Chapter 9

Early stages of evolution and the main
sequence phase

In this and the following chapters, an account will be given of the evoluiatars as it follows from
full-scale, detailed numerical calculations. Because the stellar evoluticatiens are highly non-
linear, they have complicated solutions that cannot always be anticipated basis of fundamental
principles. We must accept the fact that simple, intuitive explanations taiways be given for the
results that emerge from numerical computations. As a consequencectuntof stellar evolution
that follows will be more descriptive and less analytical than previoustehap

This chapter deals with early phases in the evolution of stars, as they ¢ésalasds and during
the main-sequence phase. We start with a very brief (and incompletejewesf the formation of
stars.

9.1 Star formation and pre-main sequence evolution

The process of star formation constitutes one of the main problems of mosteoptaysics. Com-
pared to our understanding of what happafter stars have formed out of the interstellar medium
— that is, stellar evolution — star formation is a very ill-understood problem. rddigtive theory of
star formation exists, or in other words: given certain initial conditions,teegdensity and temper-
ature distributions inside an interstellar cloud, it is as yet not possible tacpreith certainty, for
example, thestar formation giciency(which fraction of the gas is turned into stars) and the resulting
initial mass functior{(the spectrum and relative probability of stellar masses that are formedelW
mostly on observations to answer these important questions.

This uncertainty might seem to pose a serious problem for studying stedlaitien: if we do not
know how stars are formed, how can we hope to understand their ev@lutioe reason that stellar
evolution is a much more quantitative and predictive branch of astrophysiosstar formation was
already alluded to in Chapter 7. Once a recently formed star settles intostgtitcand thermal
equilibrium on the main sequence, its structure is determined by the four s&recfuations and only
depends on the initial composition. Therefore all the uncertain details obth®afion process are
wiped out by the time its nuclear evolution begins.

In the context of this course we can thus be very brief about star formagsielf, as it has very
little effect on the properties of stars themselves (at least as far as we asgraahwith individual
stars — it does of course have an importdfg@ on stellapopulation$.

Observations indicate that stars are formed out of molecular clouds, tymgi@nt molecular clouds
with masses of order 20M,,. These clouds have typical dimensions-010 parsec, temperatures of
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10 - 100K and densities of 10 300 moleculeem?® (where the lowest temperatures pertain to the
densest parts of the cloud). A certain fraction, about 1 %, of the clodédriakis in the form of dust
which makes the clouds very opaque to visual wavelengths. The cloads pressure equilibrium
(hydrostatic equilibrium) with the surrounding interstellar medium. Roughly, avedistinguish six
stages in the star formation process.

Interstellar cloud collapse Star formation starts when a perturbation, e.g. due to a shock wave orig-
inated by a nearby supernova explosion or a collision with another clastdrlos the pressure
equilibrium and causes (part of) the cloud to collapse under its selftgralhe condition for
pressure equilibrium to be stable against such perturbations is that théwaesd should be
less than a critical mass, tleans masswhich is given by

3/2 -1/2

n
) o1

wheren is the molecular density by number (see e.geMir Sec. 18.2.1 for a derivation). For
typical values off andn in molecular cloudi; ~ 10°—10* M. Cloud fragments with a mass
exceeding the Jeans mass cannot maintain hydrostatic equilibrium and veitbanessentially
free-fall collapse. Although the collapse is dynamical, the timeseglex p~1/2 (eq. 2.18) is
of the order of millions of years because of the low densities involved. Tthelds transparent

to far-infrared radiation and thus coolffieiently, so that the early stages of the collapse are
isothermal

T
MJ~4><104M®(100K)

Cloud fragmentation As the density of the collapsing cloud increases, its Jeans mass dedrgases
eg. (9.1). The stability criterion within the cloud may now also be violated, satlieatloud
starts to fragment into smaller pieces, each of which continues to collapsdragmentation

process probably continues until the mass of the smallest fragments (dieyatesidecreasing
Jeans mass) is less than M4.

Formation of a protostellar core The increasing density of the collapsing cloud fragment eventu-
ally makes the gaspaqueto infrared photons. As a result, radiation is trapped within the
central part of the cloud, leading to heating and an increase in gasipedss a result the
cloud core comes into hydrostatic equilibrium and the dynamical collapse isdlmra quasi-
static contraction. At this stage we may start to speakmbéostar

100 T T T T T Figure 9.1. Timescales and properties
of stars of mas$1 on the main sequence.
LI Time along the abscissa is in logarithmic
regions NS units to highlight the early phases= 0
corresponds to the formation of a hydro-
5 static core (stage 3 in the text). Initially

‘ the star is embedded in a massive accre-
tion disk for (1- 2) x 10°years. In low-
mass stars the disk disappears before the
star settles on the zero-age main sequence
(ZAMS). Massive stars reach the ZAMS
while still undergoing strong accretion.
These stars ionize their surroundings and
01 I I excite an HIl region around themselves.

104 100 108 1010 TAMS stands for terminal-age main se-
time (yr) quence. Figure from NEper.
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Figure 9.2. Schematic illustration of four stages
in the evolution of protostars and their circumstellar
disks. On the left, the stellar flux is depicted (shaded
area) and the contribution from the disk (dotted line).
On the right the corresponding geometry of the ob-
ject is shown.
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Class 0 objects are very young protostag< (" yrs)
with almost spherical accretion at a high rate, emit-
ting in the far-IR and sub-mm range. Class | pro-
tostars correspond to an advanced stage of accretion
(age~ 1P yrs), where the star is still embedded in a
massive accretion disk, while jets or bipolar outflows
are also observed. In class Il the protostar has become
visible as a classical T Tauri star on the pre-main se-
— quence (age- 10°yrs), while the accretion disk is

still optically thick giving rise to a large IR excess.
4 Class Il stars are already close to the main sequence
1 10 100 (age~ 107 yrs), with an optically thin accretion disk

A (pm) and weak emission lines. Figure fromkber.
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Accretion The surrounding gas keeps falling onto the protostellar core, so thakettigphase is
dominated by accretion. Since the contracting clouds contain a substantiahtoi@ngular
momentum, the infalling gas forms an accretion disk around the protostar.e &be®tion
disksare a ubiquitous feature of the star formation process and are obseowet most very
young stars, mostly at infrared and sub-millimeter wavelengths (see Fig. 9.2)

The accretion of gas generates gravitational energy, part of whieh igto further heating of
the core and part of which is radiated away, providing the luminosity of tbestar, so that

L ~ I—acc= I —— (92)

whereM andR are the mass and radius of the core & the mass accretion rate. The factor
%originates from the fact that half of the potential energy is dissipated in ttretsn disk.
Meanwhile he core heats up almost adiabatically since the accretion timegcateM/M is
much smaller than the thermal timescalg;.

Dissociation and ionization The gas initially consists of molecular hydrogen and behaves like an
ideal gas, such thatyq > g‘ and the protostellar core is dynamically stable. When the core
temperature reaches 2000 K molecular hydrogen starts to dissociate, which is analogous to
ionization and leads to a strong increase of the specific heat and a skofeqq below the
critical value of% (Sect. 3.5). Hydrostatic equilibrium is no longer possible and a renewed
phase oflynamical collapséollows, during which the gravitational energy release is absorbed
by the dissociating molecules without a significant rise in temperature. Whé&hddmpletely
dissociated into atomic hydrogen HE is restored and the temperature rises Sgamewhat
later, further dynamical collapse phases follow when first H and therr¢dienized at~ 10* K.
When ionization of the protostar is complete it settles back into hydrostatic equitilat a
much reduced radius (see below).

125



Pre-main sequence phasd-inally, the accretion slows down and eventually stops and the protostar
is revealed as pre-main sequence statts luminosity is now provided by gravitational con-
traction and, according to the virial theorem, its internal temperature riséscagvi?/3p1/3
(Chapter 8). The surface cools and a temperature gradient buildsangparting heat out-
wards. Further evolution takes place on the thermal timesgale

Arough estimate of the radili®, of a protostar after the dynamical collapse phase can be obtained
by assuming that all the energy released during the collapse was atbsodiEsociation of molecular
hydrogen (requiring, = 4.48 eV per b molecule) and ionization of hydrogep{ = 13.6 eV) and
helium (e = 79 eV). Because the final radius will be much smaller than the initial one, weaka
the collapse to start from infinity. After the collapse the protostar is in hyatiosequilibrium and
must satisfy the virial theorenk;o; = %Egr. Taking Egyr as given by eq. (2.28), we can write

Eizﬁ(g)(Hz"'XXH*'%XHe)E%X- (9.3)
Taking X = 0.72 andY = 1 - X, we havey = 16.9eV per baryon. For a polytrope of index
a = 3/(5-n) (eq. 4.19). We will shortly see that the protostar is completely conveatigetais we
can taken = 3 anda = &, such that

a GMm, M
~ ——— ~ B50R;|—|. 9.4
Rp 2 x Ro ( Mo) ( )
The average internal temperature can also be estimated from the viriagiinéex. 2.29),
— GM 2
T~2E = 2 ~ 8x10°K, (9.5)

3R R, 3k¥

which is independent of the mass of the protostar. At these low temperaharepacity is very
high, rendering radiative transport ffieient and making the protostar convective throughout. The
properties of suckully convective starmust be examined more closely.

9.1.1 Fully convective stars: the Hayashi line

We have seen in Sect. 7.2.3 that as tfiecive temperature of a star decreases the convective envelope
gets deeper, occupying a larger and larger part of the magg; i$ small enough stars can therefore
become completely convective. In that case, as we derived in Sect.énBrgy transport is veryie
cient throughout the interior of the star, and a tiny superadiabalicity o4 is suficient to transport a
very large energy flux. The structure of such a star can be saidddiabatic meaning that the tem-
perature stratification (the variation of temperature with depth) as measufee lollog T/dlog P is
equal toV,g. Since an almost arbitrarily high energy flux can be carried by such a tatpe gradi-
ent, theluminosityof a fully convective star is practicalindependent of its structure unlike for a
star in radiative equilibrium, for which the luminosity is strongly linked to the tentpegagradient.

It turns out that:

Fully convective stars of a given mass occupy an almost vertical line intRedidgram (i.e. with
Te ~ constant). This line is known as thayashi line The region to the right of the Hayashi
line in the HRD (i.e. at lower féective temperatures) isfarbidden regiorfor stars in hydrostatic
equilibrium. On the other hand, stars to the left of the Hayashi line (at hibjgg¢rcannot be fully
convective but must have some portion of their interior in radiative equikioriu

Since these results are important, not only for pre-main sequence statsdfor later phases of
evolution, we will do a simplified derivation of the properties of the Hayashiitirarder to make the
above-mentioned results plausible.
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Simple derivation of the Hayashi line

For any luminaosityL, the interior structure is given by = V4. For an ideal gas we have a constant
Vad = 0.4, if we ignore the variation oV g4 in partial ionization zones. We also ignore the non-zero
superadiabaticity oV in the sub-photospheric layers (Sect. 5.5.2). The temperature stratification
throughout the interior can then be described by a powerTlaw P%4. Using the ideal gas law,

P « pT, we can eliminatd from both expressions and write

P = Kp®3,

which describes a polytrope of index= % Indeed, for an ideal gas the adiabatic expongpt %
The constanK for a polytropic stellar model of inden is related to the massl and radiusk by
eqg. (4.15). For our fully convective star with= % we haveNs; = 0.42422 (Table 4.1) and therefore

K = 0.42422GMY°R. (9.6)

Since the luminosity of a fully convective star is not determined by its interioctsire, it must
follow from the conditions (in particular thepacity) in the thin radiative layer from which photons
escape, the photosphere. We approximate the photosphere by aapheface of negligible thick-
ness, where we assume the photospheric boundary conditions (7.90toWadting the pressure,
density and opacity in the photospherer(at R) asPg, pr and«r and the photospheric temperature
asTer, We can write the boundary conditions as

krPR = g GR—I;/I, (9.7)

L = 4nRoTS;, (9.8)
and we assume a power-law dependenceafp andT so that

KR = KopRaTgﬁ. (9.9)
The equation of state in the photospheric layer is

Pr= T prTe (9.10)

The interior, polytropic structure must match the conditions in the photosgbdhat (using eq. 9.6)
Pr = 0.42422GMY3Rpg>. (9.11)

For a given masM, egs. (9.7-9.11) constitute five equations for six unknowRspr, «r, Tes, L and
R. The solution thus always contains one free parameter, that is, the salutiarelation between
two quantities, say. andTeg. This relation describes theayashi linefor a fully convective star of
massM.

