
Chapter 9

Early stages of evolution and the main
sequence phase

In this and the following chapters, an account will be given of the evolutionof stars as it follows from
full-scale, detailed numerical calculations. Because the stellar evolution equations are highly non-
linear, they have complicated solutions that cannot always be anticipated onthe basis of fundamental
principles. We must accept the fact that simple, intuitive explanations cannot always be given for the
results that emerge from numerical computations. As a consequence, the account of stellar evolution
that follows will be more descriptive and less analytical than previous chapters.

This chapter deals with early phases in the evolution of stars, as they evolvetowards and during
the main-sequence phase. We start with a very brief (and incomplete) overview of the formation of
stars.

9.1 Star formation and pre-main sequence evolution

The process of star formation constitutes one of the main problems of modern astrophysics. Com-
pared to our understanding of what happensafter stars have formed out of the interstellar medium
– that is, stellar evolution – star formation is a very ill-understood problem. No predictive theory of
star formation exists, or in other words: given certain initial conditions, e.g.the density and temper-
ature distributions inside an interstellar cloud, it is as yet not possible to predict with certainty, for
example, thestar formation efficiency(which fraction of the gas is turned into stars) and the resulting
initial mass function(the spectrum and relative probability of stellar masses that are formed). We rely
mostly on observations to answer these important questions.

This uncertainty might seem to pose a serious problem for studying stellar evolution: if we do not
know how stars are formed, how can we hope to understand their evolution? The reason that stellar
evolution is a much more quantitative and predictive branch of astrophysicsthan star formation was
already alluded to in Chapter 7. Once a recently formed star settles into hydrostatic and thermal
equilibrium on the main sequence, its structure is determined by the four structure equations and only
depends on the initial composition. Therefore all the uncertain details of the formation process are
wiped out by the time its nuclear evolution begins.

In the context of this course we can thus be very brief about star formation itself, as it has very
little effect on the properties of stars themselves (at least as far as we are concerned with individual
stars – it does of course have an important effect on stellarpopulations).

Observations indicate that stars are formed out of molecular clouds, typically giant molecular clouds
with masses of order 105 M⊙. These clouds have typical dimensions of∼ 10 parsec, temperatures of
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10− 100 K and densities of 10− 300 molecules/cm3 (where the lowest temperatures pertain to the
densest parts of the cloud). A certain fraction, about 1 %, of the cloud material is in the form of dust
which makes the clouds very opaque to visual wavelengths. The clouds are in pressure equilibrium
(hydrostatic equilibrium) with the surrounding interstellar medium. Roughly, we can distinguish six
stages in the star formation process.

Interstellar cloud collapse Star formation starts when a perturbation, e.g. due to a shock wave orig-
inated by a nearby supernova explosion or a collision with another cloud, disturbs the pressure
equilibrium and causes (part of) the cloud to collapse under its self-gravity. The condition for
pressure equilibrium to be stable against such perturbations is that the massinvolved should be
less than a critical mass, theJeans mass, which is given by

MJ ≈ 4× 104 M⊙

(

T
100 K

)3/2 (

n

cm−3

)−1/2

(9.1)

wheren is the molecular density by number (see e.g. Maeder Sec. 18.2.1 for a derivation). For
typical values ofT andn in molecular cloudsMJ ∼ 103−104 M⊙. Cloud fragments with a mass
exceeding the Jeans mass cannot maintain hydrostatic equilibrium and will undergo essentially
free-fall collapse. Although the collapse is dynamical, the timescaleτdyn ∝ ρ

−1/2 (eq. 2.18) is
of the order of millions of years because of the low densities involved. The cloud is transparent
to far-infrared radiation and thus cools efficiently, so that the early stages of the collapse are
isothermal.

Cloud fragmentation As the density of the collapsing cloud increases, its Jeans mass decreasesby
eq. (9.1). The stability criterion within the cloud may now also be violated, so thatthe cloud
starts to fragment into smaller pieces, each of which continues to collapse. The fragmentation
process probably continues until the mass of the smallest fragments (dictatedby the decreasing
Jeans mass) is less than 0.1M⊙.

Formation of a protostellar core The increasing density of the collapsing cloud fragment eventu-
ally makes the gasopaqueto infrared photons. As a result, radiation is trapped within the
central part of the cloud, leading to heating and an increase in gas pressure. As a result the
cloud core comes into hydrostatic equilibrium and the dynamical collapse is slowed to a quasi-
static contraction. At this stage we may start to speak of aprotostar.

Figure 9.1. Timescales and properties
of stars of massM on the main sequence.
Time along the abscissa is in logarithmic
units to highlight the early phases,t = 0
corresponds to the formation of a hydro-
static core (stage 3 in the text). Initially
the star is embedded in a massive accre-
tion disk for (1− 2) × 105 years. In low-
mass stars the disk disappears before the
star settles on the zero-age main sequence
(ZAMS). Massive stars reach the ZAMS
while still undergoing strong accretion.
These stars ionize their surroundings and
excite an HII region around themselves.
TAMS stands for terminal-age main se-
quence. Figure from Maeder.
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Figure 9.2. Schematic illustration of four stages
in the evolution of protostars and their circumstellar
disks. On the left, the stellar flux is depicted (shaded
area) and the contribution from the disk (dotted line).
On the right the corresponding geometry of the ob-
ject is shown.

Class 0 objects are very young protostars (∼
< 104 yrs)

with almost spherical accretion at a high rate, emit-
ting in the far-IR and sub-mm range. Class I pro-
tostars correspond to an advanced stage of accretion
(age∼ 105 yrs), where the star is still embedded in a
massive accretion disk, while jets or bipolar outflows
are also observed. In class II the protostar has become
visible as a classical T Tauri star on the pre-main se-
quence (age∼ 106 yrs), while the accretion disk is
still optically thick giving rise to a large IR excess.
Class III stars are already close to the main sequence
(age∼ 107 yrs), with an optically thin accretion disk
and weak emission lines. Figure from Maeder.

Accretion The surrounding gas keeps falling onto the protostellar core, so that the next phase is
dominated by accretion. Since the contracting clouds contain a substantial amount of angular
momentum, the infalling gas forms an accretion disk around the protostar. These accretion
disksare a ubiquitous feature of the star formation process and are observedaround most very
young stars, mostly at infrared and sub-millimeter wavelengths (see Fig. 9.2).

The accretion of gas generates gravitational energy, part of which goes into further heating of
the core and part of which is radiated away, providing the luminosity of the protostar, so that

L ∼ Lacc=
GMṀ

2R
(9.2)

whereM andRare the mass and radius of the core andṀ is the mass accretion rate. The factor
1
2originates from the fact that half of the potential energy is dissipated in the accretion disk.
Meanwhile he core heats up almost adiabatically since the accretion timescaleτacc = M/Ṁ is
much smaller than the thermal timescaleτKH .

Dissociation and ionization The gas initially consists of molecular hydrogen and behaves like an
ideal gas, such thatγad >

4
3 and the protostellar core is dynamically stable. When the core

temperature reaches∼ 2000 K molecular hydrogen starts to dissociate, which is analogous to
ionization and leads to a strong increase of the specific heat and a decrease ofγad below the
critical value of 4

3 (Sect. 3.5). Hydrostatic equilibrium is no longer possible and a renewed
phase ofdynamical collapsefollows, during which the gravitational energy release is absorbed
by the dissociating molecules without a significant rise in temperature. When H2 is completely
dissociated into atomic hydrogen HE is restored and the temperature rises again. Somewhat
later, further dynamical collapse phases follow when first H and then He are ionized at∼ 104 K.
When ionization of the protostar is complete it settles back into hydrostatic equilibrium at a
much reduced radius (see below).
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Pre-main sequence phaseFinally, the accretion slows down and eventually stops and the protostar
is revealed as apre-main sequence star. Its luminosity is now provided by gravitational con-
traction and, according to the virial theorem, its internal temperature rises asT ∝ M2/3ρ1/3

(Chapter 8). The surface cools and a temperature gradient builds up, transporting heat out-
wards. Further evolution takes place on the thermal timescaleτKH .

A rough estimate of the radiusRp of a protostar after the dynamical collapse phase can be obtained
by assuming that all the energy released during the collapse was absorbed in dissociation of molecular
hydrogen (requiringχH2 = 4.48 eV per H2 molecule) and ionization of hydrogen (χH = 13.6 eV) and
helium (χHe = 79 eV). Because the final radius will be much smaller than the initial one, we can take
the collapse to start from infinity. After the collapse the protostar is in hydrostatic equilibrium and
must satisfy the virial theorem,Etot =

1
2Egr. TakingEgr as given by eq. (2.28), we can write

α

2
GM2

Rp
≈

M
mu

(

X
2
χH2 + XχH +

Y
4
χHe

)

≡
M
mu
χ. (9.3)

Taking X = 0.72 andY = 1 − X, we haveχ = 16.9 eV per baryon. For a polytrope of indexn,
α = 3/(5− n) (eq. 4.19). We will shortly see that the protostar is completely convective and thus we
can taken = 3

2 andα = 6
7, such that

Rp ≈
α

2
GMmu

χ
≈ 50R⊙

(

M
M⊙

)

. (9.4)

The average internal temperature can also be estimated from the virial theorem (eq. 2.29),

T̄ ≈
α

3
µ

R

GM
Rp
=

2
3
µ

k
χ ≈ 8× 104 K, (9.5)

which is independent of the mass of the protostar. At these low temperaturesthe opacity is very
high, rendering radiative transport inefficient and making the protostar convective throughout. The
properties of suchfully convective starsmust be examined more closely.

9.1.1 Fully convective stars: the Hayashi line

We have seen in Sect. 7.2.3 that as the effective temperature of a star decreases the convective envelope
gets deeper, occupying a larger and larger part of the mass. IfTeff is small enough stars can therefore
become completely convective. In that case, as we derived in Sect. 5.5.2,energy transport is very effi-
cient throughout the interior of the star, and a tiny superadiabaticity∇−∇ad is sufficient to transport a
very large energy flux. The structure of such a star can be said to beadiabatic, meaning that the tem-
perature stratification (the variation of temperature with depth) as measured by ∇ = d logT/d logP is
equal to∇ad. Since an almost arbitrarily high energy flux can be carried by such a temperature gradi-
ent, theluminosityof a fully convective star is practicallyindependent of its structure– unlike for a
star in radiative equilibrium, for which the luminosity is strongly linked to the temperature gradient.

It turns out that:

Fully convective stars of a given mass occupy an almost vertical line in the H-R diagram (i.e. with
Teff ≈ constant). This line is known as theHayashi line. The region to the right of the Hayashi
line in the HRD (i.e. at lower effective temperatures) is aforbidden regionfor stars in hydrostatic
equilibrium. On the other hand, stars to the left of the Hayashi line (at higherTeff) cannot be fully
convective but must have some portion of their interior in radiative equilibrium.

Since these results are important, not only for pre-main sequence stars but also for later phases of
evolution, we will do a simplified derivation of the properties of the Hayashi linein order to make the
above-mentioned results plausible.
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Simple derivation of the Hayashi line

For any luminosityL, the interior structure is given by∇ = ∇ad. For an ideal gas we have a constant
∇ad = 0.4, if we ignore the variation of∇ad in partial ionization zones. We also ignore the non-zero
superadiabaticity of∇ in the sub-photospheric layers (Sect. 5.5.2). The temperature stratification
throughout the interior can then be described by a power lawT ∝ P0.4. Using the ideal gas law,
P ∝ ρT, we can eliminateT from both expressions and write

P = Kρ5/3,

which describes a polytrope of indexn = 3
2. Indeed, for an ideal gas the adiabatic exponentγad =

5
3.

The constantK for a polytropic stellar model of indexn is related to the massM and radiusR by
eq. (4.15). For our fully convective star withn = 3

2 we haveN3/2 = 0.42422 (Table 4.1) and therefore

K = 0.42422GM1/3R. (9.6)

Since the luminosity of a fully convective star is not determined by its interior structure, it must
follow from the conditions (in particular theopacity) in the thin radiative layer from which photons
escape, the photosphere. We approximate the photosphere by a spherical surface of negligible thick-
ness, where we assume the photospheric boundary conditions (7.9) to hold. Writing the pressure,
density and opacity in the photosphere (atr = R) asPR, ρR andκR and the photospheric temperature
asTeff, we can write the boundary conditions as

κRPR =
2
3

GM

R2
, (9.7)

L = 4πR2σT4
eff , (9.8)

and we assume a power-law dependence ofκ onρ andT so that

κR = κ0 ρR
aTb

eff . (9.9)

The equation of state in the photospheric layer is

PR =
R

µ
ρRTeff . (9.10)

The interior, polytropic structure must match the conditions in the photosphereso that (using eq. 9.6)

PR = 0.42422GM1/3RρR
5/3. (9.11)

For a given massM, eqs. (9.7-9.11) constitute five equations for six unknowns,PR, ρR, κR, Teff, L and
R. The solution thus always contains one free parameter, that is, the solutionis a relation between
two quantities, sayL andTeff. This relation describes theHayashi linefor a fully convective star of
massM.

Since we have assumed power-law expressions in all the above equations,the set of equations can
be solved straightforwardly (involving some tedious algebra) to give a power-law relation betweenL
andTeff after eliminating all other unknowns. The solution can be written as

logTeff = A logL + B log M +C (9.12)

where the constantsA and B depend on the exponentsa andb in the assumed expression for the
opacity (9.9),

A =
3
2a− 1

2

9a+ 2b+ 3
and B =

a+ 3
9a+ 2b+ 3

. (9.13)
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Figure 9.3. The position of the Hayashi lines in
the H-R diagram for massesM = 0.25, 0.5, 1.0, 2.0
and 4.0M⊙ as indicated. The lines are analytic fits
to detailed models computed for compositionX =
0.7,Z = 0.02. The zero-age main sequence (ZAMS)
for the same composition is shown as a dashed line,
for comparison.
Note that the Hayashi lines do not have a constant
slope, as expected from the simple analysis, but
have a convex shape where the constant A (eq. 9.12)
changes sign and becomes negative for high lumi-
nosities. The main reason is our neglect of ionization
zones (where∇ad < 0.4) and the non-zero supera-
diabaticity in the outer layers, both of which have a
larger effect in more extended stars.

Therefore the shape of the Hayashi line in the HRD is determined by how the opacity in the photo-
sphere depends onρ andT. Since fully convective stars have very cool photospheres, the opacity is
mainly given by H− absorption (Sect. 5.3) which increases strongly with temperature. According to
eq. (5.34),a ≈ 0.5 andb ≈ 9 (i.e.κ ∝ T9!) in the the relevant range of density and temperature, which
givesA ≈ 0.01 andB ≈ 0.14. Therefore (see Fig. 9.3)

• for a certain mass the Hayashi line is a very steep, almost vertical line in the HRD,

• the position of the Hayashi line depends on the mass, being located at higherTeff for higher
mass.

We can intuitively understand the steepness of the Hayashi line from the strong increase of H−

opacity with temperature. Suppose such a fully convective star would increase its radius slightly
while attempting to keepL constant. Then the temperature in the photosphere would decrease and
the photosphere would become much more transparent. Hence energy canescape much more easily
from the interior, in other words: the luminosity will in factincreasestrongly with a slight decrease
in photospheric temperature.

The forbidden region in the H-R diagram

Consider models in the neighbourhood of the Hayashi line in the H-R diagramfor a star of massM.
These models cannot have∇ = ∇ad throughout, because otherwise they would beon the Hayashi line.
Defining ∇̄ as the average value ofd logT/d logP over the entire star, models on either side of the
Hayashi line (at lower or higherTeff) have either̄∇ > ∇ad or ∇̄ < ∇ad. It turns out (after more tedious
analysis of the above equations and their dependence on polytropic indexn) that models with̄∇ < ∇ad

lie at higherTeff than the Hayashi line (to its left in the HRD) while models with∇̄ > ∇ad lie at lower
Teff (to the right in the HRD).

Now consider the significance of̄∇ , ∇ad. If on average∇̄ < ∇ad then some part of the star
must have∇ < ∇ad, that is, a portion of the star must be radiative. Since models in the vicinity
of the Hayashi line still have cool outer layers with high opacity, the radiative part must lie in the
deep interior. Therefore stars located (somewhat) to theleft of the Hayashi line have radiative cores
surrounded by convective envelopes (if they are far to the left, they can of course be completely
radiative).
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Figure 9.4. Pre-main-sequence
evolution tracks for 0.3 − 2.5 M⊙,
according to the calculations of
D’Antona & Mazzitelli (1994). The
dotted lines are isochrones, connect-
ing points on the tracks with the
same age (betweent = 105 yrs
and 107 yrs, as indicated). Also
indicated as solid lines that cross
the tracks are the approximate loca-
tions of deuterium burning (between
the upper two lines, near thet ∼
105 yr isochrone) and lithium burn-
ing (crossing the tracks at lower lu-
minosity, att > 106 yr).

