceeds as follows. One picks an initial

solution, and a small value for λ (i.e. one hopes that the solution is already close
enough for the quadratic approximation). Compute the χ2 for the initial solution,
and compute a new value for ~a with Eq. 84. If the χ2 for the new solution is smaller
(larger) than for the old one, then the quadratic approach does (doesn’t) work, and
one should decrease (increase) λ to get closer to the purely quadratic (linear) method
of Eq. 82 (83). This process is iterated until the minimum χ2 is found.

We also need the errors on the best parameters ~a. For this we use the general
relation (near minimum)

∆χ2 = ∆~a · ~~α ·∆~a (85)

If the best values of the parameters are not correlated, then the matrix α is close
to diagonal, i.e. the off-diagonal elements αkl are much smaller than the elements
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αkk on the diagonal. In that case the difference distance ∆ak to the best value ak is
given by:

∆ak
2 =

∆χ2

αkk
(86)

and to estimate a 1-σ error in ak we may enter ∆χ2 = 1 in Eq. 86.
When the errors are correlated, the situation is more complex, and the matrix

A (more precisely, its inverse matric C = A−1) gives the correlation between the
deviations of the parameters from their best values. For details we refer to Numerical
Recipes.

3.4 Are the extra parameters significant?

When we have a model with MA parameters, but suspect that a model with more
parameters is necessary, we can make a fit with MB > MA parameters. For example,
if we describe a spectrum with a continuum, and we think that there may be a
spectral line in the spectrum, we can add the line. In the case of a gaussian line
profile, this leads to 3 extra parameters: the line strength, the line center, and the
line width. With more parameters, the fit obviously is better. But is it significantly
better? To decide that, we note that the difference χ2

B − χ2
A itself follows a χ2

distribution with MB −MA degrees of freedom.

Table 2: Differences in χ2 required to decide whether the added parameters lead to
a significant improvement. The first column gives the required significance level, the
following columns the corresponding minimum ∆χ2, for 1,2. . . 6 added parameters

P 1 2 3 4 5 6
0.683=1σ 1.00 2.30 3.53 4.72 5.89 7.04
0.954=2σ 4.00 6.16 8.02 9.70 11.3 12.8
0.9973=3σ 9.00 11.8 14.2 16.3 18.2 20.1

0.90 2.71 4,61 6.25 7.78 9.24 10.6
0.99 6.63 9.21 11.3 13.3 15.1 16.8

0.9999 15.1 18.4 21.1 23.5 25.7 27.8

3.5 Computer exercises

In computer exercise 5, we determine the age of the Earth from the abundances
of isotopes of rubidium and strontium in meteorites. We first discuss how this
method works. The discussion is adapted from Verbunt, Het Leven van Sterren
(2005, 20102). In computer exercise 6, we determine the mass of the first detected
exoplanet around a solar-type star. For this we first derive the observed radial
velocity of a binary star.

3.5.1 The age of the earth from meteorites

The best estimate of the age of the solar system is based on research of meteorites.
The age of meteorites can be determined thanks to the decay of long-living radioac-
tive elements. As an example we discuss the decay of a neutron in the core of a
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Figure 10: The ratio 87Sr(t)/86Sr as a function of 87Rb(t)/86Sr for various types of
meteorites. The dotted line is plotted only to guide the eye.

rubidium atom into a proton, under emission of an electron and a neutrino, turning
rubidium into strontium:

87Rb37 →87 Sr38 + e− + ν̄e (87)

The amount of rubidium at time t is:

87Rb(t) =87 Rb(0)e−λt (88)

where 87Rb(0) is the initial amount of rubidium, and λ the decay constant. The
amount of strontium-87 increases accordingly:

87Sr(t) =87 Sr(0) +
(
87Rb(0)−87 Rb(t)

)
=87 Sr(0) +87 Rb(t)

(
eλt − 1

)
(89)

We divide this equation by the amount of strontium-86; this amount doesn’t change.
We obtain:

87Sr(t)
86Sr

=
87Sr(0)
86Sr

+
(
eλt − 1

) 87Rb(t)
86Sr

(90)

The meteorites that arrive on Earth are fragments released in collisions between
planetoids. The planetoids were (partially) melted soon after their formation, and
solidified afterwards. This process partially separates the different elements: stron-
tium solidifies at a higher temperature (769 C) than rubidium (39 C). The initial
radio of rubidium to strontium 87Rb(0)/86Sr therefore was lower in the relatively
rapidly cooling surface layers of the planetoid, and higher in the slowly cooling
core. The solidification however does not differentiate between strontium-86 and
strontium-87; the initial ratio 87Sr(0)/86Sr was the same everywhere in the plane-
toid. The meteorites released from a planetoid therefore cover a range in values for
the ratio 87Rb(t)/86Sr.

For a number of meteorites the ratios strontium-87 to strontium-86 and rubidium-
87 to strontium-86 have been measured (Figure 10). By fitting the straight line
Eq. 90 to the data, we may determine the initial ratio 87Sr(0)/86Sr, and the fac-
tor

(
eλt − 1

)
. As the decay constant is known, we can determine the age of the

meteorites. With λ = 1.42× 10−11 yr−1 we find an age t = (4.51± 0.01)× 109 yr.
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Figure 11: (left): The orbits of two stars, with mass ratio 2, around the center of
gravity (indicated with +). The colored dots indicates some positions in the orbits,
equal colours for simultaneous positions. (right): the radial velocity of both stars
as measured by an observer far to the right of the figure. At phase φo both stars
move perpendicularly to the line of sight, at slightly later phases the more massive
star moves away from the observer (vr > 0) and the less massive star towards the
observed (vr < 0). For observers in a different direction, the radial velocity curves
looks the same, but with a phase shift, i.e. a different value for φo.

By equating this age with the age of the solar system, we make three assump-
tions. a) the planetoids solidified soon after the birth of the solar system b) the
planetoids all had the same ratio 87Sr(0)/86Sr. c) the meteorites did not melt again.
Assumptions b) and c) can be checked directly from the fit: if they are not correct,
the meteorites will not lie on the same line.

3.5.2 The radial velocity of a binary star

Consider two masses, M and m, which form a binary. In general, each star moves
in an ellipse around the center of gravity, the more massive star in a small ellipse
and the less massive star in a large ellipse. We consider the special case of a circular
orbit, i.e. the distance a between the stars is constant, and the distance of each star
to the center of gravity is also constant, and inversely proportional to the mass of
the star. According to the laws of Newton(

2π

P

)2

=
G(M +m)

a3
(91)

where P is the orbital period and

a? =
m

M +m
a ; ap =

M

M +m
a (92)

The orbits for a binary with M = 2m are shown in Figure 11.
The velocity of the star in its orbit is

v? =
2πa?
P

=
2πa

P

m

M +m
=

m

M +m

[
2πG(M +m)

P

]1/3
(93)

For a far-away observer in the plane of the orbit, the radial velocity of the star varies
sinusoidally. For an observer outside the plane, the radial velocities are diminished
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by the projection factor sin i, where i is the angle between the normal on the plane
and the direction towards the observer: the observer in the plane measures the
full orbital velocity, the observer perpendicular to the plane measure zero orbital
velocity. The radial velocity of the star as measured by a far-away observer follows:

v?r = vγ + v? sin(ωt+ φo) sin i (94)

where vγ is the radial velocity of the center of gravity of the binary, and ω ≡ 2π/P .