Since we have assumed power-law expressions in all the above equidiesst of equations can
be solved straightforwardly (involving some tedious algebra) to give a&ptaw relation betweeh
andTes after eliminating all other unknowns. The solution can be written as

logTes = AlogL + BlogM + C (9.12)

where the constantd and B depend on the exponengsandb in the assumed expression for the
opacity (9.9),

3 1
3a—35 a+3

A_ Y = a.nd = m (913)

T 9a+2b+3
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Figure 9.3. The position of the Hayashi lines in

. the H-R diagram for massaed = 0.25, 0.5, 1.0, 2.0

- and 4.0M, as indicated. The lines are analytic fits
to detailed models computed for compositi¥n=
0.7,Z = 0.02. The zero-age main sequence (ZAMS)
_ for the same composition is shown as a dashed line,
. for comparison.

B Note that the Hayashi lines do not have a constant
slope, as expected from the simple analysis, but
have a convex shape where the constant A (eq. 9.12)
| changes sign and becomes negative for high lumi-
. nosities. The main reason is our neglect of ionization
- zones (wheré&v,q < 0.4) and the non-zero supera-
diabaticity in the outer layers, both of which have a
larger dfect in more extended stars.

log L (Lsun

4.5 4
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L
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Therefore the shape of the Hayashi line in the HRD is determined by howptmty in the photo-
sphere depends gnandT. Since fully convective stars have very cool photospheres, thetpgsc
mainly given by H absorption (Sect. 5.3) which increases strongly with temperature. Acgaain
eq. (5.34)a~ 0.5 andb ~ 9 (i.e.x « T?) in the the relevant range of density and temperature, which
givesA ~ 0.01 andB ~ 0.14. Therefore (see Fig. 9.3)

e for a certain mass the Hayashi line is a very steep, almost vertical line in tbe HR

¢ the position of the Hayashi line depends on the mass, being located at fighfar higher
mass.

We can intuitively understand the steepness of the Hayashi line from tmgsticrease of H
opacity with temperature. Suppose such a fully convective star wouldaigerigs radius slightly
while attempting to keejh constant. Then the temperature in the photosphere would decrease and
the photosphere would become much more transparent. Hence energgcege much more easily
from the interior, in other words: the luminosity will in fartcreasestrongly with a slight decrease
in photospheric temperature.

The forbidden region in the H-R diagram

Consider models in the neighbourhood of the Hayashi line in the H-R diafjmaanstar of mas$/.
These models cannot haVe= V,qthroughout, because otherwise they wouldhb¢he Hayashi line.
Defining V as the average value dflogT/dlog P over the entire star, models on either side of the
Hayashi line (at lower or high€élrer) have eithelV > Vaqor V < Vagq. It turns out (after more tedious
analysis of the above equations and their dependence on polytropiainiiext models withV < Vaq

lie at higherT¢g than the Hayashi line (to its left in the HRD) while models with> V4 lie at lower
Teg (to the right in the HRD). _ _

Now consider the significance &f # Va4 If on averagevV < Va4 then some part of the star
must haveV < Vg4, that is, a portion of the star must be radiative. Since models in the vicinity
of the Hayashi line still have cool outer layers with high opacity, the radigisrt must lie in the
deep interior. Therefore stars located (somewhat) toeth®f the Hayashi line have radiative cores
surrounded by convective envelopes (if they are far to the left, theyo€@ourse be completely
radiative).

128



- Figure 9.4. Pre-main-sequence
i evolution tracks for B — 2.5Mg,

i according to the calculations of
J D’Antona & Mazzitelli (1994). The
dotted lines are isochrones, connect-
_ ing points on the tracks with the
same age (betweeh = 10°yrs
and 10yrs, as indicated). Also
indicated as solid lines that cross
the tracks are the approximate loca-
tions of deuterium burning (between
the upper two lines, near the ~
10° yr isochrone) and lithium burn-
ing (crossing the tracks at lower lu-
minosity, att > 1P yr).

- Y=0.28 Z=0.019 MLT

-2 I | 1 1 ] | 1 1 1 | : AL
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On the other hand, iV > Vg4 then a significant part of the star must haveuperadiabatic
temperature gradient (that is to say, apart from the outermost layerk att@@lways superadiabatic).
According to the analysis of Sect. 5.5.2, a significantly positive Vyq will give rise to a very
large convective energy flux, far exceeding normal stellar luminositiagch & large energy flux
very rapidly (on a dynamical timescale) transports heat outwards, thdeslbeasing the temperature
gradient in the superadiabatic region uiikE V,q again. This restructuring of the star will quickly
bring it back to the Hayashi line. Therefore the region to the right of thgablai line, withTeg <
Ter,HL, IS aforbidden regiorfor any star in hydrostatic equilibrium.

9.1.2 Pre-main-sequence contraction

As a newly formed star emerges from the dynamical collapse phase it settibg dlayashi line
appropriate for its mass, with a radius roughly given by eq. (9.4). Frasmibment on we speak of
thepre-main sequengghase of evolution. The pre-main sequence (PMS) star radiates at a $iiyino
determined by its radius on the Hayashi line. Since it is still too cool for nubl@aing, the energy
source for its luminosity is gravitational contraction. As dictated by the viriadm, this leads to
an increase of its internal temperature. As long as the opacity remains ligheaRMS star remains
fully convective, it contracts along its Hayashi line and thus its luminosityedsgs. Since fully
convective stars are accurately describedhby 1.5 polytropes, this phase of contraction is indeed
homologous to a very high degree! Thus the central temperature insrasigex p(l;/3 «< 1/R.

As the internal temperature rises the opacity (and ¥y decreases, until at some poNi,g <
Vag in the central parts of the star and a radiative core develops. The PK8atamoves to the
left in the H-R diagram, evolving away from the Hayashi line towards highgrsee Fig. 9.4). As
it keeps on contracting the extent of its convective envelope decraageiss radiative core grows
in mass. (This phase of contraction is no longer homologous, becausensigyddistribution must
adapt itself to the radiative structure.) The luminosity no longer decreagésdoeases somewhat.
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Once the star is mainly radiative further contraction is again close to homaodde luminosity
is now related to the temperature gradient and mostly determined by the masobtttetar (see
Sect. 7.4.2). This explains why PMS stars of larger mass turn away frohetyshi line at a higher
luminosity than low-mass stars, and why their luminosity remains roughly corsftantvard.

Contraction continues, as dictated by the virial theorem, until the central tampe becomes
high enough for nuclear fusion reactions. Once the energy genéatgdirogen fusion compensates
for the energy loss at the surface, the star stops contracting and setthezero-age main sequence
(ZAMS) if its mass is above the hydrogen burning limit of ONI§ (see Chapter 8). Since the nuclear
energy source is much more concentrated towards the centre than thatignaal energy released
by overall contraction, the transition from contraction to hydrogen bgraigain requires a (non-
homologous) rearrangement of the internal structure.

Before thermal equilibrium on the ZAMS is reached, however, severeear reactions have
already set in. In particular, a small quantity @duteriumis present in the interstellar gas out of
which stars form, with a mass fractien107°. Deuterium is a very fragile nucleus that reacts easily
with normal hydrogen?H + 'H — 3He + v, the second reaction in the pp chain). This reaction
destroys all deuterium present in the star wier 1.0 x 10° K, while the protostar is still on the
Hayashi line. The energy produced (5.5 MeV per reaction) is largaeginto halt the contraction of
the PMS star for a few times 39r. (A similar but much smallerféect happens somewhat later at
higherT when the initially present lithium, with mass fractigrnl0-8, is depleted). Furthermore, the
12C(p, v):N reaction is already activated at a temperature below that of the full Gh@-adue to
the relatively large initial’C abundance compared to the equilibrium CNO abundances. Thus almost
all 2C is converted intd*N before the ZAMS is reached. The energy produced in this way also halts
the contraction temporarily and gives rise to the wiggles in the evolution traskalpove the ZAMS
location in Fig, 9.4. Note that this occurs even in low-mass sfafisM, even though the pp chain
takes over the energy production on the main sequence in these sta@eqgeilibrium is achieved
(see Sect. 9.2).

Finally, the time taken for a protostar to reach the ZAMS depends on its magss.tiffie is
basically the Kelvin-Helmholtz contraction timescale (eq. 2.36). Since contnaistislowest when
bothRandL are small, the pre-main sequence lifetime is dominated by the final stages @futimmiy
when the star is already close to the ZAMS. We can therefore estimate the Riti&diby putting
ZAMS values into eq. (2.36) which yieldsus ~ 10'(M/My)~%°yr. Thus massive protostars reach
the ZAMS much earlier than lower-mass stars (and the term ‘zero-age’ mqiresce is somewhat
misleading in this context, although it hardly makesféedence to the total lifetime of a star). Indeed
in young star clusters (e.g. the Pleiades) only the massive stars halreddhe main sequence while
low-mass stars still lie above and to the right of it.

9.2 The zero-age main sequence

Stars on the zero-age main sequence are (nearly) homogeneous irsg@n@nd are in complete
(hydrostatic and thermal) equilibrium. Detailed models of ZAMS stars can be weahpy solv-
ing the four diferential equations for stellar structure numerically. It is instructive to coentie
properties of such models to the simple main-sequence homology relatioveddarSect. 7.4.

From the homology relations we expect a homogeneous, radiative stadriostgtic and thermal
equilibrium with constant opacity and an ideal-gas equation of state to follonsa-taminosity and
mass-radius relation (7.32 and 7.36),
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Figure 9.5. ZAMS mass-luminosity (left) and mass-radius (right) rielas from detailed structure models
with X = 0.7,Z = 0.02 (solid lines) and from homology relations scaled to setdues (dashed lines). For
the radius homology relation, a value= 18 appropriate for the CNO cycle was assumed (giRrg M%8%);
this does not apply tdd < 1 Mg so the lower part should be disregarded. Symbols indicatgoaents of
double-lined eclipsing binaries with accurately measwedR andL, most of which are MS stars.

These relations are shown as dashed lines in Fig. 9.5, where they arareotpobserved stars with
accurately measurefll, L andR (see Chapter 1) and to detailed ZAMS models. The mass-radius
homology relation depends on the temperature sensitiv)tpf(the energy generation rate, and is
thus expected to be fiiérent for stars in which the pp chain dominates«(4, R o« M%43) and stars
dominated by the CNO cycle & 18, R o« u®6"M%81 as was assumed in Fig. 9.5).