On the other hand, if̄∇ > ∇ad then a significant part of the star must have asuperadiabatic
temperature gradient (that is to say, apart from the outermost layers which are always superadiabatic).
According to the analysis of Sect. 5.5.2, a significantly positive∇ − ∇ad will give rise to a very
large convective energy flux, far exceeding normal stellar luminosities. Such a large energy flux
very rapidly (on a dynamical timescale) transports heat outwards, thereby decreasing the temperature
gradient in the superadiabatic region until∇ = ∇ad again. This restructuring of the star will quickly
bring it back to the Hayashi line. Therefore the region to the right of the Hayashi line, withTeff <

Teff,HL , is aforbidden regionfor any star in hydrostatic equilibrium.

9.1.2 Pre-main-sequence contraction

As a newly formed star emerges from the dynamical collapse phase it settles on the Hayashi line
appropriate for its mass, with a radius roughly given by eq. (9.4). From this moment on we speak of
thepre-main sequencephase of evolution. The pre-main sequence (PMS) star radiates at a luminosity
determined by its radius on the Hayashi line. Since it is still too cool for nuclear burning, the energy
source for its luminosity is gravitational contraction. As dictated by the virial theorem, this leads to
an increase of its internal temperature. As long as the opacity remains high and the PMS star remains
fully convective, it contracts along its Hayashi line and thus its luminosity decreases. Since fully
convective stars are accurately described byn = 1.5 polytropes, this phase of contraction is indeed
homologous to a very high degree! Thus the central temperature increases asTc ∝ ρ

1/3
c ∝ 1/R.

As the internal temperature rises the opacity (and thus∇rad) decreases, until at some point∇rad <

∇ad in the central parts of the star and a radiative core develops. The PMS star then moves to the
left in the H-R diagram, evolving away from the Hayashi line towards higherTeff (see Fig. 9.4). As
it keeps on contracting the extent of its convective envelope decreasesand its radiative core grows
in mass. (This phase of contraction is no longer homologous, because the density distribution must
adapt itself to the radiative structure.) The luminosity no longer decreases but increases somewhat.
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Once the star is mainly radiative further contraction is again close to homologous. The luminosity
is now related to the temperature gradient and mostly determined by the mass of theprotostar (see
Sect. 7.4.2). This explains why PMS stars of larger mass turn away from theHayashi line at a higher
luminosity than low-mass stars, and why their luminosity remains roughly constantafterward.

Contraction continues, as dictated by the virial theorem, until the central temperature becomes
high enough for nuclear fusion reactions. Once the energy generatedby hydrogen fusion compensates
for the energy loss at the surface, the star stops contracting and settles on thezero-age main sequence
(ZAMS) if its mass is above the hydrogen burning limit of 0.08M⊙ (see Chapter 8). Since the nuclear
energy source is much more concentrated towards the centre than the gravitational energy released
by overall contraction, the transition from contraction to hydrogen burning again requires a (non-
homologous) rearrangement of the internal structure.

Before thermal equilibrium on the ZAMS is reached, however, several nuclear reactions have
already set in. In particular, a small quantity ofdeuteriumis present in the interstellar gas out of
which stars form, with a mass fraction∼ 10−5. Deuterium is a very fragile nucleus that reacts easily
with normal hydrogen (2H + 1H → 3He+ γ, the second reaction in the pp chain). This reaction
destroys all deuterium present in the star whenT ≈ 1.0 × 106 K, while the protostar is still on the
Hayashi line. The energy produced (5.5 MeV per reaction) is large enough to halt the contraction of
the PMS star for a few times 105 yr. (A similar but much smaller effect happens somewhat later at
higherT when the initially present lithium, with mass fraction∼< 10−8, is depleted). Furthermore, the
12C(p, γ)13N reaction is already activated at a temperature below that of the full CNO-cycle, due to
the relatively large initial12C abundance compared to the equilibrium CNO abundances. Thus almost
all 12C is converted into14N before the ZAMS is reached. The energy produced in this way also halts
the contraction temporarily and gives rise to the wiggles in the evolution tracks just above the ZAMS
location in Fig, 9.4. Note that this occurs even in low-mass stars,∼

< 1 M⊙, even though the pp chain
takes over the energy production on the main sequence in these stars onceCN equilibrium is achieved
(see Sect. 9.2).

Finally, the time taken for a protostar to reach the ZAMS depends on its mass. This time is
basically the Kelvin-Helmholtz contraction timescale (eq. 2.36). Since contraction is slowest when
bothRandL are small, the pre-main sequence lifetime is dominated by the final stages of contraction,
when the star is already close to the ZAMS. We can therefore estimate the PMS lifetime by putting
ZAMS values into eq. (2.36) which yieldsτPMS ≈ 107(M/M⊙)−2.5 yr. Thus massive protostars reach
the ZAMS much earlier than lower-mass stars (and the term ‘zero-age’ main sequence is somewhat
misleading in this context, although it hardly makes a difference to the total lifetime of a star). Indeed
in young star clusters (e.g. the Pleiades) only the massive stars have reached the main sequence while
low-mass stars still lie above and to the right of it.

9.2 The zero-age main sequence

Stars on the zero-age main sequence are (nearly) homogeneous in composition and are in complete
(hydrostatic and thermal) equilibrium. Detailed models of ZAMS stars can be computed by solv-
ing the four differential equations for stellar structure numerically. It is instructive to compare the
properties of such models to the simple main-sequence homology relations derived in Sect. 7.4.

From the homology relations we expect a homogeneous, radiative star in hydrostatic and thermal
equilibrium with constant opacity and an ideal-gas equation of state to follow a mass-luminosity and
mass-radius relation (7.32 and 7.36),

L ∝ µ4 M3, R∝ µ
ν−4
ν+3 M

ν−1
ν+3 .
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Figure 9.5. ZAMS mass-luminosity (left) and mass-radius (right) relations from detailed structure models
with X = 0.7,Z = 0.02 (solid lines) and from homology relations scaled to solarvalues (dashed lines). For
the radius homology relation, a valueν = 18 appropriate for the CNO cycle was assumed (givingR ∝ M0.81);
this does not apply toM < 1 M⊙ so the lower part should be disregarded. Symbols indicate components of
double-lined eclipsing binaries with accurately measuredM, RandL, most of which are MS stars.

These relations are shown as dashed lines in Fig. 9.5, where they are compared to observed stars with
accurately measuredM, L andR (see Chapter 1) and to detailed ZAMS models. The mass-radius
homology relation depends on the temperature sensitivity (ν) of the energy generation rate, and is
thus expected to be different for stars in which the pp chain dominates (ν ≈ 4, R ∝ M0.43) and stars
dominated by the CNO cycle (ν ≈ 18,R∝ µ0.67M0.81, as was assumed in Fig. 9.5).

Homology predicts the qualitative behaviour rather well, that is, a steepL-M relation and a much
shallowerR-M relation. However, it is not quantitatively accurate and it cannot account for the
changes in slope (d logL/d log M andd logR/d log M) of the relations. This was not to be expected,
given the simplifying assumptions made in deriving the homology relations. The slope of theL-
M relation is shallower than the homology value of 3 for masses below 1M⊙, because such stars
have large convective envelopes (as illustrated in Sect. 5.5; see also Sect. 9.2.2 below). The slope is
significantly steeper than 3 for masses between 1 and 10M⊙: in these stars the main opacity source is
free-free and bound-free absorption, which increases outward rather than being constant through the
star. In very massive stars, radiation pressure is important which resultsin flattening theL-M relation.
The reasons for the changes ind logR/d log M are similar. Note that for low masses we should have
used the homology relation for the pp chain (for reasons explained in Sect.9.2.1 below), which has
a smaller slope – the opposite of what is seen in the detailed ZAMS models. The occurrence of
convective regions (see Sect. 9.2.2) is the main reason for this non-homologous behaviour.

The detailed ZAMS models do reproduce the observed stellar luminosities quite well. The models
trace the lower boundary of observed luminosities, consistent with the expected increase ofL with
time during the main sequence phase (see Sect. 9.3). The same can be said for the radii (right panel
of Fig. 9.5), although the scatter in observed radii appears much larger.Partly this is due to the much
finer scale of the ordinate in this diagram compared to the luminosity plot. The fact that most of the
observed stellar radii are larger than the detailed ZAMS models is explained by expansion during
(and after) the main sequence (see Sect. 9.3).
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Figure 9.6. The location of the zero-age main
sequence in the Hertzsprung-Russell diagram for
homogeneous, detailed stellar models withX =

0.7,Z = 0.02 (blue solid line) and withX =

0.757,Z = 0.001 (red dashed line). Plus symbols
indicate models for specific masses (in units ofM⊙).
ZAMS models for metal-poor stars are hotter and
have smaller radii. Relatively low-mass stars at low
metallicity are also more luminous than their metal-
rich counterparts.

The location of the detailed ZAMS models in the H-R diagram is shown in Fig. 9.6. The solid
(blue) line depicts models for quasi-solar composition, which were also usedin Fig. 9.5. The increase
of effective temperature with stellar mass (and luminosity) reflects the steep mass-luminosity relation
and the much shallower mass-radius relation – more luminous stars with similar radiimust be hotter,
by eq. (1.1). The slope of the ZAMS in the HRD is not constant, reflecting non-homologous changes
in structure as the stellar mass increases.

The effect of compositionon the location of the ZAMS is illustrated by the dashed (red) line,
which is computed for a metal-poor mixture characteristic of Population II stars. Metal-poor main
sequence stars are hotter and have smaller radii. Furthermore, relativelylow-mass stars are also more
luminous than their metal-rich counterparts. One reason for these differences is a lower bound-free
opacity at lowerZ (eq. 5.33), which affects relatively low-mass stars (up to about 5M⊙). On the
other hand, higher-mass stars are dominated by electron-scattering opacity, which is independent of
metallicity. These stars are smaller and hotter for a different reason (see Sect. 9.2.1).

9.2.1 Central conditions

We can estimate how the central temperature and central density scale with massand composition for
a ZAMS star from the homology relations for homogeneous, radiative starsin thermal equilibrium
(Sec. 7.4.2, see eqs. 7.37 and 7.38 and Table 7.1). From these relations we may expect the central
temperature to increase with mass, the mass dependence being larger for thepp chain (Tc ∝ M0.57)
than for the CNO cycle (Tc ∝ M0.21). Since the CNO cycle dominates at highT, we can expect
low-mass stars to power themselves by the pp chain and high-mass stars by theCNO cycle. This
is confirmed by detailed ZAMS models, as shown in Fig. 9.7. For solar composition, the transition
occurs atT ≈ 1.7 × 107 K, corresponding toM ≈ 1.3 M⊙. Similarly, from the homology relations,
the central density is expected to decrease strongly with mass in stars dominated by the CNO cycle
(ρc ∝ M−1.4), but much less so in pp-dominated low-mass stars (ρc ∝ M−0.3). Also this is borne out
by the detailed models in Fig. 9.7; in fact the central density increases slightly with mass between 0.4
and 1.5M⊙. The abrupt change in slope at 0.4M⊙ is related to the fact that stars withM ∼< 0.4 M⊙
are completely convective. For these lowest-mass stars one of the main assumptions made in the
homology relations (radiative equilibrium) breaks down.
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Figure 9.7. Central temperature versus central den-
sity for detailed ZAMS models withX = 0.7,Z =
0.02 (blue solid line) and withX = 0.757,Z = 0.001
(red dashed line). Plus symbols indicate models for
specific masses (in units ofM⊙). The dotted lines in-
dicate the approximate temperature border between
energy production dominated by the CNO cycle and
the pp chain. This gives rise to a change in slope of
theTc, ρc relation.

The energy generation rate of the CNO cycle depends on the total CNO abundance. At lower
metallicity, the transition between pp chain and CNO cycle therefore occurs ata higher temperature.
As a consequence, the mass at which the transition occurs is also larger. Furthermore, high-mass stars
powered by the CNO cycle need a higher central temperature to provide thesame total nuclear power.
Indeed, comparing metal-rich and metal-poor stars in Figs. 9.6 and 9.7, the luminosity of two stars
with the same mass is similar, but their central temperature is higher. As a consequence of the virial
theorem (eq. 2.29 or 7.28), their radius must be correspondingly smaller.

9.2.2 Convective regions

An overview of the occurrence of convective regions on the ZAMS as afunction of stellar mass is
shown in Fig. 9.8. For any given massM, a vertical line in this diagram shows which conditions
are encountered as a function of depth, characterized by the fractional mass coordinatem/M. Gray
shading indicates whether a particular mass shell is convective (gray) orradiative (white). We can
thus distinguish three types of ZAMS star:

• completely convective, forM < 0.35M⊙,

• radiative core+ convective envelope, for 0.35M⊙< M < 1.2 M⊙,

• convective core+ radiative envelope, forM > 1.2 M⊙.

This behaviour can be understood from the Schwarzschild criterion forconvection, which tells
us that convection occurs when∇rad > ∇ad (eq. 5.50). As discussed in Sec. 5.5.1, a large value of
∇rad is found when the opacityκ is large, or when the energy flux to be transported (in particular the
value ofl/m) is large, or both. Starting with the latter condition, this is the case when a lot of energy
is produced in a core of relatively small mass, i.e. when the energy generation rateǫnuc is strongly
peaked towards the centre. This is certainly the case when the CNO-cycle dominates the energy
production, since it is very temperature sensitive (ν ≈ 18) which means thatǫnuc rapidly drops as
the temperature decreases from the centre outwards. It results in a steepincrease of∇rad towards the
centre and thus to a convective core. This is illustrated for a 4M⊙ ZAMS star in Fig. 5.4. The size of
the convective core increases with stellar mass (Fig. 9.8), and it can encompass up to 80% of the mass
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Figure 9.8. Occurrence of convective regions (gray shading) on the ZAMSin terms of fractional mass coor-
dinatem/M as a function of stellar mass, for detailed stellar models with a compositionX = 0.70, Z = 0.02.
The solid (red) lines show the mass shells inside which 50% and 90% of the total luminosity are produced. The
dashed (blue) lines show the mass coordinate where the radius r is 25% and 50% of the stellar radiusR. (After
Kippenhahn & Weigert.)

of the star whenM approaches 100M⊙. This is mainly related with the fact that at high mass,∇ad is
depressed below the ideal-gas value of 0.4 because of the growing importance of radiation pressure.
At 100M⊙ radiation pressure dominates and∇ad ≈ 0.25.

In low-mass stars the pp-chain dominates, which has a much smaller temperaturesensitivity.
Energy production is then distributed over a larger area, which keeps theenergy flux and thus∇rad

low in the centre and the core remains radiative (see the 1M⊙ model in Fig. 5.4). The transition
towards a more concentrated energy production atM > 1.2 M⊙ is demonstrated in Fig. 9.8 by the
solid lines showing the location of the mass shell inside which most of the luminosity isgenerated.

Convective envelopes can be expected to occur in stars with low effective temperature, as dis-
cussed in Sec. 7.2.3. This is intimately related with the rise in opacity with decreasing temperature
in the envelope. In the outer envelope of a 1M⊙ star for example,κ can reach values of 105 cm2/g
which results in enormous values of∇rad (see Fig. 5.4). Thus the Schwarzschild criterion predicts a
convective outer envelope. This sets in for masses less than≈ 1.5 M⊙, although the amount of mass
contained in the convective envelope is very small for masses between 1.2 and 1.5M⊙. Consistent
with the discussion in Sec. 7.2.3, the depth of the convective envelope increases with decreasingTeff

and thus with decreasingM, until for M < 0.35M⊙ the entire star is convective. Thus these very
low-mass stars lie on their respective Hayashi lines.

9.3 Evolution during central hydrogen burning

Fig. 9.9 shows the location of the ZAMS in the H-R diagram and various evolution tracks for different
masses at Population I composition, covering the central hydrogen burning phase. Stars evolve away
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from the ZAMS towards higher luminosities and larger radii. Low-mass stars (M ∼< 1 M⊙) evolve
towards higherTeff, and their radius increase is modest. Higher-mass stars, on the other hand, evolve
towards lowerTeff and strongly increase in radius (by a factor 2 to 3). Evolved main-sequence stars are
therefore expected to lie above and to the right of the ZAMS. This is indeed confirmed by comparing
the evolution tracks to observed stars with accurately determined parameters.

As long as stars are powered by central hydrogen burning they remain inhydrostatic and thermal
equilibrium. Since their structure is completely determined by the four (time-independent) structure
equations, the evolution seen in the HRD is due to the changing composition insidethe star (i.e. due
to chemical evolution of the interior). How can we understand these changes?

Nuclear reactions on the MS have two important effects on the structure:

• Hydrogen is converted into helium, therefore the mean molecular weightµ increases in the core
of the star (by more than a factor two from the initial H-He mixture to a pure He core by the
end of central hydrogen burning). The increase in luminosity can therefore be understood from
the homology relationL ∝ µ4 M3. It turns out that theµ4 dependence of this relation describes
the luminosity increase during the MS quite well, ifµ is taken as the mass-averaged value over
the whole star.