Computer Exercise 5.
a. you obtain a table with the ratios 87Sr(t)/86Sr and 87Rb(t)/86Sr, and the errors
in these ratios, for 26 meteorites. The errors in the first ratio are smaller (both ab-
solutely and relatively) than those in the second ratio. Argue that use of a standard
χ2-fit of a line in the form y = a + bx demands that one takes the first ratio as x
and the second ratio as y. Rewrite Eq. 90 accordingly.
b. write a computer code that reads the numbers in the table into arrays, and that
plots the numbers in a figure, with error bars.
c. find a Python routine to fit a straight line with the least-squares method, and
read its description carefully. Use this routine to determine the best fit to all 26
points. Let the code plot this fit in the figure, and in a separate frame also plot
for all points the difference between the observed value and fitted values in terms of
(O-C)/σ = χ for all points. Plot error bars for the χ’s.
d. Compute the probability that the fit is a good model to the data. Which points
have deviations larger than expected by chance? Give a possible reason for the
devation of these points. Remove the four most deviating points (these are the last
4 in hte data-file), and fit a straight line to the remaining 22 points. Plot the data
with fit, and a frame with the χ’s. Is the probability acceptable? Determine the age
of the Earth and its error according to this fit.

Computer Exercise 6.
a. you obtain a table with times (in days), velocities (in m/s) and velocity errors
(in m/s) of velocity measurements of 51 Peg, the first star around which a planet
was discovered. Make a plot showing these velocities.
b. Write the velocity of 51 Peg as

v(t) = a1 + a2 sin(a3t+ a4) (95)

From the plot, estimate the values of the parameters a1−4. Think of the units!
c. Begin the transition to the Levenberg-Marquardt fitting procedure by formally
writing v(t) as ym(x,~a). The procedure needs a subroutine, which you can call for
example velo, which for given parameters ~a and argument t computes the velocity
ym and also the four derivatives ∂ym/∂ai. The first line of the subroutine should
have the form
subroutine velo(t,a,y,dyda,na)

where t and a(1:na) are input time and parameter array, with na the number of
parameters, and output y is the velocity at time t, and dyda(1:na) the derivatives
of the velocity with respect to the parameters. Test your routine by plotting the
velocity curve with the parameters from b) in the figure made in a).
d. Read carefully the description of subroutine mrqmin in Chapter 15.5 of Numerical
recipes, and the example function fgauss. Note how fgauss is written to minimize
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repeat calculations, and adapt your routine velo in a similar way.
e. Complete your programme so that it fits the velocities of 51 Peg, and writes to
the screen the parameter values. First write it with one call to mrqmin, and verify
that the χ2 does become smaller. Then write the code so that after each call to
mrqmin you can choose whether to do another call or not.
f. Finalize the code so that it plots the final solution with the data, and writes to
the screen i) the best parameter values, ii) the errors in these values and iii) the
probability that your fit is a good description of the data. Also compute the best
period and its error
g. Compute the mass of the planet and its error. For this you may assume that the
51 Peg has the same mass as the Sun: M = M� ' 2× 1030kg, and that the planet
has a much smaller mass: m�M .

3.6 What is wrong?

Figure 12 shows a description of a fitting procedure applied to an X-ray spectrum:
a truely remarkable piece of bungling. If we have N measurements and M param-
eters, this is equivalent to N equations for M unknowns. If the measurements are
independent, we can solve the parameters uniquely for N = M . If N > M , there
are many solutions, and we pick the one with the maximum likelihood. If N < M ,
there is not enough information to determine the values of M . The ‘solution’ for
this problem chosen by the authors is nonsense mathematically, and thus physically.

Note that these conclusions can be drawn without any knowledge of the astro-
physics involved.

Figure 12: Description of fitting procedure from ApJ 402, 514 (1993)
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4 Errors distributed according to a Poisson dis-

tribution and Maximum likelihood

In measurements in which a small number of events is counted, we are often dealing
with a distribution of the measurements which is given by the Poisson distribu-
tion. In this case, the least-squares methods do not apply. We will discuss the
maximum-likelihood method for errors with a Poissonian distribution. In the liter-
ature, this method is often referred to as the maximum-likelihood method, where the
Poissonian error distribution is implied. We will follow this practice, but only after
noting that this abbreviated name is misleading, in that the least-squares method is
also a maximum-likelihood method, viz. the maximum-likelihood method for errors
distributed as Gaussians!