Homology predicts the qualitative behaviour rather well, that is, a dtelprelation and a much
shallowerR-M relation. However, it is not quantitatively accurate and it cannot adcfuurthe
changes in slopead(ogL/dlogM anddlog R/dlog M) of the relations. This was not to be expected,
given the simplifying assumptions made in deriving the homology relations. [bpe sf thel-

M relation is shallower than the homology value of 3 for masses belMy, lbecause such stars
have large convective envelopes (as illustrated in Sect. 5.5; see als®.3ezbelow). The slope is
significantly steeper than 3 for masses between 1 amd:10n these stars the main opacity source is
free-free and bound-free absorption, which increases outwtrdrrénan being constant through the
star. In very massive stars, radiation pressure is important which resfi&ening theL-M relation.
The reasons for the changesdiog R/dlog M are similar. Note that for low masses we should have
used the homology relation for the pp chain (for reasons explained in &2ct.below), which has

a smaller slope — the opposite of what is seen in the detailed ZAMS models. The occercé
convective regions (see Sect. 9.2.2) is the main reason for this non-hgoaslbehaviour.

The detailed ZAMS models do reproduce the observed stellar luminosities aplitdtve models
trace the lower boundary of observed luminosities, consistent with thetxpmcrease of with
time during the main sequence phase (see Sect. 9.3). The same can be thadddii (right panel
of Fig. 9.5), although the scatter in observed radii appears much |&aetly this is due to the much
finer scale of the ordinate in this diagram compared to the luminosity plot. Théhttanost of the
observed stellar radii are larger than the detailed ZAMS models is explainesdansion during
(and after) the main sequence (see Sect. 9.3).
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The location of the detailed ZAMS models in the H-R diagram is shown in Fig. 9. sblid
(blue) line depicts models for quasi-solar composition, which were alsoin$eg. 9.5. The increase
of effective temperature with stellar mass (and luminosity) reflects the steep massdiymialation
and the much shallower mass-radius relation — more luminous stars with similameedibe hotter,
by eq. (1.1). The slope of the ZAMS in the HRD is not constant, reflectimgirmnologous changes
in structure as the stellar mass increases.

The dfect of compositionon the location of the ZAMS is illustrated by the dashed (red) line,
which is computed for a metal-poor mixture characteristic of Population Il.sMetal-poor main
sequence stars are hotter and have smaller radii. Furthermore, relbtivatyass stars are also more
luminous than their metal-rich counterparts. One reason for th&&eatices is a lower bound-free
opacity at lowerZ (eq. 5.33), which fiects relatively low-mass stars (up to abou#l§). On the
other hand, higher-mass stars are dominated by electron-scatteririty,ophich is independent of
metallicity. These stars are smaller and hotter forfiedént reason (see Sect. 9.2.1).

9.2.1 Central conditions

We can estimate how the central temperature and central density scale witandassnposition for
a ZAMS star from the homology relations for homogeneous, radiative istdiermal equilibrium
(Sec. 7.4.2, see egs. 7.37 and 7.38 and Table 7.1). From these relationaywexpect the central
temperature to increase with mass, the mass dependence being largerpiorctian T «« M%57)
than for the CNO cycleT. « M%21). Since the CNO cycle dominates at higih we can expect
low-mass stars to power themselves by the pp chain and high-mass stars@\@heycle. This
is confirmed by detailed ZAMS models, as shown in Fig. 9.7. For solar compusitie transition
occurs afl ~ 1.7 x 10’ K, corresponding taM ~ 1.3 M. Similarly, from the homology relations,
the central density is expected to decrease strongly with mass in stars dahipatee CNO cycle
(oc o« M~14), but much less so in pp-dominated low-mass stags(M~93). Also this is borne out
by the detailed models in Fig. 9.7; in fact the central density increases sligithlynass between 0.4
and 1.5M,. The abrupt change in slope at 044, is related to the fact that stars wi < 0.4 Mg,
are completely convective. For these lowest-mass stars one of the mainpéissis made in the
homology relations (radiative equilibrium) breaks down.
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Figure 9.7. Central temperature versus central den-
sity for detailed ZAMS models witlX = 0.7,Z =
0.02 (blue solid line) and witkX = 0.757,Z = 0.001
(red dashed line). Plus symbols indicate models for
specific masses (in units df,). The dotted lines in-
dicate the approximate temperature border between
energy production dominated by the CNO cycle and
the pp chain. This gives rise to a change in slope of
65 e L L theTg, pc relation.

0 1 2
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log pc (g / cnd)

The energy generation rate of the CNO cycle depends on the total CN@laiee. At lower
metallicity, the transition between pp chain and CNO cycle therefore occarkigher temperature.
As a consequence, the mass at which the transition occurs is also lamgberfore, high-mass stars
powered by the CNO cycle need a higher central temperature to providartetotal nuclear power.
Indeed, comparing metal-rich and metal-poor stars in Figs. 9.6 and 9.7, theokityiaf two stars
with the same mass is similar, but their central temperature is higher. As a censef the virial
theorem (eq. 2.29 or 7.28), their radius must be correspondingly smaller.

9.2.2 Convective regions

An overview of the occurrence of convective regions on the ZAMS amaetion of stellar mass is
shown in Fig. 9.8. For any given mads, a vertical line in this diagram shows which conditions
are encountered as a function of depth, characterized by the frdatiasa coordinaten/M. Gray
shading indicates whether a particular mass shell is convective (gragjliative (white). We can
thus distinguish three types of ZAMS star:

e completely convective, foM < 0.35Mg,
o radiative core+ convective envelope, for 0.38,< M < 1.2 M,
e convective core- radiative envelope, foM > 1.2 M.

This behaviour can be understood from the Schwarzschild criterioadimrection, which tells
us that convection occurs whéh,g > Vg (€g. 5.50). As discussed in Sec. 5.5.1, a large value of
Viad is found when the opacity is large, or when the energy flux to be transported (in particular the
value ofl/m) is large, or both. Starting with the latter condition, this is the case when a loteofg
is produced in a core of relatively small mass, i.e. when the energy demerateen,¢ is strongly
peaked towards the centre. This is certainly the case when the CNO-gyuieates the energy
production, since it is very temperature sensitivex( 18) which means thad,, rapidly drops as
the temperature decreases from the centre outwards. It results in astesse oV ,q towards the
centre and thus to a convective core. This is illustrated foMg, ZAMS star in Fig. 5.4. The size of
the convective core increases with stellar mass (Fig. 9.8), and it cameass up to 80% of the mass
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Figure 9.8. Occurrence of convective regions (gray shading) on the ZAMi®rms of fractional mass coor-
dinatem/M as a function of stellar mass, for detailed stellar modetk wicompositionX = 0.70,Z = 0.02.
The solid (red) lines show the mass shells inside which 508086 of the total luminosity are produced. The
dashed (blue) lines show the mass coordinate where thesnaidi25% and 50% of the stellar radiis (After
K1pPENHAHN & W EIGERT.)

of the star wherM approaches 108l,. This is mainly related with the fact that at high ma8g is
depressed below the ideal-gas value of 0.4 because of the growing ingmdaradiation pressure.
At 100 M, radiation pressure dominates aWigh ~ 0.25.

In low-mass stars the pp-chain dominates, which has a much smaller tempeetsigvity.
Energy production is then distributed over a larger area, which keepntrgy flux and thu¥,,q
low in the centre and the core remains radiative (see thie Inodel in Fig. 5.4). The transition
towards a more concentrated energy productioMat 1.2 M is demonstrated in Fig. 9.8 by the
solid lines showing the location of the mass shell inside which most of the luminogignisrated.

Convective envelopes can be expected to occur in stars with fi@etiee temperature, as dis-
cussed in Sec. 7.2.3. This is intimately related with the rise in opacity with decge@siperature
in the envelope. In the outer envelope of MJ star for examplex can reach values of ¥@n?/g
which results in enormous values %f,q (see Fig. 5.4). Thus the Schwarzschild criterion predicts a
convective outer envelope. This sets in for masses lessitHab M, although the amount of mass
contained in the convective envelope is very small for masses betweendl25M,. Consistent
with the discussion in Sec. 7.2.3, the depth of the convective envelopasesravith decreasinyy
and thus with decreasinigl, until for M < 0.35Mg, the entire star is convective. Thus these very
low-mass stars lie on their respective Hayashi lines.

9.3 Evolution during central hydrogen burning

Fig. 9.9 shows the location of the ZAMS in the H-R diagram and various evaltriagks for diferent
masses at Population | composition, covering the central hydrogen gyhase. Stars evolve away
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from the ZAMS towards higher luminosities and larger radii. Low-mass strs<(1 M) evolve
towards highefl ¢, and their radius increase is modest. Higher-mass stars, on the otheehalvd
towards loweiT ¢t and strongly increase in radius (by a factor 2 to 3). Evolved main-segustars are
therefore expected to lie above and to the right of the ZAMS. This is indesfihmed by comparing
the evolution tracks to observed stars with accurately determined parameters

As long as stars are powered by central hydrogen burning they remajalinstatic and thermal
equilibrium. Since their structure is completely determined by the four (time-imdigpe) structure
eqguations, the evolution seen in the HRD is due to the changing compositiontinsider (i.e. due
to chemical evolution of the interior). How can we understand these change

Nuclear reactions on the MS have two importaffieets on the structure:

e Hydrogen is converted into helium, therefore the mean molecular weigkteases in the core
of the star (by more than a factor two from the initial H-He mixture to a pure He by the
end of central hydrogen burning). The increase in luminosity can threrée understood from
the homology relatio. o x* M3, It turns out that the* dependence of this relation describes
the luminosity increase during the MS quite wellyifs taken as the mass-averaged value over
the whole star.

e The nuclear energy generation ragg: is very sensitive to the temperature. Therefore nuclear
reactions act like ghermostaton the central regions, keeping the central temperature almost
constant. Since approximatedy, o«« T4 andecno o« T8, the CNO cycle is a better thermostat
than the pp chain. Since the luminosity increases and at the same time the myalbagdance
decreases during central H-burning, the central temperature musaggcsomewhat to keep
up the energy production, but the required increask; iis very small.

Sinceu increases whil@ . ~ constant, the ideal-gas law implies tia{ oc « T¢/u must decrease.
This means that either the central density must increase, or the censalirenust decrease. The
latter possibility means that the layers surrounding the core must expaedplasned below. In

4 — ’ 2 —  Figure 9.9. Evolution tracks in the H-
L 10 1 Rdiagram during central hydrogen burn-
| ‘ 2 »»»»»»»»»»»» | ing for stars of various masses, as la-
belled (in My), and for a composition
STy 17 X =07,Z = 0.02. The dotted portion
of each track shows the continuation of
...... | the evolution after central hydrogen ex-
| 2'./\> ) ' haustion; the evolution of the 0N, star
) is terminated at an age of 14Gyr. The
i 15% . 1 thin dotted line in the ZAMS. Symbols
= ' k —{ show the location of binary components
<0.8, 2-3, >20 1 \ | with accurately measured mass, luminos-
0.8-1, 3-5 g ity and radius (as in Fig. 9.5). Each sym-
B 1-15, 5-10 7 bol corresponds to a range of measured
1.5-2, 10-20 1 masses, as indicated in the lower left cor-
S, 3 N R B \ \ L ! ! Lt ner (mass values iNl).
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either case, the density contrast between the core and the envelopsés; o that evolution during
central H-burning causea®n-homologoushanges to the structure.