• The nuclear energy generation rateǫnuc is very sensitive to the temperature. Therefore nuclear
reactions act like athermostaton the central regions, keeping the central temperature almost
constant. Since approximatelyǫpp ∝ T4 andǫCNO ∝ T18, the CNO cycle is a better thermostat
than the pp chain. Since the luminosity increases and at the same time the hydrogen abundance
decreases during central H-burning, the central temperature must increase somewhat to keep
up the energy production, but the required increase inTc is very small.

Sinceµ increases whileTc ≈ constant, the ideal-gas law implies thatPc/ρc ∝ Tc/µmust decrease.
This means that either the central density must increase, or the central pressure must decrease. The
latter possibility means that the layers surrounding the core must expand, asexplained below. In
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Figure 9.9. Evolution tracks in the H-
R diagram during central hydrogen burn-
ing for stars of various masses, as la-
belled (in M⊙), and for a composition
X = 0.7,Z = 0.02. The dotted portion
of each track shows the continuation of
the evolution after central hydrogen ex-
haustion; the evolution of the 0.8M⊙ star
is terminated at an age of 14 Gyr. The
thin dotted line in the ZAMS. Symbols
show the location of binary components
with accurately measured mass, luminos-
ity and radius (as in Fig. 9.5). Each sym-
bol corresponds to a range of measured
masses, as indicated in the lower left cor-
ner (mass values inM⊙).
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either case, the density contrast between the core and the envelope increases, so that evolution during
central H-burning causesnon-homologouschanges to the structure.

9.3.1 Evolution of stars powered by the CNO cycle

We can understand why rather massive stars (M ∼> 1.3 M⊙) expand during the MS by considering the
pressure that the outer layers exert on the core:

Penv =

∫ M

mc

Gm

4πr4
dm (9.14)

Expansion of the envelope (increase inr of all mass shells) means a decrease in the envelope pressure
on the core. This decrease in pressure is needed because of the sensitive thermostatic action of the
CNO cycle,ǫCNO ∝ ρT18, which allows only very small increases inTc andρc. Sinceµc increases
as H being is burned into He, the ideal-gas law dictates thatPc must decrease. This is only possible
if Penv decreases, i.e. the outer layers must expand to keep the star in HE (ρenv ↓ andR ↑). This self-
regulating envelope expansion mechanism is the only way for the star to adapt itself to the composition
changes in the core while maintaining both HE and TE.

Another important consequence of the temperature sensitivity the CNO cycleis the large concen-
tration ofǫnuc towards the centre. This gives rise to a large central∇rad ∝ l/mand hence toconvective
cores, which are mixed homogeneously (X(m) = constant within the convective core massMcc). This
increases the amount of fuel available and therefore the lifetime of centralhydrogen burning (see
Fig. 9.10). In generalMcc decreases during the evolution, which is a consequence of the fact that
∇rad ∝ κ and sinceκ ∝ 1 + X for the main opacity sources (see Sect. 5.3) the opacity in the core
decreases as the He abundance goes up.

Towards the end of the main sequence phase, asXc becomes very small, the thermostatic action of
the CNO reactions diminishes andTc has to increase substantially to keep up the energy production.
When hydrogen is finally exhausted, this occurs within the whole convective core of massMcc and
ǫnuc decreases. The star now loses more energy at its surface than is produced in the centre, it gets
out of thermal equilibrium and it will undergo an overall contraction. This occurs at the red point of
the evolution tracks in Fig. 9.9, after whichTeff increases. At the blue point of the hook feature in the
HRD, the core has contracted and heated up sufficiently that at the edge of the former convective core
the temperature is high enough for the CNO cycle to ignite again in a shell around the helium core.
This is the start of thehydrogen-shell burningphase which will be discussed in Chapter 10.

9.3.2 Evolution of stars powered by the pp chain

In stars withM ∼< 1.3 M⊙ the central temperature is too low for the CNO cycle and the main energy-
producing reactions are those of the pp chain. The lower temperature sensitivity ǫpp ∝ ρT4 means
thatTc andρc increase more than was the case for the CNO cycle. Therefore the outer layers need to
expand less in order to maintain hydrostatic equilibrium in the core. As a result,the radius increase
in low-mass stars is modest and they evolve almost parallel to the ZAMS in the H-Rdiagram (see
Fig. 9.9).

Furthermore, the lowerT-sensitivity of the pp chains means that low-mass stars have radiative
cores. The rate of change of the hydrogen abundance in each shell isthen proportional to the overall
reaction rate of the pp chain (by eq. 6.41), and is therefore highest in thecentre. Therefore a hydrogen
abundance gradient builds up gradually, withX(m) increasing outwards (see Fig. 9.10). As a result,
hydrogen is depleted gradually in the core and there is a smooth transition to hydrogen-shell burning.
The evolution tracks for low-mass stars therefore do not show a hook feature.
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Figure 9.10. Hydrogen abundance profiles at different stages of evolution for a 1M⊙ star (left panel) and a
5 M⊙ star (right panel) at quasi-solar composition. Figures reproduced from Salaris & Cassisi.

Note that stars in the approximate mass range 1.1− 1.3 M⊙ (at solar metallicity) undergo a transi-
tion from the pp chain to the CNO cycle as their central temperature increases. Therefore these stars
at first have radiative cores and later develop a growing convective core. At the end of the MS phase
such stars also show a hook feature in the HRD.

9.3.3 The main sequence lifetime

The timescaleτMS that a star spends on the main sequence is essentially the nuclear timescale for
hydrogen burning, given by eq. (2.37). Another way of deriving essentially the same result is by
realizing that, in the case of hydrogen burning, the rate of change of the hydrogen abundanceX is
related to the energy generation rateǫnuc by eq. (6.43),

dX
dt
= −
ǫnuc

qH
. (9.15)

Here qH = QH/4mu is the effective energy release per unit mass of the reaction chain (41H →
4He+ 2 e+ + 2ν), corrected for the neutrino losses. HenceqH is somewhat different for the pp chain
and the CNO cycle. Note thatqH/c2 corresponds to the factorφ used in eq. (2.37). If we integrate
eq. (9.15) over all mass shells we obtain, for a star in thermal equilibrium,

dMH

dt
= −

L
qH
, (9.16)

whereMH is the total mass of hydrogen in the star. Note that while eq. (9.15) only strictly applies
to regions where there is no mixing, eq (9.16) is also valid if the star has a convective core, because
convective mixing only redistributes the hydrogen supply. If we now integrate over the main sequence
lifetime we obtain for the total mass of hydrogen consumed

∆MH =
1

qH

∫ τMS

0
L dt =

〈L〉 τMS

qH
, (9.17)
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where〈L〉 is the time average of the luminosity over the main-sequence lifetime. We can write∆MH =

fnucM by analogy with eq. (2.37), and writefnuc as the product of the initial hydrogen mass fraction
X0 and an effective core mass fractionqc inside which all hydrogen is consumed, so that

τMS = X0 qH
qcM
〈L〉
. (9.18)

We have seen that the luminosity of main-sequence stars increases stronglywith mass. Since the
variation ofL during the MS phase is modest, we can assume the same relation between〈L〉 andM
as for the ZAMS. The other factors appearing in eq. (9.18) do not or only weakly depend on the mass
of the star (see below) and can in a first approximation be taken as constant. For a mass-luminosity
relation〈L〉 ∝ Mη – whereη depends on the mass range under consideration withη ≈ 3.8 on average
– we thus obtainτMS ∝ M1−η. HenceτMS decreases strongly towards larger masses.

This general trend has important consequences for the observed H-Rdiagrams of star clusters.
All stars in a cluster can be assumed to have formed at approximately the same timeand therefore
now have the same ageτcl. Cluster stars with a mass above a certain limitMto have main-sequence
lifetimesτMS < τcl and have therefore already left the main sequence, while those withM < Mto are
still on the main sequence. The main sequence of a cluster has an upper end(the ‘turn-off point’) at
a luminosity and effective temperature corresponding toMto, the so-calledturn-off mass, determined
by the conditionτMS(Mto) = τcl. The turn-offmass and luminosity decrease with cluster age (e.g. see
Fig. 1.2). This the basis for theage determinationof star clusters.

The actual main-sequence lifetime depend on a number of other factors. The effective energy
release per gramqH depends on which reactions are involved in energy production and therefore has
a slight mass dependence. More importantly, the exact value ofqc is determined by the hydrogen
profile left at the end of the main sequence. This is somewhat mass-dependent, especially for massive
stars in which the relative size of the convective core tends to increase withmass (Fig. 9.8). A larger
convective core mass means a larger fuel reservoir and a longer lifetime.Our poor understanding of
convection and mixing in stars unfortunately introduces considerable uncertainty in the size of this
reservoir and therefore both in the main-sequence lifetime of a star of a particular mass and in its
further evolution.

9.3.4 Complications: convective overshooting and semi-convection

As discussed in Sect. 5.5.4, the size of a convective region inside a star is expected to be larger than
predicted by the Schwarzschild (or Ledoux) criterion because of convectiveovershooting. However,
the extentdov of the overshooting region is not known reliably from theory. In stellar evolution
calculations this is usually parameterized in terms of the local pressure scale height,dov = αovHP. In
addition, other physical effects such as stellar rotation may contribute to mixing material beyond the
formal convective core boundary. Detailed stellar evolution models in whichthe effects of convective
overshooting are taken into account generally provide a better match to observations. For this reason,
overshooting (or perhaps a variety of enhanced mixing processes) is thought to have a significant
effect in stars with sizable convective cores on the main sequence.

Overshooting has several important consequences for the evolution ofa star:

1. a longer main-sequence lifetime, because of the larger hydrogen reservoir available;

2. a larger increase in luminosity and radius during the main sequence, because of the larger region
inside whichµ increases which enhances the effects onL andRdiscussed earlier in this section;

3. the hydrogen-exhausted core mass is larger at the end of the main sequence, which in turn leads
to (a) larger luminosities during all evolution phases after the main sequence (e.g. see Fig. 10.2
in the next chapter) and, as a result, (b)shorterlifetimes of these post-main sequence phases.
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Figure 9.11. Two examples ofisochrone fittingto the colour-magnitude diagrams of open clusters, NGC 752
and IC 4651. The distribution of stars in the turn-off region is matched to isochrones for standard stellar
evolution models (std) and for models with convective overshooting (ovs). The overshooting models are better
able to reproduce the upper extension of the main sequence band in both cases.

Some of these effects, particularly (2) and (3a), provide the basis of observational testsof overshoot-
ing. Stellar evolution models computed with different values ofαov are compared to the observed
width of the main sequence band in star clusters (see for example Fig. 9.11),and to the luminosities
of evolved stars in binary systems. If the location in the HRD of the main sequence turn-off in a clus-
ter is well determined, or if the luminosity difference between binary components can be accurately
measured, a quantitative test is possible which allows a calibration of the parameterαov. Such tests
indicate thatαov ≈ 0.25 is appropriate in the mass range 1.5 – 8M⊙. For larger masses, however,αov

is poorly constrained.

Another phenomenon that introduces an uncertainty in stellar evolution modelsis related to the
difference between the Ledoux and Schwarzschild criterion for convection(see Sect. 5.5.1). Outside
the convective core a composition gradient (∇µ) develops, which can make this region dynamically
stable according to the Ledoux criterion while it would have been convective if the Schwarzschild
criterion were applied. In such a region an over-stable oscillation pattern can develop on the thermal
timescale, which slowly mixes the region and thereby smooths out the composition gradient. This pro-
cess is calledsemi-convection. Its efficiency and the precise outcome are uncertain. Semi-convective
situations are encountered during various phases of evolution, most importantly during central hy-
drogen burning in stars withM > 10M⊙ and during helium burning in low- and intermediate-mass
stars.

139



Suggestions for further reading

The process of star formation and pre-main sequence evolution is treated inmuch more detail in
Chapters 18–20 of Maeder, while the properties and evolution on the main sequence are treated in
Chapter 25. See also Kippenhahn & Weigert Chapters 22 and 26–30.

Exercises

9.1 Kippenhahn diagram of the ZAMS

Figure 9.8 indicates which regions in zero-age main sequence stars are convective as a function of the
mass of the star.

(a) Why are the lowest-mass stars fully convective? Why does the mass of the convective envelope
decrease withM and disappear forM ∼> 1.3 M⊙?

(b) What changes occur in the central energy production around M = 1.3 M⊙, and why? How is this
related to the convection criterion? So why do stars withM ≈ 1.3 M⊙ have convective cores while
lower-mass stars do not?

(c) Why is it plausible that the mass of the convective core increases withM?

9.2 Conceptual questions

(a) What is the Hayashi line? Why is it a line, in other words: whyis there a whole range of possible
luminosities for a star of a certain mass on the HL?

(b) Why do no stars exist with a temperature cooler than that ofthe HL? What happens if a star would
cross over to the cool side of the HL?

(c) Why is there a mass-luminosity relation for ZAMS stars? (In other words, why is there a unique
luminosity for a star of a certain mass?)

(d) What determines the shape of the ZAMS is the HR diagram?

9.3 Central temperature versus mass

Use the homology relations for the luminosity and temperature of a star to derive how the central tem-
perature in a star scales with mass, and find the dependence ofTc on M for the pp-chain and for the
CNO-cycle. To make the result quantitative, use the fact that in the Sun withTc ≈ 1.3× 107 K the pp-
chain dominates, and that the CNO-cycle dominates for masses M ∼> 1.3 M⊙. (Why does the pp-chain
dominate at low mass and the CNO-cycle at high mass?)

9.4 Mass-luminosity relation

Find the relation betweenL and M and the slope of the main sequence, assuming an opacity lawκ =

κ0 ρT−7/2 (the Kramers opacity law) and that the energy generation rate per unit massǫnuc ∝ ρTν, where
ν = 4.
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Chapter 10

Post-main sequence evolution through
helium burning

After the main-sequence phase, stars are left with a hydrogen-exhausted core surrounded by a still
hydrogen-rich envelope. To describe the evolution after the main sequence, it is useful to make a
division based on the mass:

low-mass starsare those that develop a degenerate helium core after the main sequence,leading to
a relatively long-livedred giant branchphase. The ignition of He is unstable and occurs in a
so-calledhelium flash. This occurs for masses between 0.8M⊙ and≈ 2 M⊙ (this upper limit is
sometimes denoted asMHeF).

intermediate-mass starsdevelop a helium core that remains non-degenerate, and they ignite helium
in a stable manner. After the central He burning phase they form a carbon-oxygen core that
becomes degenerate. Intermediate-mass stars have masses betweenMHeF and Mup ≈ 8 M⊙.
Both low-mass and intermediate-mass stars shed their envelopes by a strong stellar wind at the
end of their evolution and their remnants are CO white dwarfs.

massive starshave masses larger thanMup ≈ 8 M⊙ and ignite carbon in a non-degenerate core.
Except for a small mass range (≈ 8−11M⊙) these stars also ignite heavier elements in the core
until an Fe core is formed which collapses.

In this chapter the evolution between the end of the main sequence and the development of a carbon-
oxygen core is discussed. We concentrate on low-mass and intermediate-mass stars, but the principles
are equally valid for massive stars. The evolution of massive stars in the H-R diagram is, however,
also strongly affected by mass loss and we defer a more detailed discussion of massive starsuntil
Chapter 12.

10.1 The Scḧonberg-Chandrasekhar limit

During central hydrogen burning on the main sequence, we have seen that stars are in thermal equi-
librium (τnuc ≫ τKH) with the surface luminosity balanced by the nuclear power generated in the
centre. After the main sequence a hydrogen-exhausted core is formed inside which nuclear energy
production has ceased. This inert helium core is surrounded by a hydrogen-burning shell and a H-
rich envelope. For such an inert core to be in thermal equilibrium requiresa zero net energy flow,
l(m) =

∫

m
ǫnucdm = 0 and hence dT/dr ∝ l = 0. This implies that the core must beisothermalto

remain in TE. Such a stable situation is possible only under certain circumstances.
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A star composed of ideal gas at constant temperature corresponds to a polytrope withγ = 1, i.e.
with n→ ∞. Such a polytrope would have infinite radius (Chapter 4) or, if its radius were finite, would
have infinitely high central density, both of which are unphysical. In otherwords,completely isother-
mal stars made of ideal gas cannot exist.The reason is that the pressure gradient needed to support
such a star against its own gravity is produced only by the density gradient,dP/dr = (RT/µ) dρ/dr,
with no help from a temperature gradient. Thus hydrostatic equilibrium in an isothermal star would
require a very large density gradient.