To illustrate the maximum-likelihood method we consider the number of counts
on a photon-counting detector. We write the number of counts detected in location
i as ni, and the number of counts predicted for that location by the model as mi.
The probability at one location to obtain ni photons when mi are predicted is

Pi =
mi

nie−mi

ni!
(96)

If the values ofmi (and ni) are large, this probability may be approximated with a
Gaussian, and one may use a least-squares method. This is based on the assumption
that the difference between the Poisson and Gaussian distributions for large µ is less
important than the uncertainties due to systematic effects in the measurements. In
principle, this assumption should be verified in each case. Typically, a value of 20
is used; see Fig. 7.

For small values of mi (and ni) we proceed to use the Possion distribution. To
maximize the overall probability we thus have to maximize

L′ ≡
∏
i

Pi (97)

and for computational ease we maximize the logarithm of this quantity

lnL′ ≡
∑
i

lnPi =
∑
i

ni lnmi −
∑
i

mi −
∑
i

lnni! (98)

The last term in this equation doesn’t depend on the assumed model, and thus
– in terms of selecting the best model – may be considered as a constant. Thus
maximizing L′ is equivalent to minimizing L, where

L ≡ −2

(∑
i

ni lnmi −
∑
i

mi

)
(99)

If one compares two models A and B, with number of fitted parameters MA and
MB > MA and with values of LA and LB, respectively, the difference LB − LA is a
χ2 distribution with MB−MA degrees of freedom, for a sufficient number of photons
(Cash 1979 ApJ 228, 939; Mattox et al. 1996 ApJ 461, 396). Table 2 in Section 3.4
can be used for this.
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4.1 Some analytical examples

4.1.1 A constant background

As an example we model a constant background: mi = A. With N pixels we thus
have a total number of photons in the model Nm = NA; the total observed number
of photons is No =

∑N
i=1 ni Inserting this in eq. 99 we have

−0.5 lnL =
∑

ni lnA−
∑

A = No lnA−NA (100)

and we have to minimize this with respect to A. Thus

∂ lnL

∂A
= 0⇒ No

A
−N = 0⇒ No = NA = Nm (101)

and we see that the best solution, as expected, is the one in which the number of
photons in the model equals that in the observation.

4.1.2 Constant background plus one source

Let us now assume that we have a source with strength B, and that a fraction fi of
this lands on pixel i. Eq. 99 now becomes

−0.5 lnL =
∑
i

ni ln(A+Bfi)−
∑
i

(A+Bfi) (102)

We search the minimum of L for variations in A and B:

∂ lnL

∂A
= 0⇒

∑
i

ni
A+Bfi

−
∑
i

(1) =
∑
i

ni
A+Bfi

−N = 0 (103)

∂ lnL

∂B
= 0⇒

∑
i

nifi
A+Bfi

−
∑
i

fi =
∑
i

nifi
A+Bfi

− 1 = 0 (104)

We thus have two equations for the two unknowns A and B. Multiply the first
equation with A, the second with B, and add the two equations to find∑

i

ni = AN +B (105)

i.e. the total number of counts in the best model is equal to the total number of
observed counts. This condition may be used so that one only has to fit one, rather
than two parameters.

4.2 Optimal extraction of a spectrum

For this topic we refer to the article by K.D. Horne, 1985, An optimal extraction
algorithm for CCD spectroscopy, PASP 98, 609-617.
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4.2.1 Average of two measurements

One of the interesting details in the article by Horne is that after a first iteration,
once a model has been computed, the error in the number of counts is computed
from the model, and not from the data. To illustrate why, we return briefly to the
topic of Sect. 1.5.1. Consider two measurements N1 and N2. Assuming that both are
drawn from the same Gaussian distribution with average m and width σ , we want
to compute the most probable value for m. From Eq. 1 we obtain the combined
probability as