9.3.1 Evolution of stars powered by the CNO cycle

We can understand why rather massive stits(1.3 M) expand during the MS by considering the
pressure that the outer layers exert on the core:

M Gm
Peny = fmc de (9.14)

Expansion of the envelope (increase iof all mass shells) means a decrease in the envelope pressure
on the core. This decrease in pressure is needed because of tiigesmermostatic action of the
CNO cycle,ecno o« p T18, which allows only very small increases Ty andpc. Sinceuc increases

as H being is burned into He, the ideal-gas law dictatesRhatust decrease. This is only possible

if Peny decreases, i.e. the outer layers must expand to keep the star ppHE @ndR 7). This self-
regulating envelope expansion mechanism is the only way for the star tbiesedfiio the composition
changes in the core while maintaining both HE and TE.

Another important consequence of the temperature sensitivity the CNOisybkelarge concen-
tration of e,,c towards the centre. This gives rise to a large ceygal o< |/mand hence tgonvective
cores which are mixed homogeneous)(fm) = constant within the convective core madg.). This
increases the amount of fuel available and therefore the lifetime of cdmtabgen burning (see
Fig. 9.10). In generaM.. decreases during the evolution, which is a consequence of the fact that
Viad < « and sincex « 1 + X for the main opacity sources (see Sect. 5.3) the opacity in the core
decreases as the He abundance goes up.

Towards the end of the main sequence phask; Aecomes very small, the thermostatic action of
the CNO reactions diminishes aiiid has to increase substantially to keep up the energy production.
When hydrogen is finally exhausted, this occurs within the whole coneective of mas#/.. and
enuc decreases. The star now loses more energy at its surface than isgutdduthe centre, it gets
out of thermal equilibrium and it will undergo an overall contraction. Thisurs at the red point of
the evolution tracks in Fig. 9.9, after whidlg increases. At the blue point of the hook feature in the
HRD, the core has contracted and heated wifcsently that at the edge of the former convective core
the temperature is high enough for the CNO cycle to ignite again in a shellg&tbarhelium core.
This is the start of théydrogen-shell burninghase which will be discussed in Chapter 10.

9.3.2 Evolution of stars powered by the pp chain

In stars withM < 1.3 Mg, the central temperature is too low for the CNO cycle and the main energy-
producing reactions are those of the pp chain. The lower temperatusiggnep, o p T# means
thatT.; andp. increase more than was the case for the CNO cycle. Therefore the outey iheeed to
expand less in order to maintain hydrostatic equilibrium in the core. As a réseiltadius increase

in low-mass stars is modest and they evolve almost parallel to the ZAMS in thaelidgRam (see
Fig. 9.9).

Furthermore, the loweF -sensitivity of the pp chains means that low-mass stars have radiative
cores. The rate of change of the hydrogen abundance in each ghelhiproportional to the overall
reaction rate of the pp chain (by eq. 6.41), and is therefore highest aeitiee. Therefore a hydrogen
abundance gradient builds up gradually, witfm) increasing outwards (see Fig. 9.10). As a result,
hydrogen is depleted gradually in the core and there is a smooth transitiodrtugley-shell burning.
The evolution tracks for low-mass stars therefore do not show a habkrée
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Figure 9.10. Hydrogen abundance profiles affdrent stages of evolution for aM,, star (left panel) and a
5 Mg, star (right panel) at quasi-solar composition. Figuresagpced from SLaris & CassisI.

Note that stars in the approximate mass range-1.3 M, (at solar metallicity) undergo a transi-
tion from the pp chain to the CNO cycle as their central temperature increHseefore these stars
at first have radiative cores and later develop a growing conveatiee ét the end of the MS phase
such stars also show a hook feature in the HRD.

9.3.3 The main sequence lifetime

The timescalerys that a star spends on the main sequence is essentially the nuclear timescale for
hydrogen burning, given by eq. (2.37). Another way of derivingeesially the same result is by
realizing that, in the case of hydrogen burning, the rate of change ofytieden abundanck is

related to the energy generation ratg. by eq. (6.43),

dX €nuc
— = 9.15

at aH ( )
Hereqy = Qu/4m is the dfective energy release per unit mass of the reaction chdiH (4>
“He + 2€" + 2v), corrected for the neutrino losses. Hemggis somewhat dierent for the pp chain
and the CNO cycle. Note thag;/c? corresponds to the factgrused in eq. (2.37). If we integrate
eg. (9.15) over all mass shells we obtain, for a star in thermal equilibrium,

dMy L
A 9.16
dt o/ ( )
whereMy is the total mass of hydrogen in the star. Note that while eq. (9.15) only strigplyes
to regions where there is no mixing, eq (9.16) is also valid if the star has &ctre/core, because
convective mixing only redistributes the hydrogen supply. If we now irmtiegover the main sequence
lifetime we obtain for the total mass of hydrogen consumed

TMS
AMy = if Lt = {E2Ms (9.17)
a1 Jo OH
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where(L}) is the time average of the luminosity over the main-sequence lifetime. We camtijie=
foucM by analogy with eq. (2.37), and writg,c as the product of the initial hydrogen mass fraction
Xo and an €fective core mass fractiag, inside which all hydrogen is consumed, so that
gcM
Ly

We have seen that the luminosity of main-sequence stars increases swithgtyass. Since the
variation ofL during the MS phase is modest, we can assume the same relation béhyveeia M
as for the ZAMS. The other factors appearing in eq. (9.18) do notlgneeakly depend on the mass
of the star (see below) and can in a first approximation be taken as coristaira mass-luminosity
relation({L) e« M7 — wheren depends on the mass range under considerationwti3.8 on average
— we thus obtainys «« MY, Hencerys decreases strongly towards larger masses.

This general trend has important consequences for the observedi&yfms of star clusters.
All stars in a cluster can be assumed to have formed at approximately the sanandrtteerefore
now have the same agg. Cluster stars with a mass above a certain lili have main-sequence
lifetimestys < 7o and have therefore already left the main sequence, while thosévvithVl,, are
still on the main sequence. The main sequence of a cluster has an upgtreetidrn-dtf point’) at
a luminosity and ffective temperature correspondingMt,, the so-calledurn-gf mass determined
by the conditionrys(Mio) = 7¢. The turn-df mass and luminosity decrease with cluster age (e.g. see
Fig. 1.2). This the basis for thege determinatiof star clusters.

The actual main-sequence lifetime depend on a number of other factoeseif€htive energy
release per gramy depends on which reactions are involved in energy production anddaheteas
a slight mass dependence. More importantly, the exact valag isfdetermined by the hydrogen
profile left at the end of the main sequence. This is somewhat mass-egpeespecially for massive
stars in which the relative size of the convective core tends to increasenagib (Fig. 9.8). A larger
convective core mass means a larger fuel reservoir and a longer lifeiorgpoor understanding of
convection and mixing in stars unfortunately introduces considerabletaimtg in the size of this
reservoir and therefore both in the main-sequence lifetime of a star oftiaytar mass and in its
further evolution.

T™s = Xo OH (9.18)

9.3.4 Complications: convective overshooting and semi-meection

As discussed in Sect. 5.5.4, the size of a convective region inside a stpeisted to be larger than
predicted by the Schwarzschild (or Ledoux) criterion because ofemive overshooting However,
the extentd,, of the overshooting region is not known reliably from theory. In stellaylgion
calculations this is usually parameterized in terms of the local pressure sigie, iy, = @gyHp. In
addition, other physicalffects such as stellar rotation may contribute to mixing material beyond the
formal convective core boundary. Detailed stellar evolution models in whizkfects of convective
overshooting are taken into account generally provide a better matcheosabens. For this reason,
overshooting (or perhaps a variety of enhanced mixing processegjughhto have a significant
effect in stars with sizable convective cores on the main sequence.

Overshooting has several important consequences for the evolutiostarf:

1. alonger main-sequence lifetime, because of the larger hydrogenaieseailable;

2. alargerincrease in luminosity and radius during the main sequenceskaxfdhe larger region
inside whichu increases which enhances ttigeets onl. andR discussed earlier in this section;

3. the hydrogen-exhausted core mass is larger at the end of the magmsegwhich in turn leads
to (a) larger luminosities during all evolution phases after the main sequenceaée Fig. 10.2
in the next chapter) and, as a result, ghprterlifetimes of these post-main sequence phases.
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Figure 9.11. Two examples ofsochrone fittingo the colour-magnitude diagrams of open clusters, NGC 752
and IC4651. The distribution of stars in the turfi-cegion is matched to isochrones for standard stellar
evolution modelsgrp) and for models with convective overshootings). The overshooting models are better
able to reproduce the upper extension of the main sequemckilaoth cases.

Some of thesefiects, particularly (2) and (3a), provide the basis of observationaldaéstgershoot-

ing. Stellar evolution models computed withférent values ofy,, are compared to the observed
width of the main sequence band in star clusters (see for example Fig. &ty the luminosities

of evolved stars in binary systems. If the location in the HRD of the main sequem-df in a clus-

ter is well determined, or if the luminosity fiierence between binary components can be accurately
measured, a quantitative test is possible which allows a calibration of thengta,,. Such tests
indicate thatroy ~ 0.25 is appropriate in the mass range 1.5M& For larger masses, howevet,

is poorly constrained.

Another phenomenon that introduces an uncertainty in stellar evolution medelated to the
difference between the Ledoux and Schwarzschild criterion for convesgenSect. 5.5.1). Outside
the convective core a composition gradievitX develops, which can make this region dynamically
stable according to the Ledoux criterion while it would have been coneeiftihe Schwarzschild
criterion were applied. In such a region an over-stable oscillation patserdevelop on the thermal
timescale, which slowly mixes the region and thereby smooths out the composédiarg. This pro-
cess is calledemi-convectionits dficiency and the precise outcome are uncertain. Semi-convective
situations are encountered during various phases of evolution, mosttangipduring central hy-
drogen burning in stars witM > 10Mg and during helium burning in low- and intermediate-mass
stars.
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Suggestions for further reading

The process of star formation and pre-main sequence evolution is treatedcim more detail in
Chapters 18-20 of M:pEr, While the properties and evolution on the main sequence are treated in
Chapter 25. See alsonkennann & W eicert Chapters 22 and 26-30.

Exercises

9.1 Kippenhahn diagram of the ZAMS
Figure 9.8 indicates which regions in zero-age main sequetars are convective as a function of the
mass of the star.

(&) Why are the lowest-mass stars fully convective? Why doesraiss of the convective envelope
decrease wittM and disappear fox = 1.3 My?

(b) What changes occur in the central energy production ardl- 1.3 My, and why? How is this
related to the convection criterion? So why do stars Wtk 1.3 M have convective cores while

lower-mass stars do not?
(c) Why is it plausible that the mass of the convective coredases withV?

9.2 Conceptual questions

(a) What is the Hayashi line? Why is it a line, in other words: wthere a whole range of possible
luminosities for a star of a certain mass on the HL?

(b) Why do no stars exist with a temperature cooler than théteoHL? What happens if a star would
cross over to the cool side of the HL?

(c) Why is there a mass-luminosity relation for ZAMS starg? dther words, why is there a unique
luminosity for a star of a certain mass?)

(d) What determines the shape of the ZAMS is the HR diagram?