It turns out, however, that if only the core of the star is isothermal, and the massMc of this isother-
mal core is only a small fraction of the total mass of the star, then a stable configuration is possible. If
the core mass exceeds this limit, then the pressure within the isothermal core cannot sustain the weight
of the overlying envelope. This was first discovered by Schönberg and Chandrasekhar in 1942, who
computed the maximum core mass fractionqc = Mc/M to be

Mc

M
< qSC = 0.37

(

µenv

µc

)2

≈ 0.10 (10.1)

whereµc andµenv are the mean molecular weight in the core and in the envelope respectively. This
limit is known as theSchönberg-Chandrasekhar limit. The typical valueqSC ≈ 0.10 is appropriate
for a helium core withµc = 1.3 and a H-rich envelope. (A simple, qualitative derivation of eq. 10.1
can be found in Maeder Section 25.5.1.)
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Figure 10.1. Evolution tracks for stars of quasi-solar composition (X = 0.7, Z = 0.02) and masses of 1, 2,
3, 5, 7 and 10M⊙ in the H-R diagram (left panel) and in the central temperature versus density plane (right
panel). Dotted lines in both diagrams show the ZAMS, while the dashed lines in the right-hand diagram show
the borderlines between equation-of-state regions (as in Fig. 3.4). The 1M⊙ model is characteristic of low-mass
stars: the central core becomes degenerate soon after leaving the main sequence and helium is ignited in an
unstable flash at the top of the red giant branch. When the degeneracy is eventually lifted, He burning becomes
stable and the star moves to thezero-age horizontal branchin the HRD, at logL ≈ 1.8. The 2M⊙ model is
a borderline case that just undergoes a He flash. The He flash itself is not computed in these models, hence
a gap appears in the tracks. The 5M⊙ model is representative of intermediate-mass stars, undergoing quiet
He ignition and He burning in a loop in the HRD. The appearanceof the 7 and 10M⊙ models in the HRD
is qualitatively similar. However, at the end of its evolution the 10M⊙ star undergoes carbon burning in the
centre, while the cores of lower-mass stars become stronglydegenerate. (Compare to Fig. 8.4.)
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Stars that leave the main sequence with a helium core mass below the Schönberg-Chandrasekhar
limit can therefore remain in complete equilibrium (HE and TE) during hydrogen-shell burning. This
is the case for stars with masses up to about 8M⊙, if convective overshooting is neglected. Over-
shooting increases the core mass at the end of central H-burning, and therefore the upper mass limit
for stars remaining in TE after the main sequence decreases to about 2M⊙ in calculations that include
moderate overshooting.

When the mass of the H-exhausted core exceeds the Schönberg-Chandrasekhar limit – either im-
mediately after the main sequence in relatively massive stars, or in lower-massstars after a period
of H-shell burning during which the helium core mass increases steadily – thermal equilibrium is no
longer possible. The helium core then contracts and builds up a temperaturegradient. This tempera-
ture gradient adds to the pressure gradient that is needed to balance gravity and keep the star in HE.
However, the temperature gradient also causes an outward heat flow from the core, such that it keeps
contracting and heating up in the process (by virtue of the virial theorem). This contraction occurs on
the thermal (Kelvin-Helmholtz) timescale in a quasi-static way, always maintaining astate very close
to HE.

Low-mass stars (M ∼< 2 M⊙) have another way of maintaining both HE and TE during hydrogen-
shell burning. In such stars the helium core is relatively dense and cooland electron degeneracy
can become important in the core after the main sequence. Degeneracy pressure is independent of
temperature and can support the weight of the envelope even in a relatively massive core, as long
as the degenerate core mass does not exceed the Chandrasekhar mass.1 In that case the Schönberg-
Chandrasekhar limit no longer applies. Inside such degenerate helium cores efficient energy transport
by electron conduction(Sec. 5.2.4) can keep the core almost isothermal.

Effects of core contraction: the ‘mirror principle’

The following principle appears to be generally valid, and provides a way of interpreting the results
of detailed numerical calculations:

Whenever a star has anactive shell-burning source, the burning shell acts as amirror between the
core and the envelope:

core contraction ⇒ envelope expansion
core expansion ⇒ envelope contraction

This ‘mirror principle’ can be understood by the following argument. To maintain thermal equi-
librium, the burning shell must remain at approximately constant temperature due to the thermostatic
action of nuclear burning. Contraction of the burning shell would entail heating, so the burning shell
must also remain at roughly constant radius. As the core contracts,ρshell must therefore decrease and
hence also the pressure in the burning shell must decrease. Therefore the pressurePenv of the overly-
ing envelope must decrease, so the layers above the shell must expand (an example of this behaviour
can be seen in Fig. 10.4, to be discussed in the next section).

10.2 The hydrogen-shell burning phase

In this section we discuss in some detail the evolution of stars during hydrogen-shell burning, until
the onset of helium burning. Based on the above section, qualitative differences are to be expected
between low-mass stars (M ∼< 2 M⊙) on the one hand and intermediate- and high-mass stars (M ∼>

1Note the very different physical meanings of theChandrasekhar massand theSchönberg-Chandrasekhar limit!
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Figure 10.2. Evolution track in the Hertzsprung-Russell diagram of a 5M⊙ star of initial compositionX =
0.7, Z = 0.02. See text for details. The evolution track in the left panel was computed without convective
overshooting. The right panel shows a comparison between this track and the evolution of the same star
computed with moderate overshooting (αov = lov/HP ≈ 0.25; dashed line), illustrating some of the effects
discussed in Sec. 9.3.4.

2 M⊙) on the other hand. Therefore we discuss these two cases separately,starting with the evolution
of higher-mass stars because it is relatively simple compared to low-mass stars. We use two detailed
stellar evolution sequences, for stars of 5M⊙ and 1M⊙ respectively, as examples for the general
evolutionary behaviour of stars in these two mass ranges.

10.2.1 Hydrogen-shell burning in intermediate-mass and massive stars

Fig. 10.2 shows the evolution track of a 5M⊙ star of quasi-solar composition (X = 0.7,Z = 0.02)
in the H-R diagram, and Fig. 10.3 shows some of the interior details of the evolution of this star as
a function of time from the end of central hydrogen burning. Point B in bothfigures corresponds
to the start of the overall contraction phase near the end of the main sequence (when the central H
mass fractionXc ≈ 0.03) and point C corresponds to the exhaustion of hydrogen in the centreand the
disappearance of the convective core. The hatched regions in the ‘Kippenhahn diagram’ (lower panel
of Fig. 10.3) show the rapid transition at point C from hydrogen burning inthe centre to hydrogen
burning in a shell.

The H-exhausted core initially has a mass of about 0.4M⊙ which is below the Scḧonberg-Chandra-
sekhar limit, so the star initially remains in TE and the first portion of the hydrogen-shell burning
phase (C–D) is relatively slow, lasting about 2× 106 yr. The temperature and density gradients be-
tween core and envelope are still shallow, so that the burning shell initially occupies a rather large
region in mass. This phase is therefore referred to asthick shell burning. The helium core gradually
grows in mass until it exceeds the S-C limit and the contraction of the core speeds up. The envelope
expands at the same time, exemplifying the ‘mirror principle’ discussed above. This becomes more
clear in Fig. 10.4 which shows the radial variations of several mass shells inside the star. After point
C the layers below the burning shell contract while the layers above expand, at an accelerating rate
towards the end of phase C–D. As a result the temperature and density gradients between core and
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Figure 10.3. Internal evolution of a 5M⊙ star of
initial compositionX = 0.7, Z = 0.02. The pan-
els show various internal quantities as a function
of time, from top to bottom:

(a) Contributions to the luminosity from hydro-
gen burning (red line), helium burning (blue)
and gravitational energy release (orange; dashed
parts show netabsorptionof gravitational en-
ergy). The black line is the surface luminosity.

(b) Central mass fractions of various elements
(1H, 4He,12C, 14N and16O) as indicated.

(c) Internal structure as a function of mass coor-
dinatem, known as a ‘Kippenhahn diagram’. A
vertical line through the graph corresponds to a
model at a particular time. Gray areas are con-
vective, lighter-gray areas are semi-convective.
The red hatched regions show areas of nuclear
energy generation, whereǫnuc > 10L/M (dark
red) andǫnuc > 2L/M (light red). The letters
B. . . J indicate the corresponding points in the
evolution track in the H-R diagram, plotted in
Fig. 10.2. See text for details.

envelope increase, and the burning shell occupies less and less mass (Fig. 10.3c). The latter portion of
hydrogen-shell burning is therefore referred to asthin shell burning. Most of the time between C and
D is spent in the thick shell burning phase at relatively small radii and logTeff > 4.05. The phase of
expansion from logTeff ≈ 4.05 to point D at logTeff ≈ 3.7 occurs on the Kelvin-Helmholtz timescale
and takes only a few times 105 yrs. A substantial fraction of the energy generated by shell burning is
absorbed by the expanding envelope (dashed yellow line in Fig. 10.3a), resulting in a decrease of the
surface luminosity between C and D.

The rapid evolution on a thermal timescale across the H-R diagram from the end of the main
sequence toTeff ≈ 5000 K is characteristic of all intermediate-mass stars. The probability of detecting
stars during this short-lived phase is very small, resulting in a gap in the distribution of stars in the
H-R diagram known as theHertzsprung gap.

As point D is approached the envelope temperature decreases and the opacity in the envelope rises,
impeding radiative energy transport. The envelope grows increasingly unstable to convection, starting
from the surface, until at D a large fraction of the envelope mass has become convective. During
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Figure 10.4. Radial variation of various mass
shells (solid lines) in the 5M⊙ (Z = 0.02) star of
Fig. 10.3, during the early post-main sequence
evolution. Each line is labelled with its mass co-
ordinatem in units of M⊙; the top-most curve
indicates the total radiusR. Gray areas indicate
convection and red cross-hatched areas have in-
tense nuclear burning (ǫnuc > 10L/M). Letters
B. . . E correspond to those in Fig. 10.3.

phase D–E the star is a red giant with a deep convective envelope. The star is then located close to the
Hayashi line in the H-R diagram, and while it continues to expand in responseto core contraction,
the luminosity increases as the effective temperature remains at the approximately constant value
corresponding to the Hayashi line. The expansion of the star between D and E still occurs on the
thermal timescale, so the H-shell burning phase of intermediate-mass stars onthe red-giant branch is
very short-lived.

At its deepest extent at point E, the base of the convective envelope is located at mass coordinate
m = 0.9 M⊙ which is below the maximum extent of the former convective core during central H-
burning (about 1.25M⊙ at the start of the main sequence). Hence material that was formerly inside
the convective core, and has therefore been processed by hydrogen burning and the CNO-cycle, is
mixed throughout the envelope and appears at the surface. This process is calleddredge-upand
occurs about halfway between D and E in Fig. 10.2. Dredge-up on the red giant branch also occurs in
low-mass stars and we defer its discussion to Sec. 10.2.3.

The helium cores of intermediate-mass stars remain non-degenerate duringthe entire H-shell
burning phase C–E, as can be seen in Fig. 10.1. These stars develop helium cores with masses larger
than 0.3M⊙, the minimum mass for helium fusion discussed in Ch. 8. In the 5M⊙ star at point E the
helium core mass is 0.6M⊙ when a central temperature of 108 K is reached and helium is ignited in
the core. The ignition of helium halts further core contraction and envelopeexpansion and therefore
corresponds to a local maximum in luminosity and radius. Evolution through helium burning will be
discussed in Sec. 10.3.1.

10.2.2 Hydrogen-shell burning in low-mass stars

Compared to intermediate-mass stars, low-mass stars (withM ∼< 2 M⊙) have small or no convective
cores during central hydrogen burning, and when they leave the main sequence their cores are rel-
atively dense and already close to becoming degenerate (see Fig. 10.1).In stars withM ∼< 1.1 M⊙
the transition from central to shell hydrogen burning is gradual and initiallyMc/M < 0.1 so the star
can remain in thermal equilibrium with an isothermal helium core. By the time the heliumcore has
grown to≈ 0.1M, its density is large enough that electron degeneracy dominates the pressure and the
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Figure 10.5. Evolution of a 1M⊙ star of ini-
tial compositionX = 0.7, Z = 0.02. The top
panel (a) shows the internal structure as a func-
tion of mass coordinatem. Gray areas are con-
vective, lighter-gray areas are semi-convective.
The red hatched regions show areas of nuclear
energy generation:ǫnuc > 5L/M (dark red) and
ǫnuc > L/M (light red). The letters A. . . J indi-
cate corresponding points in the evolution track
in the H-R diagram, plotted in the bottom panel
(b). See text for details.

Scḧonberg-Chandrasekhar limit has become irrelevant. Therefore low-mass stars can remain in HE
and TE throughout hydrogen-shell burning and there is no Hertzsprung gap in the H-R diagram.

This can be seen in Fig. 10.5 which shows the internal evolution of a 1M⊙ star with quasi-solar
composition in a Kippenhahn diagram and the corresponding evolution trackin the H-R diagram. Hy-
drogen is practically exhausted in the centre at point B (Xc = 10−3) after 9 Gyr, after which nuclear
energy generation gradually moves out to a thick shell surrounding the isothermal helium core. Be-
tween B and C the core slowly grows in mass and contracts, while the envelopeexpands in response
and the burning shell gradually becomes thinner in mass. By point C the heliumcore has become
degenerate. At the same time the envelope has cooled and become largely convective, and the star
finds itself at the base of thered giant branch(RGB), close to the Hayashi line. The star remains
in thermal equilibrium throughout this evolution and phase B–C lasts about 2 Gyr for this 1M⊙ star.
This long-lived phase corresponds to the well-populatedsubgiant branchin the H-R diagrams of old
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star clusters.
Stars with masses in the mass range 1.1 − 1.5 M⊙ show a very similar behaviour after the main

sequence, the only difference being the small convective core they develop during core H-burning.
This leads to a ‘hook’ in the evolution track at central H exhaustion (see Sec. 9.3). The subsequent
evolution during H-shell burning is similar, the core remaining in TE until it becomes degenerate on
the RGB and a correspondingly slow evolution across the subgiant branch. Stars with 1.5 ∼< M/M⊙ ∼<

2 do exhibit a small Hertzsprung gap as they reach the Schönberg-Chandrasekhar limit before their
cores become degenerate. After a period of slow, thick shell burning onthe subgiant branch they
undergo a phase of rapid, thermal-timescale expansion until they reach thegiant branch. In this case
the gap inTeff to be bridged is narrow because the main sequence is already relatively close in effective
temperature to the Hayashi line.

Regardless of these differences between stars of different mass during the early shell-H burning
phase, all stars withM ∼< 2 M⊙ have in common that their helium cores become degenerate before
the central temperature is high enough for helium ignition, and they settle into TEon the red giant
branch.

10.2.3 The red giant branch in low-mass stars

The evolution of low-mass stars along the red giant branch is very similar andalmost independent
of the mass of the star. The reason for this similarity is that by the time the helium core has become
degenerate, a very strong density contrast has developed between thecore and the envelope. The
envelope is so extended that it exerts very little weight on the compact core,while there is a very
large pressure gradient between core and envelope. The pressureat the bottom of the envelope (see
eq. 9.14) is very small compared to the pressure at the edge of the core and in the hydrogen-burning
shell separating core and envelope. Therefore the stellar structure depends almost entirely on the
properties of the helium core. Since the core is degenerate, its structure isindependent of its thermal
properties (temperature) and only depends on its mass. Therefore the structure of a low-mass red
giant is essentially a function of itscore mass.

As a result there is a very tight relation between the helium core mass and the luminosity of a red
giant, which is entirely due to the hydrogen shell-burning source. Thiscore-mass luminosityrelation
is very steep for small core masses,Mc ∼

< 0.5 M⊙ and can be approximately described by a power law

L ≈ 2.3× 105L⊙

(

Mc

M⊙

)6

(10.2)

Note that the luminosity of a low-mass red giant is independent of its total mass. Therefore the
evolution of all stars withM ∼

< 2 M⊙ converges after the core becomes degenerate, which occurs
whenMc ≈ 0.1M, i.e. later for largerM. From this point on also the central density and temperature
start following almost the same evolution track (e.g. see Fig. 10.1b).

In the H-R diagram the star is located along the Hayashi line appropriate forits massM. Higher-
mass red giants therefore have slightly higherTeff at the same luminosity.2 Note that the location
of the Hayashi line also depends on themetallicity of the star, since the effective temperature of a
completely convective star is determined by the H− opacity in the photosphere (Sec. 9.1.1). Because
the H− opacity increases with metallicity (Sec. 5.3), more metal-rich red giants of the samemass and
luminosity are located at lowerTeff. This provides a means of deriving the metallicity of a globular
cluster from the location of its RGB stars in the H-R diagram.

2This means there is also acore-mass radiusrelation, but it is less tight than theMc-L relation and depends slightly on
the total mass.
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Figure 10.6. Evolution track of a 0.8M⊙ star of
rather low metallicity,Z = 0.004. The inset shows
the temporary decrease of luminosity when the H-
burning shell crosses the hydrogen discontinuity left
by the first dredge-up (corresponding to point E in
Fig. 10.5). The open circle indicates where first
dredge-up occurs. Figure from Salaris & Cassisi.

As the H-burning shell adds mass to the degenerate helium core, the core slowly contracts and the
radius and luminosity increase. The higher luminosity means the H-shell must burn at a higher rate,
leading to faster core-mass growth. The evolution along the RGB thus speeds up as the luminosity
increases (see Fig. 10.5). The density contrast between core and envelope increases and the mass
within the burning shell decreases, to≈ 0.001M⊙ near the tip of the RGB. Since less mass is contained
in the burning shell while the luminosity increases, the energy generation rateper unit massǫnuc

increases strongly, which means the temperature within the burning shell alsoincreases. With it, the
temperature in the degenerate helium core increases. When the tip of the RGBis reached (at point F
in Fig. 10.5) atL ≈ 2000L⊙ and a core mass of≈ 0.45M⊙, the temperature in the degenerate core
has reached a value close to 108 K and helium is ignited. This is an unstable process due to the strong
degeneracy, and leads to a thermonuclear runaway known as thehelium flash(see Sec. 10.3.2).