L =
1

σ
√

2π
e−(N1−m)2/2σ2 1

σ
√

2π
e−(N2−m)2/2σ2

(106)

To find the most probable m we set the derivative of L with respect to m equal to
zero, and for computational simplicity we first take the logarithm:

d lnL

dm
= 0 =

N1 −m
σ2

+
N2 −m
σ2

⇒ m =
N1 +N2

2
(107)

The answer is the same as that for Poissonian distributions (Sect. 1.5.1).
Now suppose we would have estimated the error in each measurement with its

square root: σ1 =
√
N1 and σ2 =

√
N2, then the smaller measurement would be as-

signed a smaller error, and an average computed with Eq. 63 would lie closer to the
smallest value. This shows how important it is to be clear about the assumptions
made before doing a statistical calculation. If we assume that both measurements
were drawn from the same (Gaussian or Poissonian) distribution, this implies that
both have the same weight in determining the average. If we allow that the mea-
surements are drawn from distributions with different widths, and assume that each
width is best estimated from the corresponding measurement, then the measure-
ments with a smaller value will have a higher weight.

4.3 What is wrong?

Figure 13 shows fits to the distributions of the visual luminosity (expressed in ab-
solute magnitude MV ) of clusters in the galaxies M 51 and NGC 6964. The authors
clearly have no idea what they are doing. First: the reduced χ2 in each frame is
much smaller than 1. This indicates that something is wrong. Second: if we look at
the graphs, we see that many bins have numbers less than 10. This implies that χ2

statistics do not apply. Third: if we apply Gaussian statistics to a Poisson case, we
obtain reduced χ2 larger than 1: Poisson distributions are much more forgiving for
large deviations than Gaussian distributions. Therefore, the authors have not done
the χ2 fit correctly.

Note that these conclusions can be drawn without any knowledge of the astro-
physics involved.
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Figure 13: Four fits to the number of clusters as a function of their absolute magni-
tude, from A&A 450, 129 (2006).
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5 General Methods

To produce the best fit for the case of Poissonian errors, several methods are avail-
able, of which we discuss a few. The methods are distinct from the methods discussed
above for the least-squares cases, in that they do not use the derivative of the func-
tion, but only the function value itself, together with the criterion of best fit. These
methods are equally suited for least-squares problems, with Eq. 60 as the criterion,
and for maximum-likelihood problems with Poisson statistics, where Eq. 99 must be
minimized. For simple problems, these methods tend to be slower in converging on
a good solution than the Levenberg-Marquardt method. For problems with many
variables, where the matrix α (Eq. 81) becomes very big, and for problems in which
the χ2 distribution has many local minima, the methods discussed below are actu-
ally more efficient than the Levenberg-Marquardt method. An example is the fit to
the lightcurves (in U ,B,V ) and radial velocities of a binary: this problem has many
variables, and can have many local minima.

5.1 Amoebe

See Numerical Recipes (2nd ed.) chapter 10.4

5.2 Genetic algorithms

For an explanation of the principle of genetic algorithms we refer to P. Charbonneau,
1995, Genetic algorithms in astronomy and astrophysics, ApJ Supl.Ser. 101, 309-334
(in particular the first 9 pages).

An interesting extension is the use of black sheep, i.e. bad descendents from good
parents, in the genetic algorithm scheme. This is discussed by A. Bobinger, 2000,
Genetic eclipse mapping and the advantage of Black Sheep, A&A 357, 1170-1180

5.3 Computer exercises

We fit the same data as in the last exercise,first with the routine amoebe from
Numerical Recipes and then with the Genetic Algorithm method. We combine two
methods for the fits to a two-planets system.