9.3 Central temperature versus mass

Use the homology relations for the luminosity and tempeeatii a star to derive how the central tem-
perature in a star scales with mass, and find the dependeniceoof M for the pp-chain and for the
CNO-cycle. To make the result quantitative, use the fadtiththe Sun withT, ~ 1.3 x 10’ K the pp-
chain dominates, and that the CNO-cycle dominates for reddse 1.3 M,. (Why does the pp-chain
dominate at low mass and the CNO-cycle at high mass?)

9.4 Mass-luminosity relation

Find the relation betweeh and M and the slope of the main sequence, assuming an opacity faw
ko pT~7/? (the Kramers opacity law) and that the energy generati@p@t unit mass,,. « pT”, where

y =4,
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Chapter 10

Post-main sequence evolution through
helium burning

After the main-sequence phase, stars are left with a hydrogen-egHazee surrounded by a still
hydrogen-rich envelope. To describe the evolution after the main seguitns useful to make a
division based on the mass:

low-mass starsare those that develop a degenerate helium core after the main sedeadogy to
a relatively long-livedred giant branchphase. The ignition of He is unstable and occurs in a
so-calledhelium flash This occurs for masses between Bl§ and~ 2 M, (this upper limit is
sometimes denoted &8uer).

intermediate-mass starsdevelop a helium core that remains non-degenerate, and they ignite helium
in a stable manner. After the central He burning phase they form a cashaen core that
becomes degenerate. Intermediate-mass stars have masses bdtweand My, ~ 8 M.
Both low-mass and intermediate-mass stars shed their envelopes by a stamgvind at the
end of their evolution and their remnants are CO white dwarfs.

massive starshave masses larger than,, ~ 8 My, and ignite carbon in a non-degenerate core.
Except for a small mass range 8 — 11 M) these stars also ignite heavier elements in the core
until an Fe core is formed which collapses.

In this chapter the evolution between the end of the main sequence and éhepteent of a carbon-
oxygen core is discussed. We concentrate on low-mass and intermedggestara, but the principles
are equally valid for massive stars. The evolution of massive stars in Relldgram is, however,
also strongly ffected by mass loss and we defer a more detailed discussion of massivensiars
Chapter 12.

10.1 The Sclonberg-Chandrasekhar limit

During central hydrogen burning on the main sequence, we have saestdls are in thermal equi-
librium (mhue > Tkn) With the surface luminosity balanced by the nuclear power generated in the
centre. After the main sequence a hydrogen-exhausted core is forgidd which nuclear energy
production has ceased. This inert helium core is surrounded by adshburning shell and a H-
rich envelope. For such an inert core to be in thermal equilibrium reqaimEso net energy flow,
I(m) = fmenucdm = 0 and henceT/dr « | = 0. This implies that the core must lmothermalto
remain in TE. Such a stable situation is possible only under certain circumstance
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A star composed of ideal gas at constant temperature correspondslidgrage withy = 1, i.e.
with n — oco. Such a polytrope would have infinite radius (Chapter 4) or, if its radiuse fugite, would
have infinitely high central density, both of which are unphysical. In otfeds,completely isother-
mal stars made of ideal gas cannot exihe reason is that the pressure gradient needed to support
such a star against its own gravity is produced only by the density grad®fur;, = (RT/u) do/dr,
with no help from a temperature gradient. Thus hydrostatic equilibrium in d@nesoal star would
require a very large density gradient.

It turns out, however, that if only the core of the star is isothermal, and tlss Mhgof this isother-
mal core is only a small fraction of the total mass of the star, then a stable a@tifigLis possible. If
the core mass exceeds this limit, then the pressure within the isothermal coo¢ astain the weight
of the overlying envelope. This was first discovered by@dierg and Chandrasekhar in 1942, who
computed the maximum core mass fractigr= M¢/M to be

2
Me _ gec = 0.37(@) ~ 0.10 (10.1)
M HUc
whereu; andueny are the mean molecular weight in the core and in the envelope respectitidy. T
limit is known as theSchonberg-Chandrasekhar limiThe typical valuegsc ~ 0.10 is appropriate
for a helium core withuc = 1.3 and a H-rich envelope. (A simple, qualitative derivation of eq. 10.1
can be found in Meper Section 25.5.1.)
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Figure 10.1. Evolution tracks for stars of quasi-solar compositioh= 0.7, Z = 0.02) and masses of 1, 2,
3, 5, 7 and 10/, in the H-R diagram (left panel) and in the central tempegatiarsus density plane (right
panel). Dotted lines in both diagrams show the ZAMS, whikedlashed lines in the right-hand diagram show
the borderlines between equation-of-state regions (aigirB®). The 1M, model is characteristic of low-mass
stars: the central core becomes degenerate soon aftemdeiénd main sequence and helium is ignited in an
unstable flash at the top of the red giant branch. When the deggnis eventually lifted, He burning becomes
stable and the star moves to thero-age horizontal branchn the HRD, at log- ~ 1.8. The 2Mg, model is

a borderline case that just undergoes a He flash. The He fledhig not computed in these models, hence
a gap appears in the tracks. Th&5 model is representative of intermediate-mass stars, goatey quiet
He ignition and He burning in a loop in the HRD. The appearasfcthe 7 and 10, models in the HRD

is qualitatively similar. However, at the end of its evotutithe 10M,, star undergoes carbon burning in the
centre, while the cores of lower-mass stars become straleggnerate. (Compare to Fig. 8.4.)
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Stars that leave the main sequence with a helium core mass below theb®oir Chandrasekhar
limit can therefore remain in complete equilibrium (HE and TE) during hydresiexl burning. This
is the case for stars with masses up to aboMt,8if convective overshooting is neglected. Over-
shooting increases the core mass at the end of central H-burning,exeébtie the upper mass limit
for stars remaining in TE after the main sequence decreases to aldguhZalculations that include
moderate overshooting.

When the mass of the H-exhausted core exceeds thinBely-Chandrasekhar limit — either im-
mediately after the main sequence in relatively massive stars, or in lowerstaassafter a period
of H-shell burning during which the helium core mass increases steadiBrmé#h equilibrium is no
longer possible. The helium core then contracts and builds up a tempeageddient. This tempera-
ture gradient adds to the pressure gradient that is needed to balanitg gnd keep the star in HE.
However, the temperature gradient also causes an outward heatdlovitfe core, such that it keeps
contracting and heating up in the process (by virtue of the virial theorehig.cbntraction occurs on
the thermal (Kelvin-Helmholtz) timescale in a quasi-static way, always maintairstaje@very close
to HE.

Low-mass starsMl < 2 M) have another way of maintaining both HE and TE during hydrogen-
shell burning. In such stars the helium core is relatively dense andatwbklectron degeneracy
can become important in the core after the main sequence. Degenerssyrpris independent of
temperature and can support the weight of the envelope even in a rglatigesive core, as long
as the degenerate core mass does not exceed the Chandrasekhfaimrthss case the Sémberg-
Chandrasekhar limit no longer applies. Inside such degenerate helremdiiient energy transport
by electron conductioifSec. 5.2.4) can keep the core almost isothermal.

Effects of core contraction: the ‘mirror principle’

The following principle appears to be generally valid, and provides a Wayerpreting the results
of detailed numerical calculations:

Whenever a star has active shell-burning sourgehe burning shell acts asmairror between the
core and the envelope:

core contraction = envelope expansion

core expansion = envelope contraction

This ‘mirror principle’ can be understood by the following argument. To mairtteermal equi-
librium, the burning shell must remain at approximately constant temperatari® dloe thermostatic
action of nuclear burning. Contraction of the burning shell would entaitihg, so the burning shell
must also remain at roughly constant radius. As the core contragtgmust therefore decrease and
hence also the pressure in the burning shell must decrease. Thdtef@ressurBen, of the overly-
ing envelope must decrease, so the layers above the shell must eapamdi(nple of this behaviour
can be seen in Fig. 10.4, to be discussed in the next section).

10.2 The hydrogen-shell burning phase

In this section we discuss in some detail the evolution of stars during hyehslged burning, until
the onset of helium burning. Based on the above section, qualitatiezatices are to be expected
between low-mass stard(< 2 Mg) on the one hand and intermediate- and high-mass St&rs (

'Note the very dierent physical meanings of ti@handrasekhar masmd theSchonberg-Chandrasekhar lirhit
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Figure 10.2. Evolution track in the Hertzsprung-Russell diagram of bstar of initial compositionX =
0.7, Z = 0.02. See text for details. The evolution track in the left pamas computed without convective
overshooting. The right panel shows a comparison betweertriéick and the evolution of the same star
computed with moderate overshooting,{ = lo,/Hp ~ 0.25; dashed line), illustrating some of thffests
discussed in Sec. 9.3.4.

2 M) on the other hand. Therefore we discuss these two cases sepatatdlyy with the evolution
of higher-mass stars because it is relatively simple compared to low-mass\Wtause two detailed
stellar evolution sequences, for stars d1§ and 1M, respectively, as examples for the general
evolutionary behaviour of stars in these two mass ranges.

10.2.1 Hydrogen-shell burning in intermediate-mass and nmssive stars

Fig. 10.2 shows the evolution track of avg, star of quasi-solar compositioiX(= 0.7,Z = 0.02)
in the H-R diagram, and Fig. 10.3 shows some of the interior details of the evohitithis star as
a function of time from the end of central hydrogen burning. Point B in ligilres corresponds
to the start of the overall contraction phase near the end of the main seqg(vemen the central H
mass fractioX. ~ 0.03) and point C corresponds to the exhaustion of hydrogen in the Gertdrine
disappearance of the convective core. The hatched regions in thgetighn diagram’ (lower panel
of Fig. 10.3) show the rapid transition at point C from hydrogen burnindpéncentre to hydrogen
burning in a shell.

The H-exhausted core initially has a mass of aboutM;4vhich is below the Sabnberg-Chandra-
sekhar limit, so the star initially remains in TE and the first portion of the hydragpet burning
phase (C-D) is relatively slow, lasting abouk2.Pyr. The temperature and density gradients be-
tween core and envelope are still shallow, so that the burning shell initiatlypades a rather large
region in mass. This phase is therefore referred tihiak shell burning The helium core gradually
grows in mass until it exceeds the S-C limit and the contraction of the corespge The envelope
expands at the same time, exemplifying the ‘mirror principle’ discussed aldis becomes more
clear in Fig. 10.4 which shows the radial variations of several mass shsitieithe star. After point
C the layers below the burning shell contract while the layers above dxpaan accelerating rate
towards the end of phase C-D. As a result the temperature and densityrgsebetween core and

144



log (L / Lsun

1.0

Figure 10.3. Internal evolution of a B/, star of
initial compositionX = 0.7, Z = 0.02. The pan-
els show various internal quantities as a function
of time, from top to bottom:
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parts show netbsorptionof gravitational en-
ergy). The black line is the surface luminosity.

(b) Central mass fractions of various elements
(*H, “He, 2C, ¥*N and'®0) as indicated.