First dredge-up and the luminosity bump

When the convective envelope reaches its deepest extent at point D in Fig. 10.5, it has penetrated into
layers that were processed by H-burning during the main sequence, and have been partly processed
by the CN-cycle. Up to point D the surface He abundance increases andthe H abundance decreases,
but more noticeably the C/N ratio decreases by a large factor. This is called thefirst dredge-upphase
(later dredge-ups occur after He burning).

Some time later, at point E in Fig. 10.5 the H-burning shell has eaten its way out tothe dis-
continuity left by the convective envelope at its deepest extent. The shellsuddenly finds itself in an
environment with a higher H abundance (and a lower mean molecular weight).As a consequence
it starts burning at a slightly lower rate, leading to a slight decrease in luminosity(see Fig. 10.6).
The resulting loop (the star crosses this luminosity range three times) results in alarger number of
stars in this luminosity range in a stellar population. This ‘bump’ in the luminosity function has been
observed in many old star clusters.

Mass loss on the red giant branch

Another process that becomes important in low-mass red giants ismass loss. As the stellar luminosity
and radius increase as a star evolves along the giant branch, the envelope becomes loosely bound and
it is relatively easy for the large photon flux to remove mass from the stellar surface. The process
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driving mass loss in red giants is not well understood. When calculating the effect of mass loss in
evolution models an empirical formula due to Reimers is often used:

Ṁ = −4× 10−13η
L
L⊙

R
R⊙

M⊙
M

M⊙/yr (10.3)

whereη is a parameter of order unity. Note that the Reimers formula implies that a fixed fraction of the
stellar luminosity is used to lift the wind material out of the gravitational potential well. However, the
relation is based on observations of only a handful of stars with well-determined stellar parameters.

A value ofη ∼ 0.25− 0.5 is often used because it gives the right amount of mass loss on the RGB
to explain the morphology in the H-R diagram of stars in the subsequent helium-burning phase, on
thehorizontal branch. The 1M⊙ star of our example loses about 0.3M⊙ of its envelope mass by the
time it reaches the tip of the giant branch.

10.3 The helium burning phase

As the temperature in the helium core approaches 108 K, the 3α reaction starts to produce energy at
a significant rate. This is the onset of thehelium burningphase of evolution. Unlike for hydrogen
burning, the reactions involved in helium burning (see Sect. 6.4.2) are the same for all stellar masses.
However, the conditions in the core at the ignition of helium are very different in low-mass stars
(which have degenerate cores) from stars of higher mass (with non-degenerate cores). Therefore
these cases will be discussed separately.

10.3.1 Helium burning in intermediate-mass stars

We again take the 5M⊙ star depicted in Figs. 10.2–10.3 as a typical example of an intermediate-mass
star. The ignition of helium takes place at point E in these figures. Since the core is non-degenerate
at this point (ρc ≈ 104 g/cm3, Fig. 10.1), nuclear burning is thermally stable and helium ignition
proceeds quietly. Owing to the high temperature sensitivity of the He-burningreactions, energy
production is highly concentrated towards the centre which gives rise to a convective core. The mass
of the convective core is 0.2M⊙ initially and grows with time (unlike was the case for hydrogen
burning).

Initially, the dominant reaction is the 3α reaction which converts4He into12C inside the convec-
tive core. As the12C abundance builds up, the12C+α reaction gradually takes over, so that16O is also
produced at a rate that increases with time (see Fig. 10.3b and compare to Fig. 6.6). When the central
He abundanceXHe < 0.2 the mass fraction of12C starts decreasing as a result of the diminishing
3α rate (which is proportional toX3

He). The final12C/16O ratio is about 0.3, decreasing somewhat
with stellar mass. This is related to the fact that in more massive stars the centraltemperature during
He burning is larger. Note that the final12C/16O ratio depends on the uncertain rate of the12C(α, γ)
reaction, and the values given here are for the rate that is currently thought to be most likely.

The duration of the central helium burning phase in our 5M⊙ star (E–H) is about 22 Myr, i.e.
approximately 0.27× τMS. This seems surprisingly long given that the energy gain per gram of He
burning is only 10 % of that of H burning, while the luminosity of the star is (on average) somewhat
larger than during the main sequence. The reason can be discerned from Fig. 10.3a: most of the
luminosity during helium burning still comes from the H-burning shell surrounding the core, although
the luminosity contribution of He burning (LHe) increases with time and becomes comparable towards
the end of this phase.

We can understand the behaviour ofLHe by considering that the properties of the helium core
essentially depend only on the core massMc and are hardly affected by the surrounding envelope. Be-
cause the envelope is very extended the pressure it exerts on the core (eq. 9.14) is negligible compared
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to the pressure inside the dense helium core. In factLHe is a steep function ofMc, analogous to the
main-sequenceM-L relation – indeed, if the envelope were stripped away, the bare helium corewould
lie on ahelium main sequence. The mass-luminosity relation for such helium main-sequence stars
can be approximately described by the homology relation (7.32) if the appropriate value ofµ is used.
As a result of H-shell burning,Mc grows with time during the He-burning phase andLHe increases
accordingly. Another consequence is that in models computed with convective overshootingLHe is
larger on account of the larger core mass left after the main sequence (see Sect. 9.3.4). Therefore the
duration of the He burning phase (i.e. the appropriate nuclear timescale,τnuc ∝ Mc/LHe) is shorterin
models with overshooting. A 5M⊙ star of the same composition computed with overshooting has a
main-sequence lifetimeτMS = 100 Myr and a helium-burning lifetime of 16 Myr.

During helium burning intermediate-mass stars describe a loop in the H-R diagram (E–H in
Fig. 10.2). After He ignition at the tip of the giant branch, the envelope contracts (on the nuclear
timescale for helium burning) and the stellar radius decreases. Initially the luminosity also decreases
while the envelope is mostly convective (E–F) and the star is forced to move along its Hayashi line.
When most of the envelope has become radiative at point F, the star leavesthe red giant branch and
the effective temperature increases. This is the start of a so-calledblue loop, the hottest point of which
is reached at G whenXHe ≈ 0.3. This also corresponds to a minimum in the stellar radius, after which
the envelope starts expanding and the star again approaches the giant branch whenXHe ≈ 0.05. By
the end of core helium burning (H) the star is back on the Hayashi line, very close to its starting point
(E). If we consider stars of different masses, the blue extension of the loops in the HRD increases (the
loops extend to largerTeff values) for increasing mass, up toM ≈ 12M⊙. (The behaviour of stars of
larger masses can be more complicated, one of the reasons being strong mass loss, and we defer a
discussion of this until Chapter 12.) On the other hand, forM ∼< 4 M⊙ the loops always stay close to
the red giant branch and do not become ’blue’.

The occurrence of blue loops is another example of a well-established result of detailed stellar
evolution calculations, that is difficult to explain in terms of basic physics. The detailed models
indicate that the occurrence and extension of blue loops depends quite sensitively on a number of
factors: the chemical composition (mainlyZ), the mass of the helium core relative to the envelope,
and the shape of the hydrogen abundance profile above the core. It therefore also depends on whether
convective overshooting was assumed to take place during the main sequence: this produces a larger
core mass, which in turn has the effect of decreasing the blue-ward extension of the loops while
increasing their luminosity.

The blue loops are important because they correspond to a slow, nucleartimescale phase of evo-
lution. One therefore expects the corresponding region of the H-R diagram to be well populated.
More precisely, since intermediate-mass stars spend part of their He-burning phase as red giants and
part of it in a blue loop, one expects such stars to fill a wedge-shaped region in the HRD. Indeed one
finds many stars in the corresponding region, both in the solar neighbourhood (Fig. 1.1, although this
is dominated bylow-massstars) and in open clusters with ages less than∼ 1 Gyr. The dependence
of the loops on overshooting also makes observational tests of overshooting using He-burning stars
possible. Another significant aspect of blue loops is that they are necessary for explaining Cepheid
variables (see Sect. 10.4), which are important extragalactic distance indicators.

10.3.2 Helium burning in low-mass stars

In low-mass stars (withM ∼< 2 M⊙) the helium burning phase differs from more massive stars in two
important aspects: (1) helium ignition occurs under degenerate conditions, giving rise to ahelium
flash, and (2) all low-mass stars start helium burning with essentially the same coremassMc ≈

0.45M⊙ (Sect. 10.2.3). The luminosity of low-mass He-burning stars is therefore almost independent
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Figure 10.7. The helium flash. Evolu-
tion with time of the surface luminosity
(Ls), the He-burning luminosity (L3α)
and the H-burning luminosity (LH) dur-
ing the onset of He burning at the tip of
the RGB in a low-mass star. Timet = 0
corresponds to the start of the main he-
lium flash. Figure from Salaris & Cas-
sisi.

of their mass, giving rise to ahorizontal branchin the HRD.

The helium flash

We again take a star of 1M⊙ as a typical example of all low-mass stars. Helium ignition occurs
whenTc ≈ 108 K and ρc ≈ 106 g/cm3, so the helium core is strongly degenerate (see Fig. 10.1).
We have seen in Sect. 7.5.2 that helium burning under these conditions is thermally unstable: the
energy generated by the 3α reaction causes a temperature increase, rather than a decrease, and helium
ignition thus initiates athermonuclear runaway. The reason is that the degenerate pressure is basically
independent ofT, so that the energy released by fusion does not increase the pressure and therefore
leads to negligible expansion and negligible work done. All nuclear energyreleased therefore goes
into raising the internal energy. Since the internal energy of the degenerateelectronsis a function
of ρ and hence remains almost unchanged, it is the internal energy of the non-degenerateions that
increases and thus raises the temperature. As a result, the evolution is vertically upward in theρc-Tc

diagram.3

The thermonuclear runaway leads to an enormous overproduction of energy: at maximum, the
local luminosity in the helium core isl ≈ 1010 L⊙ – similar to a small galaxy! However, this only
lasts for a few seconds. Since the temperature increases at almost constant density, degeneracy is
eventually lifted whenT ≈ 3 × 108 K. Further energy release increases the pressure when the gas
starts behaving like an ideal gas and thus causes expansion and cooling.All the energy released by
the thermonuclear runaway is absorbed in the expansion of the core, andnone of this nuclear power
reaches the surface. The expansion and cooling results in a decreaseof the energy generation rate,
until it balances the energy loss rate and the core settles in thermal equilibriumat Tc ≈ 108 K and
ρc ≈ 2× 104 g/cm3 (see Fig. 10.1). Further nuclear burning of helium is thermally stable.

Detailed numerical calculations of the helium flash indicate that this sequence of events indeed
takes place, but helium is not ignited in the centre but in a spherical shell atm ≈ 0.1 M⊙ whereT
has a maximum. This off-centre temperature maximum is due toneutrino lossesduring the preceding
red giant phase. These neutrinos are not released by nuclear reactions, but by spontaneous weak
interaction processes occurring at high density and temperature (see Section 6.5). Since neutrinos
thus created escape without interacting with the stellar gas, this energy loss leads to effective cooling

3This part of the evolution is skipped in the 1M⊙ model shown in Fig. 10.1, which is why a gap appears in the evolution
track. The evolution during the He flash is shown schematically as a dashedline for the 1M⊙ model in Fig. 8.4.
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Figure 10.8. Evolution with time of the lu-
minosities and central abundances in a 1M⊙
star during the late part of the red giant branch
and during helium burning. Letters D. . . H cor-
respond to the same evolution phases as in
Fig. 10.5.

of the central region of the degenerate helium core. The mass coordinateat whichTmax occurs (and
where helium ignites) decreases somewhat with stellar mass.

The high local luminosity causes almost the entire region between the ignition point (at m ≈
0.1 M⊙) up to the bottom of the H-burning shell (at 0.45M⊙) to become convective. The energy
released in the He flash is thus transported efficiently to the edge of the core, where it is absorbed
by expansion of the surrounding non-degenerate layers. Convectionalso mixes the product of the
He flash (12C produced in the 3α reaction) throughout the core. About 3 % of the helium in the core
is converted into carbon during the flash. Because the convective shellcontaining this carbon never
overlaps with the convective envelope surrounding the H-burning shell,this carbon does not reach the
surface. (However, this may be different at very low metallicity.)

After the He flash, the whole core expands somewhat but remains partially degenerate. In detailed
models a series of smaller flashes follows the main He flash (see Fig. 10.7) during ≈ 1.5 Myr, before
degeneracy in the centre is completely lifted and further He burning proceeds stably in a convective
core, as for intermediate-mass stars.

The horizontal branch

In our 1M⊙ example star, the helium flash occurs at point F in Fig. 10.5. Evolution through the
helium flash was not calculated for the model shown in this figure. Instead,the evolution of the star
is resumed at point G when the helium core has become non-degenerate and has settled into TE with
stable He burning in the centre and H-shell burning around the core. (Models constructed in this
way turn out to be very similar to models that are computed all the way through theHe flash, such
as shown in Fig. 10.7.) At this stage the luminosity and radius of the star have decreased by more
than an order of magnitude from the situation just before the He flash. Herewe again see the mirror
principle at work: in this case the core has expanded (from a degenerate to a non-degenerate state)
and the envelope has simultaneously contracted, with the H-burning shell acting as a ‘mirror’.

In the 1M⊙ star of solar composition shown in Fig. 10.5, helium burning occurs betweenG and
H. The position of the star in the H-R diagram does not change very much during this period, always
staying close (but somewhat to the left of) the red giant branch. The luminosity is≈ 50L⊙ for most
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Figure 10.9. Location of the zero-age
horizontal branch (think gray line) for a
metallicity Z = 0.001 typical of glob-
ular clusters. These models have the
same core mass (0.489M⊙) but varying
total (i.e. envelope) mass, which deter-
mines their position in the H-R diagram.
Evolution tracks during the HB for sev-
eral total mass values are shown as thin
solid lines. Figure from Maeder.

of the time; this value is determined mainly by the core mass. Since the core mass at the start of
helium burning is≈ 0.45M⊙ for all low-mass stars, independent of stellar mass, the luminosity at
which He burning occurs is also almost independent of mass. If we consider He-burning stars of
a given composition (e.g. in a star cluster), only the envelope mass may vary from star to star. At
solar metallicity, all such stars occupy about the same position in the HRD. This gives rise to a so-
calledred clumpin observed colour-magnitude diagrams of low-mass stellar populations (visible for
instance in Fig. 1.1). However, the radius and effective temperature of He-burning stars depends on
their envelope mass. Stars with a small envelope mass (either because of a smaller initial mass, or
because they suffered a larger amount of mass loss on the RGB) can be substantially hotter thanthe
one shown in Fig. 10.5. Furthermore, at low metallicity the critical envelope mass, below which He-
burning stars become small and hot, is larger. Stars with different amounts of mass remaining in their
envelopes can then form ahorizontal branchin the HRD (Fig. 10.9). Horizontal branches are found
in old stellar populations, especially in globular clusters of low metallicity (an example is the globular
cluster M3 shown in Fig. 1.2). The observed distribution of stars along the HB varies greatly from
cluster to cluster, and the origin of these differentHB morphologiesis not fully understood.

The duration of the core helium burning phase is about 120 Myr, again independent of stellar
mass. While this is longer than in intermediate-mass stars, it is a much shorter fraction of the main-
sequence lifetime because of the much higher luminosity of the He-burning phase. The evolution of
the stellar structure during helium burning is qualitatively similar to that of intermediate-mass stars;
see Figs. 10.5a and 10.8. The most striking differences are:

• The contribution of He-burning to the stellar luminosity is larger, especially towards the end of
the phase. This is due to the relatively small envelope mass.

• The development of a substantialsemi-convectiveregion on top of the convective core. This
is related to a difference in opacity between the C-rich convective core and the He-rich zone
surrounding it, and gives rise to partial (non-homogeneous) mixing in this region.

• The occurrence of ‘breathing pulses’, giving rise to the sudden jumps inthe central composition
and in the luminosity. Whether these are real or simply a numerical artifact of one-dimensional
stellar models is not clear.4

4For details about the latter two effects, see either Salaris & Cassisi or John Lattanzio’s tutorial at
http://www.maths.monash.edu.au/j̃ohnl/StellarEvolnDemo/.
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Figure 10.10. The period-luminosity relation for classical Cepheids in the Large Magellanic Cloud. Luminos-
ity is expressed as absolute magnitude in the B band (left) and in the V band. Figure from Sandage et al. (2004,
A&A 424, 43).