Computer Exercise 7. a. Copy from your code for the previous exercise the
part that reads and plots the data into a new program. Now adapt the new program
in such a way that the data (number of points, times, velocities, velocity errors) are
in a module.
b. Write a function (e.g. chiskwa(a)) which returns the χ2 for in put parameters
a. The first line should have the form
real function chikwa(a)

and the function should obtain the observations via the module from a). The model
calls a function which for given time returns the model velocity. Check with the
results of the previous exercise that you routine returns correct values for χ2.
c. Now read the description in Numerical Recipes for the use of amoeba, and imple-
ment it. Show that it iterates to the same solution and the previous code.

Computer Exercise 8. From the website for this lecture copy tpikaia.f90.
Have a look at it. The first part is a module to transfer velocity data, the next two
parts are a subroutine velocity which provides a velocity for input parameters ~a
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and a function chisq which computes χ2 for input parameters ~x. You have written
similar routines yourself for earlier exercises. Note that the function chisq differs
in two ways from those earlier versions. First, the parameters ~a are passed on
normalized to values between 0 and 1; the normalisation factors ~amax are passed
via a common block. Second, the length na of the vectors ~x and ~a, amax is passed
through the call. This second change is required because pikaia expects this form.

The fourth block is the main programme tpikaia. This reads the measurements
and puts them in the common block. It also computes the normalisation ~amax of
the parameters ~a that describe the velocity. These two calculations are the only
changes you have to make for other applications! (apart from the commands near
the end that write the results).

Then follow lines that initialise the routine that provides random numbers (with
rninit), and the choice for the standard (‘default’) values for the parameters for
the genetic algorithm. When ctrl(i) equals −1 the standard value is chosen for
the ith parameter. We make one exception by choosing the number of generations
explicitly.

Starting with function urand the code has been copied directly from PIKAIA,
with this difference that the main program xpikaia and the example function twod

have been removed. For PIKAIA seee: Charbonneau, P. 1995, ApJS 101, 309 (on the
lecture website: charbonneau.pdf) and
www.hao.ucar.edu/Public/models/pikaia/pikaia.html

a. Compile the code (with some adaptations if necessary) and show that it repro-
duces the best parameters of 51 Peg.
b. Eq. 95 gives the velocity for a star with one planet. Write the equation for a
star with two planets, both in a circular orbit. The data for this exercise are on
the website in psrplan.dat. This Table gives the differences ∆T between predicted
and measured arrival times of the pulses of PSR 1257+12, and can be fitted for two
planets with

∆T (t) = a1 + a2 sin(a3t+ a4) + a5 sin(a6t+ a7)

The amplitudes a2 and a5 are directly proportional to the velocities of the neutron
star due to the two planets A and B:

v∗A sin iA =
2πca2
PA

= a2a3c and v∗B sin iB =
2πca5
PB

= a5a6c

Here PA,B and sinA,B are the periods and inclinations of the orbits of planets A,B
and c is the velocity of light. The velocity amplitudes v∗A,B are related to the masses
mA, B of the planets via Eq. 93.

Before using the data we make some small but useful adaptations:

1. convert the time differences to milliseconds by multiplying them with 100

2. convert the times to times with respect to the middle of the measurement span
as follows:

t(i) = t(i)− tmid where tmid ≡ 0.5[t(N) + t(1)]

3. all measurements have the same error, viz. 0.1 millisecond.

34



The first two adaptations minimize the roundoff errrors in the computations; the sec-
ond adaptations minimizes correlations between the fitted parameters. Now adapt
the code form a) so that it fits the parameters for the pulsar time differences.
c. Use the code and fit the time differences of PSR 1257+12. You will find that the
quality of the solution, as expressed in χ2, increases only slowly with the number of
generations. Study the improvement in the resulting χ2 as a function of the number
of generations.
d. Adapt the Levenbergh-Marquardt code from an earlier exercise for the case of 2
planets; use the result of c) as start solution, and determine i) the best values for
the parameters that describe the orbit ii) the errors in these parameters and iii) the
probability that your fit describes the orbit correctly.
e. Answer the following two questions: e1) what is the use of first working with
genetic algorithms and only after that use the Levenbergh-Marquardt method? e2)
why is it useful to follow up the determination with the genetic algorithm with the
Levenbergh-Marquardt method?