(c) Internal structure as a function of mass coor-
dinatem, known as a ‘Kippenhahn diagram’. A
vertical line through the graph corresponds to a
model at a particular time. Gray areas are con-
vective, lighter-gray areas are semi-convective.
The red hatched regions show areas of nuclear
energy generation, whekg,. > 10L/M (dark
red) andeyc > 2L/M (light red). The letters
B...J indicate the corresponding points in the
evolution track in the H-R diagram, plotted in
Fig. 10.2. See text for details.
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envelope increase, and the burning shell occupies less and less iga4d (c). The latter portion of
hydrogen-shell burning is therefore referred tdahas shell burning Most of the time between C and

D is spent in the thick shell burning phase at relatively small radii and@dpg> 4.05. The phase of
expansion from lod s ~ 4.05 to point D at lodleg =~ 3.7 occurs on the Kelvin-Helmholtz timescale
and takes only a few times 19rs. A substantial fraction of the energy generated by shell burning is
absorbed by the expanding envelope (dashed yellow line in Fig. 10e3alting in a decrease of the
surface luminosity between C and D.

The rapid evolution on a thermal timescale across the H-R diagram from thefehe main
sequence tder ~ 5000 K is characteristic of all intermediate-mass stars. The probability oftidede
stars during this short-lived phase is very small, resulting in a gap in the distrbof stars in the
H-R diagram known as thidertzsprung gap

As point D is approached the envelope temperature decreases andditg imthe envelope rises,
impeding radiative energy transport. The envelope grows increasingtghle to convection, starting
from the surface, until at D a large fraction of the envelope mass hasrt@convective. During
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Figure 10.4. Radial variation of various mass
shells (solid lines) in the B, (Z = 0.02) star of

Fig. 10.3, during the early post-main sequence
evolution. Each line is labelled with its mass co-
ordinatem in units of M; the top-most curve
indicates the total radiuR. Gray areas indicate
convection and red cross-hatched areas have in-
tense nuclear burnings{,c > 10L/M). Letters
B...E correspond to those in Fig. 10.3.
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phase D-E the star is a red giant with a deep convective envelope. Tietbtn located close to the
Hayashi line in the H-R diagram, and while it continues to expand in resgonsae contraction,

the luminosity increases as thfextive temperature remains at the approximately constant value
corresponding to the Hayashi line. The expansion of the star betweenl [& atill occurs on the
thermal timescale, so the H-shell burning phase of intermediate-mass sthesred-giant branch is
very short-lived.

At its deepest extent at point E, the base of the convective envelopsaigtbat mass coordinate
m = 0.9 Mg which is below the maximum extent of the former convective core during aeHtr
burning (about 1.28;, at the start of the main sequence). Hence material that was formerly inside
the convective core, and has therefore been processed by bydbogning and the CNO-cycle, is
mixed throughout the envelope and appears at the surface. Thissgriscealleddredge-upand
occurs about halfway between D and E in Fig. 10.2. Dredge-up ondrgiaat branch also occurs in
low-mass stars and we defer its discussion to Sec. 10.2.3.

The helium cores of intermediate-mass stars remain non-degenerate thaiegtire H-shell
burning phase C-E, as can be seen in Fig. 10.1. These stars devalapdwes with masses larger
than 0.3M, the minimum mass for helium fusion discussed in Ch. 8. In thNg Star at point E the
helium core mass is 0M, when a central temperature ofélK is reached and helium is ignited in
the core. The ignition of helium halts further core contraction and envelgpansion and therefore
corresponds to a local maximum in luminosity and radius. Evolution throughnhdliuning will be
discussed in Sec. 10.3.1.

10.2.2 Hydrogen-shell burning in low-mass stars

Compared to intermediate-mass stars, low-mass stars flvith2 M) have small or no convective
cores during central hydrogen burning, and when they leave the maureisee their cores are rel-
atively dense and already close to becoming degenerate (see Fig. [b0stars withM < 1.1 Mg
the transition from central to shell hydrogen burning is gradual and initMiyM < 0.1 so the star
can remain in thermal equilibrium with an isothermal helium core. By the time the heliwenhas
grown to~ 0.1M, its density is large enough that electron degeneracy dominates therprasduhe
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Schinberg-Chandrasekhar limit has become irrelevant. Therefore low-st@s can remain in HE
and TE throughout hydrogen-shell burning and there is no Hertagmyap in the H-R diagram.
This can be seen in Fig. 10.5 which shows the internal evolution d¥ig &tar with quasi-solar
composition in a Kippenhahn diagram and the corresponding evolutionitrgok H-R diagram. Hy-
drogen is practically exhausted in the centre at poinkKB£ 1073) after 9 Gyr, after which nuclear
energy generation gradually moves out to a thick shell surrounding ttreersaal helium core. Be-
tween B and C the core slowly grows in mass and contracts, while the ena{ppgrds in response
and the burning shell gradually becomes thinner in mass. By point C the hetiterhas become
degenerate. At the same time the envelope has cooled and become largelstivenand the star
finds itself at the base of thed giant branch(RGB), close to the Hayashi line. The star remains
in thermal equilibrium throughout this evolution and phase B—C lasts abowyt fbGthis 1M, star.
This long-lived phase corresponds to the well-populatdahiant branchn the H-R diagrams of old
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star clusters.

Stars with masses in the mass rangke-11.5 Mg show a very similar behaviour after the main
sequence, the only flierence being the small convective core they develop during core irigur
This leads to a ‘hook’ in the evolution track at central H exhaustion (see%8). The subsequent
evolution during H-shell burning is similar, the core remaining in TE until it Inees degenerate on
the RGB and a correspondingly slow evolution across the subgiantthr8tars with 15 < M/Mg <
2 do exhibit a small Hertzsprung gap as they reach thémrg-Chandrasekhar limit before their
cores become degenerate. After a period of slow, thick shell burnirtgeosubgiant branch they
undergo a phase of rapid, thermal-timescale expansion until they reaglattidoranch. In this case
the gap inT¢x to be bridged is narrow because the main sequence is already relatiwssgyrciiective
temperature to the Hayashi line.

Regardless of theseftBrences between stars offdrent mass during the early shell-H burning
phase, all stars witt < 2 Mg have in common that their helium cores become degenerate before
the central temperature is high enough for helium ignition, and they settle intmT&e red giant
branch.

10.2.3 The red giant branch in low-mass stars

The evolution of low-mass stars along the red giant branch is very similaalamakt independent
of the mass of the star. The reason for this similarity is that by the time the helilevhasrbecome
degenerate, a very strong density contrast has developed betwesnréhend the envelope. The
envelope is so extended that it exerts very little weight on the compact whbile, there is a very
large pressure gradient between core and envelope. The prassheebottom of the envelope (see
eg. 9.14) is very small compared to the pressure at the edge of the cbirethie hydrogen-burning
shell separating core and envelope. Therefore the stellar structpemdte almost entirely on the
properties of the helium core. Since the core is degenerate, its struciodeiendent of its thermal
properties (temperature) and only depends on its mass. Thereforeubtigrof a low-mass red
giant is essentially a function of itsore mass

As aresult there is a very tight relation between the helium core mass andrtimesity of a red
giant, which is entirely due to the hydrogen shell-burning source. ddris-mass luminositselation
is very steep for small core mass&k, < 0.5 Mg and can be approximately described by a power law

M.\8
L~ 23x10L, (—C) (10.2)
Mo

Note that the luminosity of a low-mass red giant is independent of its total massrefore the
evolution of all stars withM < 2 M converges after the core becomes degenerate, which occurs
whenM. ~ 0.1M, i.e. later for largeM. From this point on also the central density and temperature
start following almost the same evolution track (e.g. see Fig. 10.1b).

In the H-R diagram the star is located along the Hayashi line appropriaits foassM. Higher-
mass red giants therefore have slightly higiigr at the same luminosity. Note that the location
of the Hayashi line also depends on tietallicity of the star, since thefiective temperature of a
completely convective star is determined by thedpacity in the photosphere (Sec. 9.1.1). Because
the H™ opacity increases with metallicity (Sec. 5.3), more metal-rich red giants of thersassand
luminosity are located at lowélreg. This provides a means of deriving the metallicity of a globular
cluster from the location of its RGB stars in the H-R diagram.

2This means there is alsocare-mass radiuselation, but it is less tight than tHd.-L relation and depends slightly on
the total mass.
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As the H-burning shell adds mass to the degenerate helium core, théaalsecontracts and the
radius and luminosity increase. The higher luminosity means the H-shell musaba higher rate,
leading to faster core-mass growth. The evolution along the RGB thussppeab the luminosity
increases (see Fig. 10.5). The density contrast between core asldmnincreases and the mass
within the burning shell decreasesx®.001 Mg, near the tip of the RGB. Since less mass is contained
in the burning shell while the luminosity increases, the energy generatiompeatenit massc
increases strongly, which means the temperature within the burning shetealsases. With it, the
temperature in the degenerate helium core increases. When the tip of thesR&Bhed (at point F
in Fig. 10.5) atL ~ 2000L, and a core mass a&f 0.45Mg, the temperature in the degenerate core
has reached a value close t&¥0and helium is ignited. This is an unstable process due to the strong
degeneracy, and leads to a thermonuclear runaway known helthm flashsee Sec. 10.3.2).

First dredge-up and the luminosity bump

When the convective envelope reaches its deepest extent at pointd kOB, it has penetrated into
layers that were processed by H-burning during the main sequerdcbasa been partly processed
by the CN-cycle. Up to point D the surface He abundance increasabamtiabundance decreases,
but more noticeably the /@ ratio decreases by a large factor. This is calledfitis¢ dredge-ugphase
(later dredge-ups occur after He burning).

Some time later, at point E in Fig. 10.5 the H-burning shell has eaten its way dle tdis-
continuity left by the convective envelope at its deepest extent. Theskddenly finds itself in an
environment with a higher H abundance (and a lower mean molecular welght. consequence
it starts burning at a slightly lower rate, leading to a slight decrease in lumin@sity Fig. 10.6).
The resulting loop (the star crosses this luminosity range three times) resultargeanumber of
stars in this luminosity range in a stellar population. This ‘bump’ in the luminositytfondas been
observed in many old star clusters.

Mass loss on the red giant branch

Another process that becomes important in low-mass red giamass lossAs the stellar luminosity
and radius increase as a star evolves along the giant branch, thepenbettomes loosely bound and
it is relatively easy for the large photon flux to remove mass from the steltéacgu The process
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driving mass loss in red giants is not well understood. When calculatingffibet ©f mass loss in
evolution models an empirical formula due to Reimers is often used:

: L RM
M=-4x103y LR VQ Mo/yr (10.3)

wherey is a parameter of order unity. Note that the Reimers formula implies that a fixetibin of the

stellar luminosity is used to lift the wind material out of the gravitational potentidll Wewever, the

relation is based on observations of only a handful of stars with welltdé@ted stellar parameters.
Avalue of ~ 0.25- 0.5 is often used because it gives the right amount of mass loss on the RGB

to explain the morphology in the H-R diagram of stars in the subsequent helitmng phase, on

the horizontal branch The 1M, star of our example loses about 043 of its envelope mass by the

time it reaches the tip of the giant branch.

10.3 The helium burning phase

As the temperature in the helium core approaché¥]he 3 reaction starts to produce energy at
a significant rate. This is the onset of thelium burningphase of evolution. Unlike for hydrogen
burning, the reactions involved in helium burning (see Sect. 6.4.2) arathe ®r all stellar masses.
However, the conditions in the core at the ignition of helium are vefieint in low-mass stars
(which have degenerate cores) from stars of higher mass (with rgemdeate cores). Therefore
these cases will be discussed separately.