10.4 Pulsational instability during helium burning

During their post-main sequence evolution, stars may undergo one or more episodes during which
they are unstable to radial pulsations. The most important manifestation of these pulsations are the
Cepheidvariables, luminous pulsating stars with periods between about 2 and 100 days. It turns out
that there is a well-defined correlation between the pulsation period and the luminosity of these stars,
first discovered for Cepheids in the Small Magellanic Cloud. A modern version of this empirical
relation is shown in Fig. 10.10. Their importance for astronomy lies in the fact that the period can
be easily determined, even for stars in other galaxies, and thus provides an estimate of the absolute
luminosity of such a star, making Cepheids importantstandard candlesfor the extragalactic distance
scale.

Cepheids lie along a pulsational instability strip in the H-R diagram (see Fig. 10.11). During
the evolution of an intermediate-mass star, this instability strip is crossed up to three times. The
first crossing occurs during H-shell burning (C–D in Fig. 10.2) but thisis such a rapid phase that the
probability of catching a star in this phase is very small. In stars with sufficiently extended blue loops,
another two crossings occur (F-G and G–H) during a much slower evolution phase. Cepheids must
thus be helium-burning stars undergoing a blue loop. Equivalently, theRR Lyraevariables seen in old
stellar populations lie along the intersection of the instability strip and the horizontal branch.

Since pulsation is a dynamical phenomenon, the pulsation period is closely related to the dy-
namical timescale (eq. 2.18). Therefore the pulsation periodΠ is related the mean density: to first
approximation once can writeΠ ∝ ρ̄−1/2 ∝ M−1/2R3/2. Each passage of the instability strip yields a
fairly well-defined radius and luminosity. Passage at a largerL corresponds to a largerRand therefore
to a largerΠ, because the variation in mass is smaller than that in radius and enters the relation with
a smaller power. This provides a qualitative explanation of the period-luminosity relation. The min-
imum observed period should correspond to the the lowest-mass star undergoing a blue loop. Also
the number of Cepheids as a function of period must correspond to the time it takes for a star of the
corresponding mass to cross the instability strip. Thus Cepheids provide a potential test of stellar
evolution models.
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10.4.1 Physics of radial stellar pulsations

The radial oscillations of a pulsating star result from pressure waves, i.esound waves that resonate in
the stellar interior. These radial oscillation modes are essentially standing waves, with a node at the
centre and an open end at the stellar surface – not unlike the sound waves in an organ pipe. Similarly,
there are several possible modes of radial pulsation, thefundamental modehaving just one node at the
centre, while thefirst andsecond overtonemodes have one or two additional nodes between the centre
and surface, etc. Most radially pulsating stars, such as Cepheids, areoscillating in their fundamental
mode.

In order to understand what powers the pulsations of stars in the instability strip, let us first
reconsider the dynamical stability of stars. We have seen in Sec. 7.5.1 that overall dynamical stability
requiresγad >

4
3. In this situation a perturbation of pressure equilibrium will be restored, therestoring

force being larger the moreγad exceeds the critical value of43. In practice, due to the inertia of the
layers under consideration, this will give rise to anoscillation around the equilibrium structure. A
linear perturbation analysis of the equation of motion (2.11) shows that a layer at mass coordinatem
having equilibrium radiusr0 will undergo radial oscillations with a frequency

ω2 = (3γad− 4)
Gm

r3
0

, (10.4)

if we assume the oscillations are adiabatic. Note thatω2 > 0 as long asγad >
4
3, consistent with

dynamical stability. On the other hand, forγad <
4
3 the frequency becomes imaginary, which indicates

Figure 10.11. Occurrence of various classes
of pulsating stars in the H-R diagram, over-
laid on stellar evolution tracks (solid lines).
Cepheid variables are indicated with ‘Ceph’,
they lie within the pulsational instability strip
in the HRD (long-dashed lines). Their equiv-
alents are the RR Lyrae variables among
HB stars (the horizontal branch is shown as
a dash-dotted line), and theδ Scuti stars
(δSct) among main-sequence stars. Pulsa-
tional instability is also found among lumi-
nous red giants (Mira variables), among mas-
sive main-sequence stars –βCep variables
and slowly pulsating B (SPB) stars, among
extreme HB stars known as subdwarf B stars
(sdBV) and among white dwarfs. Figure
from Christensen-Dalsgaard (2004).
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an exponential growth of the perturbation, i.e. dynamical instability. A proper average ofω over
the star yields the pulsation frequency of the fundamental mode. We can obtain an approximate
expression by replacingm with the total massM and r0 by the radiusR, and takingγad constant
throughout the star. This yields

Π0 =
2π

√

(3γad− 4)GM/R3
=

(

3π
(3γad− 4)Gρ̄

)1/2

. (10.5)

This is indeed the same expression as for the dynamical timescale, to within a factor of unity. One
can write

Π = Q

(

ρ̄

ρ̄⊙

)−1/2

, (10.6)

where the pulsation constantQ depends on the structure of the star and is different for different modes
of pulsation. For the fundamental mode,Q ≈ 0.04 days andQ is smaller for higher overtones.

Driving and damping of pulsations

In an exactly adiabatic situation the oscillations will maintain the same (small) amplitude. In reality
the situation is never exactly adiabatic, which means that the oscillations will generally be damped,
unless there is an instability that drives the oscillation, i.e. that makes their amplitude grow.

The requirement for growth of an oscillation is that the net work done by a mass element in the
star on its surroundings during an oscillation cycle must be positive,

∮

PdV > 0. By the first law of
thermodynamics, this work is provided by a net amount of heat being absorbed by the element during
the cycle,

∮

dQ =
∮

PdV > 0.

The change in entropy of the mass element is dS = dQ/T. Since entropy is a state variable,
∮

dQ/T =
0 during a pulsation cycle. A mass element maintaining constantT during a cycle therefore cannot
absorb any heat. Suppose that the temperature undergoes a small variation T(t) = T0 + δT(t) around
an average valueT0. Then

0 =
∮

dQ
T
=

∮

dQ
T0 + δT

≈

∮

dQ
T0

(

1−
δT
T0

)

, (10.7)

or
∮

dQ ≈
∮

dQ
δT
T0
. (10.8)

Eq. (10.8) means that heat must enter the element (dQ > 0) when the temperature is high (δT > 0), i.e.
when the layer is compressed, and/or heat must leave the layer (dQ < 0) during the low-temperature
part of the cycle (δT < 0), i.e. during expansion. This is known in thermodynamics as aheat engine,
and is analogous to what happens in a normal combustion motor, such as a car engine. In a pulsating
star, some layers may absorb heat and do work to drive the pulsation, whileother layers may lose
heat and thereby damp the pulsation (if

∮

dQ =
∮

PdV < 0). To determine the overall effect, the
contributions

∮

PdV must be integrated over all mass layers in the star.
In stars there are two possible mechanisms that can drive pulsations:
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• If nuclear reactions occur in a region that is compressed during a pulsation, then the increase
in T will lead to an increase in the energy generation rateǫnuc. This satisfies the criterion
(10.8) and is known as theǫ-mechanism.Although this is always present, the amplitudes of the
oscillations induced by this mechanism in the core of a star are usually so small that it cannot
drive any significant pulsations. It may have important effects in very massive stars, but it is
certainly not relevant for explaining Cepheid pulsations.

• If during the compression of a layer it becomes moreopaque, then the energy flowing through
this layer will be ‘trapped’. The resulting increase in temperature and pressure pushes the
layer outward. During the resulting expansion, the gas will become more transparent again and
release the trapped heat. This so-calledκ-mechanismcan thus maintain the oscillation cycle
and drive radial pulsations.

The condition for theκ-mechanism to work is therefore that the opacity must increase when the gas
is compressed. The compression during a pulsation cycle is not exactly adiabatic, otherwise the
mechanism would not work, but it is very close to adiabatic. Then the condition can be written as
(d lnκ/d lnP)ad > 0. We can write this as

(

d lnκ
d lnP

)

ad
=

(

∂ ln κ
∂ ln P

)

T
+

(

∂ ln κ
∂ ln T

)

P

(

d lnT
d lnP

)

ad
≡ κP + κT ∇ad, (10.9)

whereκP andκT are shorthand notation for the partial derivatives of lnκ with respect to lnP and lnT,
respectively. For successful pulsations we must therefore have

κP + κT ∇ad > 0. (10.10)

The instability strip and the period-luminosity relation

In stellar envelopes the opacity can be roughly described by a Kramers law, κ ∝ ρT−3.5, which when
combined with the ideal-gas law impliesκP ≈ 1 andκT ≈ −4.5. Since for an ionized ideal gas
∇ad = 0.4, we normally haveκP + κT ∇ad < 0, i.e.κ decreases upon compression and the star will not
pulsate. In order to satisfy (10.10) one must have either:

• κT > 0, which is the case when the H− opacity dominates, atT < 104 K. This may contribute to
the driving of pulsations in very cool stars, such as Mira variables (Fig.10.11), but the Cepheid
instability strip is located at too highTeff for this to be important.

• In case of a Kramers-like opacity, a small value of∇ad can lead to pulsation instability. For
κP ≈ 1 andκT ≈ −4.5, eq. (10.10) implies∇ad ∼

< 0.22. Such small values of∇ad can be found
in partial ionization zones, as we have seen in Sec. 3.5 (e.g. see Fig. 3.5).

Stars generally have two important partial ionization zones, one atT ≈ 1.5 × 104 K where both
H ↔ H+ + e− and He↔ He+ + e− occur, and one atT ≈ 4 × 104 K where helium becomes twice
ionized (He+ ↔ He++ + e−). These partial ionization zones can explain the location of the instability
strip in the H-R diagram, as follows.

• At largeTeff (for Teff ∼
> 7500 K, the ‘blue edge’ of the instability strip) both ionization zones lie

near the surface, where the density is very low. Although this region is indeed non-adiabatic,
the mass and heat capacity of these zones is too small to drive pulsations effectively.

• As Teff decreases, the ionization zones lie deeper into the stellar envelope. The mass and
heat capacity in the partial ionization zones increase, while remaining non-adiabatic enough to
absorb sufficient heat to drive pulsations.
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• At still smallerTeff (for Teff ∼
< 5500 K, the ‘red edge’ of the instability strip) the partial ioniza-

tion zones lie at such high density that the gas behaves almost adiabatically. Although these
zones still have a destabilizing effect, they cannot absorb enough heat to make the star as a
whole unstable.

Thus the instability strip occupies a narrow region in the H-R diagram, as indicated in Fig. 10.11. Its
location is related to the depth of the partial ionization zones. Since these zones occur in a specific
temperature range, the instability strip also occurs for a narrow range ofTeff values, and is almost
vertical in the H-R diagram (and parallel to the Hayashi line).

We can understand the period-luminosity relation from the dependence of the pulsation period on
mass and radius (eq. 10.6). Since Cepheids follow a mass-luminosity relation,M ∝ Lα, and since
L ∝ R2T4

eff, we can write

Π ∝ Q
R3/2

M1/2
∝ Q

L(3/4)−(1/2α)

T3
eff

.

With α ≈ 3 andTeff ≈ constant, we findΠ ∝ L0.6 or logL ≈ 1.7 logΠ + const. Detailed numerical
models give

logL = 1.270 logΠ + 2.570 (10.11)

for the blue edge, and a slope of 1.244 and a constant 2.326 for the red edge. The smaller slope than
in the simple estimate is mainly due to the fact that the effective temperature of the instability strip is
not constant, but slightly decreases with increasingL.

Suggestions for further reading

The contents of this chapter are also covered by Chapters 25.3.2 and 26.1–26.5 of Maeder, while
stellar pulsations and Cepheids are treated in detail in Chapter 15. See also Kippenhahn & Weigert,
Chapters 31 and 32.

Exercises

10.1 Conceptual questions

(a) Why does the luminosity of a star increase on the main sequence? Why do low-mass stars, like
the Sun, expand less during the main sequence than higher-mass stars?

(b) Explain what happens during the ‘hook’ at the end of the main sequence of stars more massive
than the Sun.

(c) What isconvective overshooting? Think of at least three effects of overshooting on the evolution
of a star.

(d) Explain the existence of aHertzsprung gapin the HRD for high-mass stars. Why is there no
Hertzsprung gap for low-mass stars?

(e) What do we mean by themirror principle?

(f) Why does the envelope become convective on the red giant branch? What is the link with the
Hayashi line?
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10.2 Evolution of the abundance profiles

(a) Use Fig. 10.3 to sketch the profiles of the hydrogen and helium abundances as a function of the
mass coordinate in a 5M⊙ star, at the ages corresponding to points C, E, G and H. Try to be as
quantitative as possible, using the information provided in the figure.

(b) Do the same for a 1M⊙ star, using Figs. 10.5 and 10.8, at points B, D, F and H.

(c) The abundances plotted in Figs. 10.3 and 10.8 are centralabundances. What happens to the abun-
dances at the surface?

10.3 Red giant branch stars

(a) Calculate the total energy of the Sun assuming that the density is constant, i.e. using the equation
for potential energyEgr = −

3
5GM2/R. In later phases, stars like the Sun become red giants, with

R ≈ 100R⊙. What would be the total energy, if the giant had constant density. Assume that the
mass did not change either. Is there something wrong? If so, why is it?

(b) What really happens is that red giants have a dense, degenerate, pure helium cores which grow to
∼ 0.45M⊙ at the end of the red giant branch (RGB). What is the maximum radius the core can
have for the total energy to be smaller than the energy of the Sun? (N.B. Ignore the envelope –
why are you allowed to do this?)

(c) For completely degenerate stars, one has

R= 2.6× 109 µe
−5/3

(

M
M⊙

)−1/3

cm, (10.12)

whereµe is the molecular weight per electron andµe = 2 for pure helium. Is the radius one finds
from this equation consistent with upper limit derived in (b)?

10.4 Core mass-luminosity relation for RGB stars

Low-mass stars on the RGB obey a core mass-luminosity relation, which is approximately given by
eq. (10.2). The luminosity is provided by hydrogen shell burning.

(a) Derive relation between luminosityL and the rate at which the core grows dMc/dt. Use the energy
released per gram in hydrogen shell burning.

(b) Derive how the core mass evolves in time, i.e,Mc = Mc(t).

(c) Assume that a star arrives to the RGB when its core mass is 15% of the total mass, and that it
leaves the RGB when the core mass is 0.45M⊙. Calculate the total time a 1M⊙ star spends on
the RGB and do the same for a 2M⊙ star. Compare these to the main sequence (MS) lifetimes of
these stars.

(d) What happens when the core mass reaches 0.45M⊙? Describe the following evolution of the star
(both its interior and the corresponding evolution in the HRD).

(e) What is the difference in evolution with stars more massive than 2M⊙?

10.5 Jump in composition

Consider a star with the following distribution of hydrogen:

X(m) =

{

0.1 for m< mc

0.7 for m≤ mc
(10.13)

(a) In this star a discontinuous jump in the composition profile occurs atm = mc. What could have
caused such a chemical profile? Explain whyP andT must be continuous functions.

(b) Calculate the jump in density∆ρ/ρ.

(c) Also calculate the jump in opacity,∆κ/κ, if the opacity is given as:
- Kramers:κb f ∼ Z(1+ X)ρT−3.5

- Electron scattering:κe = 0.2(1+ X)
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Chapter 11

Late evolution of low- and
intermediate-mass stars

After the central helium burning phase a central core composed of carbon and oxygen is formed. As
discussed before, the further evolution of a star differs greatly between massive stars on the one hand,
and low- and intermediate-mass stars on the other hand. The evolution of massive stars, in which the
core avoids degeneracy and undergoes further nuclear burning cycles, will be discussed in the next
chapter.

In low- and intermediate-mass stars, up to about 8M⊙, the C-O core becomes degenerate and their
late evolution is qualitatively similar. These stars evolve along the so-calledasymptotic giant branch
(AGB) in the H-R diagram. The AGB is a brief but interesting and important phase of evolution,
among other things because it is the site of rich nucleosynthesis. AGB stars also suffer from strong
mass loss, which eventually removes their envelope and leaves the degenerate C-O core, which after
a brief transition stage as the central star of a planetary nebula, becomes along-lived coolingwhite
dwarf.

11.1 The asymptotic giant branch

The AGB phase starts at the exhaustion of helium in the centre. In the examples of the 5 and 1M⊙
stars discussed in the previous chapter, this occurs at point H in the evolution tracks (Figs. 10.2 and
10.5). The star resumes its climb along the giant branch, which was interrupted by central helium
burning, towards higher luminosity. In low-mass stars the AGB lies at similar luminosities but some-
what higher effective temperature than the preceding RGB phase. This is the origin of the name
‘asymptotic’ giant branch. For stars more massive than about 2.5M⊙ the AGB lies at higher lumi-
nosities than the RGB and the name has no morphological meaning.

One can distinguish two or three phases during the evolution of a star along the AGB. These are
highlighted in Fig. 11.1 for our 5M⊙ example star, but the evolution of lower-mass stars is qualita-
tively similar.