Your answer differs from the literature values because, one, we ignore in this
problem the eccentricity of the planet orbits, and two, we ignore the later detected
third planet.
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6 Random numbers

I have not had time yet to write this section; but a good example of the use of
random numbers is given by the genetic algorithm.

6.1 Computer exercises

Computer Exercise 9. In this problem you learn how to use random number gen-
erators. The Numerical Recipes library has a random number generator function

ran1(idum) which returns a random number between 0 and 1 for integer input idum.
For the first call, idum must be negative, e.g. do this by setting idum=-4321 before
calling the function for the first time. The routine itself then keeps track of idum:
do not touch idum yourself after the first call!
On the web site you find two subroutines (and a brief explanation on how to use
them): one to bin an array of numbers; and one to prepare the binned array for a
plot as a histogram.
a. calculate the theoretical distribution of random points on the Earth as a function
of longitude (0 < l < 2π) and as a function of latitude (−π/2 < b < π/2).
b. now generate 1000 points in random positions on the the Earth, using the nu-
merical recipes function ran1, and bin these in 10 bins in l. Compute the number
you expect theoretically in each bin, and verify that each bin contains the correct
number within the statistical error, by plotting the generated points with the theo-
retical prediction in one plot.
c. Idem for b. (To simplify matters: approximate the integral over the bin as the
product of the width of the bin and the theoretical function value in the center of
the bin.)
d. Now repeat b) and c) for 105 points and 25 bins, to see how the correspondence
improves with the number of generated points.

Computer Exercise 10. This exercise illustrates the – at first sight – weird
fact that the best estimated value for a measured quantity may be different from
the value given by the measurement! For the quantity we use the parallax of a star:
the parallax p is in essence the inverse of the distance d of a star:

p(′′) ≡ 1

d(pc)

where ′′ stands for arcsecond: 1 degree is divided in 3600 arcseconds. The above
equation defines the parsec pc; 1 pc = 3.086 1016 m. The typical measurement
accuracy of the Hipparcos satellite is about 1 milliarcsecond (mas) ≡ 0.001′′.
a. assume that near the Sun the stars are distributed homogeneously in space. Write
a computer code that puts stars randomly in a volume with radius R = 1000 around
the Sun and select those with distances 390< r(pc)<410. Is the number found with
your routine is in agreement with the expected number?
b. Now write a routine that selects a value from the Gaussian error distribution, with
width 0.001 ′′, for the parallax of each star. Simulate the parallax measurements of
10 000 stars within a homogeneous volume with radius R = 1 kpc, and select those
with a derived distance between 390 and 410 pc. Compute the real distribution of
distances for stars measured in this range, in ten bins with width 100 pc, ranging
from 0. to 1000. pc.
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c. Compute the expected number of stars in the selected range; does it agree with
the number produced with you random routines?

Computer Exercise 11. The numerical recipes function function gasdev(idum)

returns a random number chosen from a Gaussian distribution. Here idum has
the same function as in the function ran1. To illustrate the use of this we pro-
duce a Maxwellian three-dimensional velocity distribution by combining three one-
dimensional Gaussian velocity distributions, in the x, y and z directions.
a. use the gasdev routine to generate 1000 velocities chosen from a Gaussian dis-
tribution; bin these in ten bins, ranging from −3-σ to +3-σ and compare with the
theoretical distribution in a plot.
b. when you use the binning routine, you will (probably) get some messages on the
screen telling you which points lie outside the range within which you binned. With
which function can you compute how many such points you expect theoretically?
Do so! Is it compatible with what you find?
c. produce 1000 particles, where for each particle you choose a velocity in the x di-
rection, in the y direction and in the zdirection, each from a Gaussian distribution,
and compute the total velocity. Bin the total velocities in 10 bins, and show that
they follow the predicted Maxwell distribution.
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