10.3.1 Helium burning in intermediate-mass stars

We again take the Bl star depicted in Figs. 10.2-10.3 as a typical example of an intermediate-mass
star. The ignition of helium takes place at point E in these figures. Sinceotedsnon-degenerate

at this point pc ~ 10*g/cm®, Fig. 10.1), nuclear burning is thermally stable and helium ignition
proceeds quietly. Owing to the high temperature sensitivity of the He-bumaiactions, energy
production is highly concentrated towards the centre which gives risednvective core. The mass

of the convective core is 0l initially and grows with time (unlike was the case for hydrogen
burning).

Initially, the dominant reaction is thex3eaction which converttHe into'?C inside the convec-
tive core. As thé2C abundance builds up, th&C+a reaction gradually takes over, so th&D is also
produced at a rate that increases with time (see Fig. 10.3b and compare@d®Fig§Vhen the central
He abundanc&ue < 0.2 the mass fraction of?C starts decreasing as a result of the diminishing
3a rate (which is proportional &3, ). The final*?C/*°0 ratio is about 0.3, decreasing somewhat
with stellar mass. This is related to the fact that in more massive stars the ¢entparature during
He burning is larger. Note that the fin®IC/60 ratio depends on the uncertain rate of tf@(«, y)
reaction, and the values given here are for the rate that is currentlghhtmbe most likely.

The duration of the central helium burning phase in oibstar (E-H) is about 22 Myr, i.e.
approximately @7 x tys. This seems surprisingly long given that the energy gain per gram of He
burning is only 10 % of that of H burning, while the luminosity of the star is (cerage) somewhat
larger than during the main sequence. The reason can be discerneiffo10.3a: most of the
luminosity during helium burning still comes from the H-burning shell surdog the core, although
the luminosity contribution of He burnind.{e) increases with time and becomes comparable towards
the end of this phase.

We can understand the behaviourlgfe by considering that the properties of the helium core
essentially depend only on the core miksand are hardlyféected by the surrounding envelope. Be-
cause the envelope is very extended the pressure it exerts on theaqd®eld) is negligible compared
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to the pressure inside the dense helium core. Inlfggtis a steep function o, analogous to the
main-sequencM-L relation —indeed, if the envelope were stripped away, the bare heliumvooitd

lie on ahelium main sequencelhe mass-luminosity relation for such helium main-sequence stars
can be approximately described by the homology relation (7.32) if the apat@palue ofu is used.

As a result of H-shell burning\. grows with time during the He-burning phase dng increases
accordingly. Another consequence is that in models computed with core@stershootind.ye is
larger on account of the larger core mass left after the main sequee8¢st. 9.3.4). Therefore the
duration of the He burning phase (i.e. the appropriate nuclear timesgale;s M¢/Lye) is shorterin
models with overshooting. A Bl star of the same composition computed with overshooting has a
main-sequence lifetimeys = 100 Myr and a helium-burning lifetime of 16 Myr.

During helium burning intermediate-mass stars describe a loop in the H-RatiagE—H in
Fig. 10.2). After He ignition at the tip of the giant branch, the envelope aotgr(on the nuclear
timescale for helium burning) and the stellar radius decreases. Initially thedsityiralso decreases
while the envelope is mostly convective (E-F) and the star is forced to mong &foHayashi line.
When most of the envelope has become radiative at point F, the star thavesl giant branch and
the @fective temperature increases. This is the start of a so-dallkedoop the hottest point of which
is reached at G wheXiye ~ 0.3. This also corresponds to a minimum in the stellar radius, after which
the envelope starts expanding and the star again approaches the giatit WwhenXye ~ 0.05. By
the end of core helium burning (H) the star is back on the Hayashi ling clese to its starting point
(E). If we consider stars of flerent masses, the blue extension of the loops in the HRD increases (the
loops extend to largefer values) for increasing mass, upltb ~ 12Mg. (The behaviour of stars of
larger masses can be more complicated, one of the reasons being stranipssaand we defer a
discussion of this until Chapter 12.) On the other handMog 4 M, the loops always stay close to
the red giant branch and do not become ’blue’.

The occurrence of blue loops is another example of a well-establisheld oésletailed stellar
evolution calculations, that is flicult to explain in terms of basic physics. The detailed models
indicate that the occurrence and extension of blue loops depends qusivedy on a number of
factors: the chemical composition (mairdy, the mass of the helium core relative to the envelope,
and the shape of the hydrogen abundance profile above the comelfidte also depends on whether
convective overshooting was assumed to take place during the main seqthés produces a larger
core mass, which in turn has th&ext of decreasing the blue-ward extension of the loops while
increasing their luminosity.

The blue loops are important because they correspond to a slow, nticieacale phase of evo-
lution. One therefore expects the corresponding region of the H-Raliatw be well populated.
More precisely, since intermediate-mass stars spend part of their iHeypuhase as red giants and
part of it in a blue loop, one expects such stars to fill a wedge-shapgaxhrie the HRD. Indeed one
finds many stars in the corresponding region, both in the solar neightmmdifRig. 1.1, although this
is dominated byow-massstars) and in open clusters with ages less thahGyr. The dependence
of the loops on overshooting also makes observational tests of ovérghasing He-burning stars
possible. Another significant aspect of blue loops is that they are seryef®or explaining Cepheid
variables (see Sect. 10.4), which are important extragalactic distancatordic

10.3.2 Helium burning in low-mass stars

In low-mass stars (wittvl < 2 Mg) the helium burning phaseftrs from more massive stars in two
important aspects: (1) helium ignition occurs under degenerate condifsg rise to ahelium
flash and (2) all low-mass stars start helium burning with essentially the samermassM. ~
0.45Mg, (Sect. 10.2.3). The luminosity of low-mass He-burning stars is thereforesalmiependent
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of their mass, giving rise to laorizontal branchn the HRD.

The helium flash

We again take a star of Ml as a typical example of all low-mass stars. Helium ignition occurs
whenT. ~ 18K andp; ~ 10° g/cm?, so the helium core is strongly degenerate (see Fig. 10.1).
We have seen in Sect. 7.5.2 that helium burning under these conditionsrisatlyeunstable: the
energy generated by the:Beaction causes a temperature increase, rather than a decreasslitand h
ignition thus initiates éhermonuclear runawayT he reason is that the degenerate pressure is basically
independent oT, so that the energy released by fusion does not increase the grassutherefore
leads to negligible expansion and negligible work done. All nuclear emetggsed therefore goes
into raising the internal energy. Since the internal energy of the degfersdectronsis a function
of p and hence remains almost unchanged, it is the internal energy of theegeneratéons that
increases and thus raises the temperature. As a result, the evolution iallyeugevard in theope-T,
diagram®

The thermonuclear runaway leads to an enormous overproduction igfyerad maximum, the
local luminosity in the helium core s~ 10'°L, — similar to a small galaxy! However, this only
lasts for a few seconds. Since the temperature increases at almosntalesisity, degeneracy is
eventually lifted wherlT ~ 3 x 108 K. Further energy release increases the pressure when the gas
starts behaving like an ideal gas and thus causes expansion and cddlitige energy released by
the thermonuclear runaway is absorbed in the expansion of the corapardf this nuclear power
reaches the surface. The expansion and cooling results in a deofdhseenergy generation rate,
until it balances the energy loss rate and the core settles in thermal equilibtilgn~ 108K and
pe ~ 2 x 10* g/em? (see Fig. 10.1). Further nuclear burning of helium is thermally stable.

Detailed numerical calculations of the helium flash indicate that this sequémrsents indeed
takes place, but helium is not ignited in the centre but in a spherical shall~at0.1 M, whereT
has a maximum. ThisfBcentre temperature maximum is dueneutrino lossesluring the preceding
red giant phase. These neutrinos are not released by nuclear meadtits by spontaneous weak
interaction processes occurring at high density and temperature (sgeenS&5). Since neutrinos
thus created escape without interacting with the stellar gas, this energyddssdegfective cooling

3This part of the evolution is skipped in thévl, model shown in Fig. 10.1, which is why a gap appears in the evolution
track. The evolution during the He flash is shown schematically as a disbddr the 1M, model in Fig. 8.4.
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of the central region of the degenerate helium core. The mass coordinatech T4« 0ccurs (and
where helium ignites) decreases somewhat with stellar mass.

The high local luminosity causes almost the entire region between the ignitioh (goim ~
0.1 Mg) up to the bottom of the H-burning shell (at 0.MB) to become convective. The energy
released in the He flash is thus transportéitiently to the edge of the core, where it is absorbed
by expansion of the surrounding non-degenerate layers. Convedtiormixes the product of the
He flash £2C produced in the @ reaction) throughout the core. About 3 % of the helium in the core
is converted into carbon during the flash. Because the convectivecsimdlining this carbon never
overlaps with the convective envelope surrounding the H-burning shislicarbon does not reach the
surface. (However, this may befiirent at very low metallicity.)

After the He flash, the whole core expands somewhat but remains parggiydrate. In detailed
models a series of smaller flashes follows the main He flash (see Fig. 109 éut.5 Myr, before
degeneracy in the centre is completely lifted and further He burning pilecstably in a convective
core, as for intermediate-mass stars.

The horizontal branch

In our 1M, example star, the helium flash occurs at point F in Fig. 10.5. Evolution thrtug
helium flash was not calculated for the model shown in this figure. Insteacdkvolution of the star
is resumed at point G when the helium core has become non-degenetdi@sasettled into TE with
stable He burning in the centre and H-shell burning around the coreddld@onstructed in this
way turn out to be very similar to models that are computed all the way througHdhkash, such
as shown in Fig. 10.7.) At this stage the luminosity and radius of the star haweaded by more
than an order of magnitude from the situation just before the He flash. wteegain see the mirror
principle at work: in this case the core has expanded (from a dederiera non-degenerate state)
and the envelope has simultaneously contracted, with the H-burning stied] as a ‘mirror’.

In the 1M, star of solar composition shown in Fig. 10.5, helium burning occurs betwemmd
H. The position of the star in the H-R diagram does not change very muaigdhis period, always
staying close (but somewhat to the left of) the red giant branch. The l@ityrie ~ 50L for most
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of the time; this value is determined mainly by the core mass. Since the core maesstrttof
helium burning is~ 0.45M,, for all low-mass stars, independent of stellar mass, the luminosity at
which He burning occurs is also almost independent of mass. If we earidietburning stars of

a given composition (e.g. in a star cluster), only the envelope mass mayrganysfar to star. At
solar metallicity, all such stars occupy about the same position in the HRD. ¥eis gse to a so-
calledred clumpin observed colour-magnitude diagrams of low-mass stellar populationsl¢vieib
instance in Fig. 1.1). However, the radius afittetive temperature of He-burning stars depends on
their envelope mass. Stars with a small envelope mass (either because dlea isitial mass, or
because they $iered a larger amount of mass loss on the RGB) can be substantially hottéinehan
one shown in Fig. 10.5. Furthermore, at low metallicity the critical envelope,rhaksv which He-
burning stars become small and hot, is larger. Stars wifarént amounts of mass remaining in their
envelopes can then formherizontal branchin the HRD (Fig. 10.9). Horizontal branches are found
in old stellar populations, especially in globular clusters of low metallicity (an el@raphe globular
cluster M3 shown in Fig. 1.2). The observed distribution of stars along Bi@dfies greatly from
cluster to cluster, and the origin of thes&eientHB morphologiess not fully understood.