The early AGB phase

After central He exhaustion the carbon-oxygen core contracts. During a brief transition all layers
below the H-burning shell contract (shortly after point H), until He burning shifts to a shell around
the CO core. The star now has two active burning shells and a double mirroreffect operates: the core
contracts, the He-rich layers above expand, and the outer envelope starts contracting. However, due
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Figure 11.1. Evolution of luminosities (upper
panel) and internal structure (lower panel) with
time in a 5M⊙ star (with compositionX = 0.70,
Z = 0.02) during the last stages of helium burning
and on the AGB. Compare with Fig. 10.3 for the
same star. The early AGB starts at point H, when
He burning shifts quite suddenly from the cen-
tre to a shell around the former convective core.
The H-burning shell extinguishes and at point K
second dredge-up occurs. The H-burning shell
is re-ignited some time later at point J. This is
the start of the double shell-burning phase, which
soon afterward leads to thermal pulses of the He-
burning shell (and break-down of this particular
model). The first thermal pulses can be seen in
the inset of the upper panel which shows the last
20 000 yr of this model calculation. Strong mass
loss is then expected to remove the stellar enve-
lope within∼< 106 yr, leaving the degenerate CO
core as a cooling white dwarf.

to expansion of the He-rich zone the temperature in the H-shell decreasesand the H-burning shell is
extinguished. Thus only one ‘mirror’ remains and now the entire envelope –He-rich layer plus H-rich
outer envelope – starts expanding in response to core contraction. A fairly long-lived phase follows in
which the stellar luminosity is provided almost entirely by He-shell burning (phase H-K in Fig. 11.1).
This is called theearly AGBphase.

The He-burning shell gradually adds mass to the growing CO core, which becomes degenerate
due to its increasing density. As the envelope expands and cools the convective envelope penetrates
deeper until it reaches the composition discontinuity left by the extinct H-shell at point K.

Second dredge-up

In stars of sufficiently high mass,M ∼> 4 M⊙ (depending somewhat on the initial composition and
on whether overshooting is included) a convective dredge-up episodecan occur, called thesecond
dredge-up. At point K in Fig. 11.1 the convective envelope is seen to penetrate down into the helium-
rich layers. This is due to a combination of the continuing expansion and cooling of these layers,
which increases their opacity, and the growing energy flux produced bythe He-burning shell – note
that the luminosity has been steadily growing. For lower-mass stars the H-burning shell remains
active at a low level, which prevents the convective envelope from penetrating deeper into the star.
Consequently, the second dredge-up does not occur in lower-mass stars.

In the material that is dredged up hydrogen has been burned into helium, while 12C and16O have
been almost completely converted into14N by the CNO-cycle. The amount of He- and N-rich material
dredged up is about 0.2M⊙ in the example shown, and can be as much as 1M⊙ in the most massive
AGB stars. This material is mixed with the outer convective envelope and appears at the surface.
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Thus the second dredge-up has a qualitatively similar, but much more dramaticeffect that the first
dredge-up phase that occurred on the RGB.

An additional important effect of the second dredge-up is the reduction of the mass of the H-
exhausted core, thus limiting the mass of the white dwarf that remains. Effectively, the occurrence of
second dredge-up thus increases the upper initial mass limit,Mup, of stars that produce white dwarfs.

The thermally pulsing AGB phase

As the He-burning shell approaches the H-He discontinuity, its luminosity decreases as it runs out of
fuel. The layers above then contract somewhat in response, thus heating the extinguished H-burning
shell until it is re-ignited. Both shells now provide energy and a phase ofdouble shell burningbegins.
However, the shells do not burn at the same pace: the He-burning shell becomes thermally unstable
and undergoes periodicthermal pulses, discussed in detail in Sec. 11.1.1. This phase is thus referred
to as thethermally pulsing AGB(TP-AGB).

The structure of a star during the TP-AGB phase is schematically depicted in Fig. 11.2. The
thermally pulsing phase of the AGB has a number of salient properties:

• The periodic thermal pulses alternate with mixing episodes and give rise to a uniquenucleosyn-
thesisof (among others)12C, 14N, and elements heavier than iron (Sec. 11.1.2). This process
gradually makes the stellar envelope and atmosphere more carbon-rich.

• Similar to the RGB, the stellar properties mainly depend on the size of the degenerate CO core.
In particular there is a tightcore mass-luminosityrelation,

L = 5.9× 104L⊙

(

Mc

M⊙
− 0.52

)

, (11.1)

which is not as steep as the RGB relation (10.2).
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Figure 11.2. Schematic structure of
an AGB star during its thermally puls-
ing phase. The CO core is degenerate
and very compact, and is surrounded
by two burning shells very close to-
gether in mass coordinate. The con-
vective envelope by contrast is very ex-
tended and tenuous, having a radius
104–105 times the size of the core.
This loosely bound envelope is gradu-
ally eroded by the strong stellar wind,
which forms a dusty circumstellar enve-
lope out to several hundreds of stellar
radii. The convective envelope, stellar
atmosphere and circumstellar envelope
have a rich and changing chemical com-
position driven by nucleosynthesis pro-
cesses in the burning shells in the deep
interior.
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• Strongmass loss(10−7 − 10−4 M⊙/yr), probably driven by dynamical (Mira) pulsations com-
bined with radiation pressure on dust particles formed in the cool atmosphere(Sec. 11.1.3),
gradually removes the envelope and replenishes the interstellar medium with thesynthesized
elements.

• The extended stellar atmosphere and circumstellar envelope, formed by the outflow, have a rich
molecular and dust chemistry. This is mainly revealed in their infra-red spectra, which have
been observed by space telescope missions such as ISO and Spitzer.

11.1.1 Thermal pulses and dredge-up

After the H-burning shell is reignited, the He-burning shell that lies underneath it becomes geomet-
rically thin. Nuclear burning in such a thin shell is thermally unstable, for the reasons discussed in
Sect. 7.5.2. This gives rise to periodicthermal pulsesof the He-burning shell. What happens during
a thermal pulse cycle is depicted schematically in Fig. 11.3.

• For most of the time, the He-burning shell is inactive. The H-burning shell adds mass to the
He-rich region between the burning shells (the intershell region), which increases the pressure
and temperature at the bottom of this region.

• When the mass of the intershell region reaches a critical value, helium is ignited in an unstable
manner, giving rise to a thermonuclear runaway called ahelium shell flash. (Note the difference
with thecoreHe flash in low-mass red giants, where electron degeneracy causes the thermonu-
clear runaway.) Values ofLHe ≈ 108 L⊙ are reached during∼ 1 year. The large energy flux
drives convection in the whole intershell region (producing anintershell convection zone, ICZ).

Figure 11.3. Schematic evolution of an AGB star through two thermal-pulse cycles. Convective regions are
shown as gray shaded areas, where ‘ICZ’ stands for the intershell convection zone driven by the He-shell flash.
The H-exhausted core mass is shown as a thin red solid line andthe He-exhausted core mass as a dashed line.
Thick red lines indicate when nuclear burning is active in these shells. Only the region around the two burning
shells is shown, comprising∼ 0.01M⊙. The hatched region indicates a shell or ‘pocket’ rich in13C that is
formed at the interface of the H-rich envelope and the C-richintershell region, following a dredge-up episode.
Note that the time axis is highly non-linear: the He shell-flash and dredge-up phases (lasting∼ 100 years) are
expanded relative to the interpulse phase (104 − 105 years).
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Figure 11.4. Evolution of a 3M⊙ star with X =
0.7,Z = 0.02 during the TP-AGB phase. Time is
counted since the first thermal pulse. The three pan-
els show (a) the growth of the hydrogen-exhausted
core mass and helium-exhausted core mass, (b) the
He-burning luminosity and (c) the changes in surface
abundances by mass fraction of12C, 14N and 16O.
Except for the first few pulses, each thermal pulse
is followed by a dredge-up episode (sudden drop in
core mass) and a sudden increase in12C abundance.
Figure adapted from Stancliffe et al. (2004, MNRAS
352, 984).

This mixes12C produced by the 3α reaction, as well as other elements produced during He
burning, throughout the intershell region.

• The large energy release by the He-shell flash mostly goes into expansionof the intershell
region against the gravitational potential. This eventually allows the He-burning shell to expand
and cool as well, so that the He-shell flash dies down after several years. A phase of stable He-
shell burning follows which lasts up to a few hundred years. As a result of the expansion and
cooling of the intershell region after the He-shell flash, the H-burning shell extinguishes.

• Expansion and cooling of the intershell region can also lead to a deeper penetration of the
outer convective envelope. In some cases convection can penetrate beyond the now extinct
H-burning shell, such that material from the intershell region is mixed into the outer envelope.
This phenomenon is calledthird dredge-up. Note that this term is used even for stars that do
not experience the second dredge-up, and is used for all subsequent dredge-up events following
further thermal pulses. Helium as well as the products of He burning, in particular 12C, can
thus appear at the surface.

• Following third dredge-up, the H-burning shell is reignited and the He-burning shell becomes
inactive again. A long phase of stable H-shell burning follows in which the mass of the inter-
shell region grows until the next thermal pulse occurs. The duration of this interpulse period
depends on the core mass, lasting between 50,000 yrs (for low-mass AGB stars with CO cores
of ∼ 0.5 M⊙) to < 1000 yrs for the most massive AGB stars.

This thermal pulse cycle can repeat many times, as shown for a 3M⊙ AGB star in Fig. 11.4.
The pulse amplitude (the maximum helium-burning luminosity) increases with each pulse, which
facilitates dredge-up after several thermal pulses. In the example shown, third dredge-up first occurs
after the 7th thermal pulse (∼ 5× 105 yr after the start of the TP-AGB phase) and then follows after
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every subsequent pulse. The efficiency of dredge-up is often measured by a parameterλ, which is
defined as the ratio of the mass dredged up into the envelope over the mass bywhich the H-exhausted
core has grown during the preceding interpulse period (see Fig. 11.3),

λ =
∆Mdu

∆MH
. (11.2)

Third dredge-up has two important consequences. First, unlike the firstand second dredge-up which
only mix up H-burning products, the third dredge-up bring products ofhelium burningto the surface.
This leads to important nucleosynthesis (see Sec. 11.1.2). Second, third dredge-up limits the growth
of the CO core mass. Efficient dredge-up withλ ≈ 1 means that in the long run, the core mass does
not increase.

11.1.2 Nucleosynthesis and abundance changes on the AGB

The main effect of thermal pulses and third dredge-up operating in AGB stars is the appearance
of helium-burning products at the surface, in particular a large production of carbon. In the 3M⊙
model shown in Fig. 11.4, the surface12C abundance increases after every dredge-up episode and
thus gradually increases, until it exceeds the16O abundance after 1.3× 106 yr.

At the low temperatures in the stellar atmosphere, most of the C and O atoms are bound into CO
molecules, such that the spectral features of AGB stars strongly dependon the C/O number ratio.
If n(C)/n(O) < 1 (simply written as ‘C/O < 1’), then the remaining O atoms formoxygen-rich
molecules and dust particles, such as TiO, H2O and silicate grains. The spectra of such O-rich AGB
stars are classified as type M or S. As a result of repeated dredge-ups, at some point the C/O ratio
can exceed unity. If C/O > 1 then all O is locked into CO molecules and the remaining C forms
carbon-rich molecules and dust grains, e.g. C2, CN and carbonaceous grains like graphite. Such
more evolved AGB stars are classified ascarbon starswith spectral type C.

Besides carbon, the surface abundances of many other elements and isotopes change during the
TP-AGB phase. The direct evidence for active nucleosynthesis in AGBstars was the detection in
1953 of technetium, an element with only radioactive isotopes of which the longest-lived one (99Tc)
decays on a timescale of 2× 105 yrs. AGB stars are nowadays considered to be major producers in
the Universe of carbon, nitrogen and of elements heavier than iron by thes-process. They also make
an important contribution to the production of19F, 25Mg, 26Mg and other isotopes.

Production of heavy elements: the s-process

Spectroscopic observations show that many AGB stars are enriched in elements heavier than iron,
such as Zr, Y, Sr, Tc, Ba, La and Pb. These elements are produced viaslow neutron capture reactions
on Fe nuclei, the so-calleds-process. In this context ‘slow’ means that the time between successive
neutron captures is long compared to theβ-decay timescale of unstable, neutron-rich isotopes.

The synthesis of s-process elements requires a source of free neutrons, which can be produced in
the He-rich intershell region by either of two He-burning reactions:13C(α,n)16O and22Ne(α,n)25Mg.
The latter reaction can take place during the He-shell flash if the temperatureexceeds 3.5 × 108 K,
which is only reached in rather massive AGB stars. The22Ne required for this reaction is abundant
in the intershell region, because the14N that is left by the CNO-cycle is all converted into22Ne by
He-burning:14N(α, γ)18F(β+)18O(α, γ)22Ne.

The main neutron source in low-mass stars (up to 3M⊙) is probably the13C(α,n)16O reaction. The
current idea is that a thin shell or ‘pocket’ of13C is formed (shown as a hatched region in Fig. 11.3)
by partial mixing of protons and12C at the interface between the H-rich envelope and the C-rich
intershell region, which produces13C by the first step of the CN-cycle. The13C subsequently reacts
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with helium when the temperature reaches 108 K, releasing the required neutrons. The s-enriched
pocket is ingested into the ICZ during the next pulse, and mixed throughoutthe intershell region,
together with carbon produced by He burning. The carbon and s-process material from the intershell
region is subsequently mixed to the surface in the next dredge-up phase (see Fig. 11.3).

Hot bottom burning

In stars withM ∼> 4−5 M⊙, the temperature at the base of the convective envelope during the interpulse
period becomes so high (TBCE ∼

> 3 × 107 K) that H-burning reactions take place. The CNO cycle
then operates on material in the convective envelope, a process known as hot bottom burning. Its
main effects are: (1) an increase in the surface luminosity, which breaks the coremass-luminosity
relation; (2) the conversion of dredged-up12C into 14N, besides many other changes in the surface
composition. Hot bottom burning thus prevents massive AGB stars from becoming carbon stars, and
turns such stars into efficient producers ofnitrogen. Other nuclei produced during hot bottom burning
are7Li, 23Na, and25,26Mg.

11.1.3 Mass loss and termination of the AGB phase

Once a star enters the TP-AGB phase it can experience a large number ofthermal pulses. The number
of thermal pulses and the duration of the TP-AGB phase is limited by (1) the decreasing mass of the
H-rich envelope and (2) the growing mass of the degenerate CO core. Ifthe CO core mass is able
to grow close to theChandrasekhar mass, MCh ≈ 1.46M⊙, carbon will be ignited in the centre in a
so-called ‘carbon flash’ that has the power to disrupt the whole star (see Chapter 13). However, white
dwarfs are observed in rather young open clusters that still contain massive main-sequence stars. This
tells us that the carbon flash probably never happens in AGB stars, evenwhen the total mass is 8M⊙,
much larger thanMCh. The reason is thatmass lossbecomes so strong on the AGB that the entire
H-rich envelope can be removed before the core has had time to grow significantly. The lifetime of
the TP-AGB phase, 1− 2× 106 yr, is essentially determined by the mass-loss rate.
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Figure 11.5. Schematic evolution track
of a low-mass star in the H-R diagram,
showing the occurrence of the various
dredge-up episodes. Stars on the upper
AGB are observed to be enriched in s-
process elements (S stars) and in carbon
(C stars).
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Figure 11.6. Mass loss of AGB stars.Left: the observed cor-
relation between the pulsation periodP of Mira variables and
their mass-loss ratėM (in M⊙/yr) (from Vassiliadis & Wood
1993, ApJ 413, 641).Right: a theoretical model (Nowotny
et al. 2005, A&A 437, 273) showing streamlines in the outer
atmosphere of an AGB star undergoing radial pulsations. At
r ∼> 2R∗ dust particles form in the dense shocked regions and
radiation pressure on the dust then pushes the mass out.

AGB mass loss

That AGB stars have strong stellar winds is clear from their spectral energy distributions, which
show a large excess at infrared wavelengths. Many AGB stars (knownas OH/IR stars) are even
completely enshrouded in a dusty circumstellar envelope and are invisible at optical wavelengths.
The mechanisms driving such strong mass loss are not yet completely understood, but a combination
of dynamicalpulsationsandradiation pressureon dust particles formed in the atmosphere probably
plays an essential role. Stars located on the AGB in the H-R diagram are found to undergo strong
radial pulsations, they are known asMira variables (see Fig. 10.11). An observational correlation
exists between the pulsation period and the mass-loss rate, shown in Fig. 11.6a. As a star evolves
towards larger radii along the AGB, the pulsation period increases and sodoes the mass-loss rate,
from ∼ 10−8 M⊙/yr to ∼ 10−4 M⊙/yr for pulsation periods in excess of about 600 days.

The basic physical picture is illustrated in Fig. 11.6b. The pulsations induce shock waves in
the stellar atmosphere, which brings gas out to larger radii and thus increases the gas density in the
outer atmosphere. At about 1.5− 2 stellar radii, the temperature is low enough (∼ 1500 K) that dust
particles can condense. The dust particles are very opaque and, once they have formed, can easily
be accelerated by the radiation pressure that results from the high stellar luminosity. In the absence
of pulsations, the gas density at such a distance from the star would be too low to form dust. Even
though the gas in the atmosphere is mostly in molecular form (H2, CO, etc.) and the dust fraction
is only about 1%, the molecular gas is dragged along by the accelerated dust particles resulting in a
large-scale outflow.

Observationally, the mass-loss rate levels off at a maximum value of∼ 10−4 M⊙/yr (this is
the value inferred for dust-enshrouded OH/IR stars, the stars with the largest pulsation periods in
Fig. 11.6). This phase of very strong mass loss is sometimes called a ‘superwind’. Once an AGB
star enters this superwind phase, the H-rich envelope is rapidly removed.This marks the end of the
AGB phase. The high mass-loss rate during the superwind phase therefore determines both the maxi-
mum luminosity that a star can reach on the AGB, and its final mass, i.e. the mass ofthe white-dwarf
remnant (Fig. 11.7).
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Post-AGB evolution

When the mass of the H-rich envelope becomes very small, 10−2 − 10−3 M⊙ depending on the core
mass, the envelope shrinks and the star leaves the AGB. The resulting decrease in stellar radius occurs
at almost constant luminosity, because the H-burning shell is still fully activeand the star keeps
following the core mass-luminosity relation. The star thus follows a horizontal track in the H-R
diagram towards higher effective temperatures. This is thepost-AGBphase of evolution. Note that
the star remains in complete equilibrium during this phase: the evolution towards higherTeff is caused
by the decreasing mass of the envelope, which is eroded at the bottom by H-shell burning and at the
top by continuing mass loss. The typical timescale for this phase is∼ 104 yrs.

As the star gets hotter andTeff exceeds 30,000 K, two effects start happening: (1) the star develops
a weak but fast wind, driven by radiation pressure in UV absorption lines (similar to the winds of
massive OB-type stars, see Sec. 12.1); and (2) the strong UV flux destroys the dust grains in the
circumstellar envelope, dissociates the molecules and finally ionizes the gas. Part of the circumstellar
envelope thus becomes ionized (an HII region) and starts radiating in recombination lines, appearing
as aplanetary nebula. Current ideas about the formation of planetary nebulae are that they result
from the interaction between the slow AGB wind and the fast wind from the central star, which forms
a compressed optically thin shell from which the radiation is emitted.

When the envelope mass has decreased to 10−5 M⊙, the H-burning shell is finally extinguished.
This happens whenTeff ≈ 105 K and from this point the luminosity starts decreasing. The remnant
now cools as a white dwarf. In some cases the star can still experience a final thermal pulse during
its post-AGB phase (alate thermal pulse), or even during the initial phase of white dwarf cooling (a

Figure 11.7. Left: Relation between between the initial and final mass of low- and intermediate-mass stars,
from Kalirai et al. (2008, ApJ 676, 594). The data points represent white dwarfs observed in open clusters,
for which the mass has been determined from their spectra. The age of the clustertcl and the cooling time of
the white dwarftwd have been used to estimate the initial mass, becausetcl − twd corresponds to the lifetime
of the progenitor star. The solid line shows model predictions for the core mass of a star at the start of the
TP-AGB phase (from Marigo 2001, A&A 370, 194) for solar metallicity. The dotted line shows the final mass
of these models, which is reasonably consistent with the data points. The growth of the core mass on the AGB
is severely limited by dredge-up and strong mass loss.

Right: Observed mass distribution of white dwarfs, for a large sample of DA white dwarfs and a smaller
sample of DB white dwarfs (from Bergeron et al. 2007). There is a sharp peak between 0.55 and 0.6M⊙, as
can be expected from the initial-final mass relation becausemost white dwarfs come from low-mass stars with
M < 2 M⊙.
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very late thermal pulse). This can temporarily bring the star back to the AGB (sometimes referred to
as the ‘born-again AGB’ scenario).

11.2 White dwarfs

All stars with initial masses up to about 8M⊙ develop electron-degenerate cores and lose their en-
velopes during the AGB phase, and thus end their lives as white dwarfs. Nuclear fusion no longer
provides energy and white dwarfs shine by radiating the thermal energy stored in their interiors, cool-
ing at almost constant radius and decreasing luminosities. The faintest whitedwarfs detected have
L ≈ 10−4.5 L⊙. Observed WD masses are mostly in a narrow range around 0.6M⊙, see Fig. 11.7b,
which corresponds to the CO core mass of low-mass (∼

< 2 M⊙) AGB progenitors. This sharply peaked
mass distribution, along with the observationally induced initial-to-final mass relation (Fig. 11.7a),
are further evidence that AGB mass loss is very efficient at removing the stellar envelope.

The great majority of white dwarfs are indeed composed of C and O. Thosewith M < 0.45M⊙
are usually He white dwarfs, formed by a low-mass star that lost its envelopealready on the RGB.
This is not expected to happen in single stars, but can result from binaryinteraction and indeed most
low-mass WDs are found in binary systems. White dwarfs withM > 1.2 M⊙, on the other hand,
are mostly ONe white dwarfs. They result from stars that underwent carbon burning in the core but
developed degenerate ONe cores, which is expected to happen in a small initial mass range around
8 M⊙.

Thesurfacecomposition of white dwarfs is usually completely different than their interior com-
position. The strong surface gravity has resulted in separation of the elements, such that any hydrogen
left is found as the surface layer while all heavier elements have settled at deeper layers. Most white
dwarfs, regardless of their interior composition, therefore show spectra completely dominated by H
lines and are classified as DA white dwarfs. A minority of white dwarfs show only helium lines and
have spectroscopic classification DB. These have lost all hydrogen from the outer layers during their
formation process, probably as a result of a late or very late thermal pulse.

11.2.1 Structure of white dwarfs

As discussed earlier, the equation of state of degenerate matter is independent of temperature, which
means that the mechanical structure of a white dwarf is independent of its thermal properties. As a
white dwarf cools, its radius therefore remains constant. As long as the electrons are non-relativistic
the structure of a white dwarf can be described as an = 3

2 polytrope with constantK. Such stars
follow a mass-radius relation of the formR ∝ M−1/3, depicted in Fig. 11.8 as a dashed line. A
proper theory for WDs should take into account that the most energetic electrons in the Fermi sea
can move with relativistic speeds, even in fairly low-mass white dwarfs. This means that the equation
of state is generally not of polytropic form, but the relationP(ρ) has a gradually changing exponent
between5

3 and 4
3, as shown in Fig. 3.3. The pressure in the central region is therefore somewhat

smaller than that of a purely non-relativistic electron gas. Thus WD radii are smaller than given by
the polytropic relation, the difference growing with increasing mass (and increasing central density).
The relativistic theory, worked out by Chandrasekhar, predicts the mass-radius relation shown as a
solid line in Fig. 11.8. As the mass approaches the Chandrasekhar mass, given by eq. (4.22),

MCh = 1.459

(

2
µe

)2

M⊙, (11.3)

the radius goes to zero as all electrons become extremely relativistic. White dwarfs more massive
thanMCh must collapse as the relativistic degeneracy pressure is insufficient to balance gravity.
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Figure 11.8. Comparison of the radius-mass rela-
tion of a completely degenerate star computed us-
ing Chandrasekhar’s theory for white dwarfs (tak-
ing into account the partly relativistic velocities of
the electrons in the Fermi sea) and an approxima-
tion based on non-relativistic degeneracy.

Chandrasekhar’s white dwarf theory assumes the electrons are fully degenerate and non-interacting.
In reality, certain corrections have to be made to the structure, in particularelectrostatic interactions
between the electrons and ions (see Sec. 3.6.1). These give a negativecorrection to the electron pres-
sure, leading to a somewhat smaller radius at a particular mass. Furthermore, at high densitiesinverse
β-decaysbecome important. Examples are the reactions

24Mg + e− → 24Na+ ν, 24Na+ e− → 24Ne+ ν.

A neutron-rich nucleus such as24Na is normally unstable toβ-decay (24Na→ 24Mg + e− + ν̄), but at
high density is stabilized by the Fermi sea of energetic electrons: the decay isprevented because the
energy of the released electron is lower than the Fermi energy. Reactionssuch as these (also called
electron captures) decrease the electron pressure at high density. Their main effect is a lowering of
the effective Chandrasekhar mass, from the ‘ideal’ value of 1.459M⊙ for a CO white dwarf to 1.4M⊙.

11.2.2 Thermal properties and evolution of white dwarfs

In the interior of a white dwarf, the degenerate electrons provide a high thermal conductivity (Sec.
5.2.4). This leads to a very small temperature gradient, especially becauseL is also very low. The
degenerate interior can thus be considered to a have a constant temperature. However, the outermost
layers have much lower density and are non-degenerate, and here energy transport is provided by
radiation. Due to the high opacity in these layers, radiation transport is much less effective than
electron conduction in the interior. The non-degenerate outer layers thusact to insulate the interior
from outer space, and here a substantial temperature gradient is present.

We can obtain a simple description by starting from the radiative envelope solutions discussed in
Sec. 7.2.3, assuming an ideal gas and a Kramers opacity lawκ = κ0 ρT−7/2, and assumingP andT
approach zero at the surface:

T17/2 = B P2 with B =
17
4

3
16πacG

κ0µ

R

L
M
. (11.4)

ReplacingP = (R/µ)ρT and solving forρ, we find that within the non-degenerate envelope

ρ = B−1/2 µ

R
T13/4. (11.5)
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Figure 11.9. Theoretical cooling curves for a CO
white dwarf with a typical mass of 0.6M⊙. The
dashed (blue) line shows the evolution of luminos-
ity with time based on the simple cooling theory by
Mestel, which yieldsL ∝ t−7/5. The solid (red) line
is a detailed cooling model for a DA white dwarf
by M. Wood (1995, LNP 443, 41). This model
takes into account (among other things) the effect
of crystallization, a phase transition that releases an
additional amount of energy, visible as the slowing
down of the cooling after about 2 Gyr. When crys-
tallization is almost complete after about 7 Gyr, the
cooling speeds up again.

Let us assume that the transition point with the degenerate interior is located where the degenerate
electron pressure equals the ideal-gas pressure of theelectronsin the envelope,Pe = (R/µe)ρT, since
the ions are non-degenerate everywhere. At this point, denoted with subscript ‘b’, we have

R

µe
ρbTb = KNR

(

ρb

µe

)5/3

.

Tb andρb must match the value given by eq. (11.5) at the transition point. Eliminatingρb gives

T7/2
b =

R5µ2
e

K3
NRµ

2
B =

51R4

64πacGK3
NR

κ0
µ2

e

µ

L
M
. (11.6)

Since the degenerate interior is nearly isothermal,Tb is approximately the temperature of the entire
interior or ‘core’ of the white dwarf. We can thus write (11.6) asT7/2

c = α L/M. To evaluate the
proportionality constantα we have to substitute appropriate values forκ0 and the composition (µe

andµ), which is somewhat arbitrary. Assuming bound-free absorption (eq. 5.33) andµe = 2 in the
envelope, which is reasonable because the envelope is H-depleted except for the very surface layers,
we getα ≈ 1.38× 1029 Z/µ in cgs units. In a typical DA white dwarf, most of the non-degenerate
layers are helium-rich so assumingZ = 0.02 andµ ≈ 1.34 is reasonable. With these assumptions we
obtain the following relation between the temperature in the interior and the luminosityand mass of
the white dwarf,

Tc ≈ 7.7× 107 K

(

L/L⊙
M/M⊙

)2/7

. (11.7)

The typical masses and luminosities of white dwarfs,M ≈ 0.6 M⊙ andL < 10−2 L⊙, imply ‘cold’
interiors withT < 2× 107 K.

We can use these properties of white dwarfs to obtain a simple model for their cooling, i.e. the
change in WD luminosity with time. Since there are no nuclear energy sources,the virial theorem
applied to degenerate objects tells us that the luminosity radiated away comes from the decrease of
internal energy. Since the electrons fill their lowest energy states up to theFermi level, their internal
energy cannot change and neither can energy be released by contraction. The only source of energy

172



Figure 11.10. Observed and theoretical distri-
butions of white dwarf luminosities in the Galac-
tic disk, from Wood (1992, ApJ 386, 539), based
on cooling models similar to the one shown in
Fig. 11.9. The curves are for assumed ages of the
Galactic disk between 6 and 13 Gyr. The paucity
of observed white dwarfs with log(L/L⊙) < −4.3,
shown as a slanted box, implies an age of the local
Galactic disk of 8–11 Gyr.

available is the thermal energy stored in the non-degenerate ions, that makeup the bulk of the mass
of the white dwarf. Since the interior is isothermal at temperatureTc, the total thermal energy is

Ein = cVMTc, (11.8)

wherecV is the specific heat per unit mass. For ions behaving as an ideal gas we have cV =
3
2R/µion

which is a constant. The luminosity is thus given by

L = −
dEin

dt
= −cVM

dTc

dt
, (11.9)

whereL is related toM andTc by eq. (11.6). If we write this relation asT7/2
c = α L/M we obtain

T7/2
c = −αcV

dTc

dt
,

which can be easily integrated between an initial timet0, when the white dwarf forms, and a generic
time t to give

τ ≡ t − t0 =
2
5
αcV (T−5/2

c − T−5/2
c,0 ). (11.10)

Once the white dwarf has cooled significantly, its core temperature is much smallerthan the initial
value so thatT−5/2

c,0 can be neglected. We thus obtain a simple relation between the cooling timeτ of
a white dwarf and its core temperature, and thus betweenτ and the luminosity,

τ ≈
2
5
αcV T−5/2

c =
2
5

cV α
2/7

(

L
M

)−5/7

. (11.11)

Making the same assumptions in calculatingα as in eq. (11.7), and substitutingcV =
3
2R/µion, we can

write this relation as

τ ≈
1.05× 108 yr
µion

(

L/L⊙
M/M⊙

)−5/7

. (11.12)

This approximate cooling law was derived by Mestel. It shows that more massive white dwarfs evolve
more slowly, because more ionic thermal energy is stored in their interior. Also, increasing the mean
mass of the ionsµion in a white dwarf of the same total mass decreases the cooling time, because there
are fewer ions per unit mass storing heat. For a CO white dwarf composed inequal parts of C and O,
µion ≈ 14.
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This simple cooling law, depicted in Fig. 11.9 for a 0.6M⊙ CO white dwarf, predicts cooling times
greater than 1 Gyr whenL < 10−3 L⊙, and greater than the age of the Universe whenL < 10−5 L⊙.
More realistic models take into account the effect of contraction of the non-degenerate envelope,
which provides some additional energy during the initial cooling phase, andmore importantly, the
effects of Coulomb interactions and ofcrystallizationin particular. As the ion gas cools, electrostatic
interactions become more important (Sec. 3.6.1) and the ions settle into a lattice structure. This
releases latent heat (in other words,cV >

3
2R/µion) and the cooling is correspondingly slower than

given by the Mestel law. Once crystallization is almost complete,cV decreases and cooling speeds up
again. A more detailed WD cooling model that includes these effects is shown in Fig. 11.9. White
dwarfs that have cooled for most of the age of the Universe cannot have reached luminosities much
less than 10−5 L⊙ and should still be detectable. Observed white dwarf luminosities thus providea
way to derive the age of a stellar population (e.g. see Fig. 11.10).

Suggestions for further reading

The evolution of AGB stars is treated in Chapter 26.6–26.8 of Maeder and Chapter 33.2–33.3 of
Kippenhahn & Weigert. White dwarfs are discussed in more detail in Chapter 35 of Kippenhahn &
Weigert and Chapter 7.4 of Salaris & Cassisi.

Exercises

11.1 Core mass luminosity relation for AGB stars

The luminosity of an AGB star is related to its core mass via the Paczynski relation (11.1). The nuclear
burning in the H- and He-burning shells add matter to the coreat a rate ofṀc/M⊙ = 1.0×10−11(L∗/L⊙).
Assume that a star enters the AGB with a luminosity of 103 L⊙ and a total mass of 2M⊙.

(a) Derive an expression for the luminosity as a function of time after the star entered the AGB phase.

(b) Assume thatTeff remains constant at 3000 and derive an expression for the radius as a function of
time.

(c) Derive an expression for the core-mass as a function of time.

11.2 Mass loss of AGB stars

The masses of white dwarfs and the luminosity on the tip of theAGB are completely determined by
mass loss during the AGB phase. The mass loss rate is very uncertain, but for this exercise assume that
the mass loss rate is given by the Reimers relation, eq. (10.3), with η ≈ 3 for AGB stars. Now, also
assume that a star entered the AGB phase with a mass of 2M⊙ and a luminosity of 103 L⊙.

(a) Derive an expression for the mass of the star as a functionof time, usingL(t) and R(t) from
Exercise 11.1. (Hint:−ṀM = 0.5 d(M2)/dt).

(b) Use the expression from (a) and the one forMc(t) from Exercise 11.1 to derive:

• the time when the star leaves the AGB (Menv ≃ 0).
• the luminosity at the tip of the AGB.
• the mass of the resulting white dwarf. (This requires a numerical solution of a simple equa-

tion).

(c) Derive the same quantities in the cases when the mass lossrate on the AGB is three times larger,
i.e.,η = 9, and when it is three times smaller, i.e.,η = 1.
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