The duration of the core helium burning phase is about 120 Myr, agagperdent of stellar
mass. While this is longer than in intermediate-mass stars, it is a much shortemfrafcthe main-
sequence lifetime because of the much higher luminosity of the He-burnirsg plhae evolution of
the stellar structure during helium burning is qualitatively similar to that of interatednass stars;
see Figs. 10.5a and 10.8. The most strikin@edences are:

e The contribution of He-burning to the stellar luminosity is larger, especiallyrtisvidne end of
the phase. This is due to the relatively small envelope mass.

e The development of a substante@mi-convectiveegion on top of the convective core. This
is related to a dference in opacity between the C-rich convective core and the He-riwh zo
surrounding it, and gives rise to partial (non-homogeneous) mixing inalgism.

e The occurrence of ‘breathing pulses’, giving rise to the sudden jumpegicentral compaosition
and in the luminosity. Whether these are real or simply a numerical artifactestionensional
stellar models is not cleér.

4For details about the latter twdfects, see eitheraBaris & Cassisi or John Lattanzio’s tutorial at
http://www.maths.monash.edu.au/iohnl/StellarEvolnDemo/.
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Figure 10.10. The period-luminosity relation for classical Cepheidgie Large Magellanic Cloud. Luminos-
ity is expressed as absolute magnitude in the B band (left)rathe V band. Figure from Sandage et al. (2004,
A&A 424, 43).

10.4 Pulsational instability during helium burning

During their post-main sequence evolution, stars may undergo one or nisoelep during which
they are unstable to radial pulsations. The most important manifestation efghésstions are the
Cepheidvariables, luminous pulsating stars with periods between about 2 and $80Itdaurns out
that there is a well-defined correlation between the pulsation period anchtiveolsity of these stars,
first discovered for Cepheids in the Small Magellanic Cloud. A modernioresf this empirical
relation is shown in Fig. 10.10. Their importance for astronomy lies in the fatttie period can
be easily determined, even for stars in other galaxies, and thus provideimate of the absolute
luminosity of such a star, making Cepheids imporstandard candlefor the extragalactic distance
scale.

Cepheids lie along a pulsational instability strip in the H-R diagram (see Figl10DQuring
the evolution of an intermediate-mass star, this instability strip is crossed up otthres. The
first crossing occurs during H-shell burning (C-D in Fig. 10.2) butithsuch a rapid phase that the
probability of catching a star in this phase is very small. In stars wifficgently extended blue loops,
another two crossings occur (F-G and G—H) during a much slower evolpkiase. Cepheids must
thus be helium-burning stars undergoing a blue loop. EquivalentlRhkeyraevariables seen in old
stellar populations lie along the intersection of the instability strip and the horlzmatzch.

Since pulsation is a dynamical phenomenon, the pulsation period is closdlydrétathe dy-
namical timescale (eq. 2.18). Therefore the pulsation pdiidgsl related the mean density: to first
approximation once can wri@ « p~2 o« M~Y/2R%2, Each passage of the instability strip yields a
fairly well-defined radius and luminosity. Passage at a latgmrresponds to a larg&and therefore
to a largedl, because the variation in mass is smaller than that in radius and enters tha nslttio
a smaller power. This provides a qualitative explanation of the period-luityre$ation. The min-
imum observed period should correspond to the the lowest-mass stagoimdea blue loop. Also
the number of Cepheids as a function of period must correspond to the tirkestfta a star of the
corresponding mass to cross the instability strip. Thus Cepheids provideeatipl test of stellar
evolution models.
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10.4.1 Physics of radial stellar pulsations

The radial oscillations of a pulsating star result from pressure waveslred waves that resonate in
the stellar interior. These radial oscillation modes are essentially standiregywaith a node at the
centre and an open end at the stellar surface — not unlike the sounsl wareorgan pipe. Similarly,
there are several possible modes of radial pulsatiorfuttdamental modeaving just one node at the
centre, while thdirst andsecond overtonmodes have one or two additional nodes between the centre
and surface, etc. Most radially pulsating stars, such as Cepheidss@liating in their fundamental
mode.

In order to understand what powers the pulsations of stars in the instalilfy Iet us first
reconsider the dynamical stability of stars. We have seen in Sec. 7.5.énall dynamical stability
requireSyaq > %. In this situation a perturbation of pressure equilibrium will be restoredgtering
force being larger the morg,yq exceeds the critical value @f In practice, due to the inertia of the
layers under consideration, this will give rise to @sctillation around the equilibrium structure. A
linear perturbation analysis of the equation of motion (2.11) shows that adayeass coordinate
having equilibrium radiusg will undergo radial oscillations with a frequency

Gm
w? = (3yad—4) = (10.4)
0

if we assume the oscillations are adiabatic. Note thfat- 0 as long as/aq > %, consistent with
dynamical stability. On the other hand, fayg < % the frequency becomes imaginary, which indicates

Figure 10.11. Occurrence of various classes
of pulsating stars in the H-R diagram, over-
laid on stellar evolution tracks (solid lines).
Cepheid variables are indicated with ‘Ceph’,
they lie within the pulsational instability strip
in the HRD (long-dashed lines). Their equiv-
alents are the RR Lyrae variables among
HB stars (the horizontal branch is shown as
a dash-dotted line), and th& Scuti stars
(6 Sct) among main-sequence stars. Pulsa-
tional instability is also found among lumi-
nous red giants (Mira variables), among mas-
sive main-sequence starspCep variables
y and slowly pulsating B (SPB) stars, among
-2 - extreme HB stars known as subdwarf B stars
DA‘% | (sdBV) and among white dwarfs. Figure
: from Christensen-Dalsgaard (2004).

log(L/Lo)

log Ty
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an exponential growth of the perturbation, i.e. dynamical instability. A preperage ofw over
the star yields the pulsation frequency of the fundamental mode. We cain abtapproximate
expression by replacing with the total massM andrg by the radiusR, and takingy,q constant
throughout the star. This yields

1/2

21 3
o= V(Byad— 4)GM/R3 B ((37ad— 4)G,5) ' (10.5)

This is indeed the same expression as for the dynamical timescale, to withitoeadhanity. One
can write

—\-1/2
I = Q(i) : (10.6)
Po
where the pulsation consta@Qtdepends on the structure of the star andfedent for diferent modes
of pulsation. For the fundamental modg~ 0.04 days and) is smaller for higher overtones.

Driving and damping of pulsations

In an exactly adiabatic situation the oscillations will maintain the same (small) amplitundeality
the situation is never exactly adiabatic, which means that the oscillations wiltajlsniee damped,
unless there is an instability that drives the oscillation, i.e. that makes their anepdjtaa.

The requirement for growth of an oscillation is that the net work done byssmakement in the
star on its surroundings during an oscillation cycle must be pos'gﬁ\FedV > 0. By the first law of
thermodynamics, this work is provided by a net amount of heat beingladxsby the element during
the cycle,

$dQ=§Pav >0.

The change in entropy of the mass elemenH8s-ddQ/T. Since entropy is a state variabﬁdQ/T =

0 during a pulsation cycle. A mass element maintaining condtahiring a cycle therefore cannot
absorb any heat. Suppose that the temperature undergoes a smallvarigtie To + 6T (t) around
an average valu€. Then

0= 95 dTQ ) 95 Tod+Q5T - 95 i_?(l_ %) (oD

or
9§dQ ~ Sng % (10.8)

Eqg. (10.8) means that heat must enter the elemént(@) when the temperature is highil( > 0), i.e.
when the layer is compressed, gortheat must leave the layer@d< 0) during the low-temperature
part of the cycledT < 0), i.e. during expansion. This is known in thermodynamics lasa engine
and is analogous to what happens in a normal combustion motor, suchrasmgicee. In a pulsating
star, some layers may absorb heat and do work to drive the pulsation, ottelayers may lose
heat and thereby damp the puIsation;ﬁiﬂQ = SEPdV < 0). To determine the overalffect, the
contributionsSE P dV must be integrated over all mass layers in the star.
In stars there are two possible mechanisms that can drive pulsations:
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e If nuclear reactions occur in a region that is compressed during a pulstien the increase
in T will lead to an increase in the energy generation &tg This satisfies the criterion
(10.8) and is known as themechanismAlthough this is always present, the amplitudes of the
oscillations induced by this mechanism in the core of a star are usually so satatlchnnot
drive any significant pulsations. It may have importafieets in very massive stars, but it is
certainly not relevant for explaining Cepheid pulsations.

e If during the compression of a layer it becomes mmpaque then the energy flowing through
this layer will be ‘trapped’. The resulting increase in temperature andspregushes the
layer outward. During the resulting expansion, the gas will become mosptieent again and
release the trapped heat. This so-calkedechanisntan thus maintain the oscillation cycle
and drive radial pulsations.

The condition for thec-mechanism to work is therefore that the opacity must increase when the gas
is compressed. The compression during a pulsation cycle is not exactlyatidjeotherwise the
mechanism would not work, but it is very close to adiabatic. Then the conditio be written as
(dInk/dInP)4q > 0. We can write this as

dInk olnk dlnk dinT
(dInP)ad (aln P)T+(6InT)P(dInP)ad Kp T KT Vad (10.9)
wherexp andxr are shorthand notation for the partial derivatives af With respect to IP and InT,
respectively. For successful pulsations we must therefore have

kp + kT Vag > 0. (10.10)

The instability strip and the period-luminosity relation

In stellar envelopes the opacity can be roughly described by a Kramerg dagT ~3°, which when
combined with the ideal-gas law implies ~ 1 and«r ~ —4.5. Since for an ionized ideal gas
Vad = 0.4, we normally havep + 1 Vag < 0, i.€.x decreases upon compression and the star will not
pulsate. In order to satisfy (10.10) one must have either:

e k1 > 0, which is the case when the ldpacity dominates, dt < 10* K. This may contribute to
the driving of pulsations in very cool stars, such as Mira variables (ig.1), but the Cepheid
instability strip is located at too highg for this to be important.

¢ In case of a Kramers-like opacity, a small valueVgfj can lead to pulsation instability. For
kp ~ 1 and«t ~ —4.5, eq. (10.10) implie¥ 54 < 0.22. Such small values df54 can be found
in partial ionization zonesas we have seen in Sec. 3.5 (e.g. see Fig. 3.5).

Stars generally have two important partial ionization zones, orle at 1.5 x 10*K where both

H & H* + e and He— He" + e occur, and one af ~ 4 x 10*K where helium becomes twice
ionized (H& < He™" + e7). These partial ionization zones can explain the location of the instability
strip in the H-R diagram, as follows.

e AtlargeTer (for Teg 2 7500 K, the ‘blue edge’ of the instability strip) both ionization zones lie
near the surface, where the density is very low. Although this region i®thden-adiabatic,
the mass and heat capacity of these zones is too small to drive pulsdtexively.

e As T decreases, the ionization zones lie deeper into the stellar envelope. Theanths
heat capacity in the partial ionization zones increase, while remainingdiahadic enough to
absorb sfficient heat to drive pulsations.
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o At still smaller Ty (for Teg < 5500 K, the ‘red edge’ of the instability strip) the partial ioniza-
tion zones lie at such high density that the gas behaves almost adiabatidiigugh these
zones still have a destabilizingfect, they cannot absorb enough heat to make the star as a
whole unstable.

Thus the instability strip occupies a narrow region in the H-R diagram, as tedicaFig. 10.11. Its
location is related to the depth of the partial ionization zones. Since these aoogr in a specific
temperature range, the instability strip also occurs for a narrow ranggyofalues, and is almost
vertical in the H-R diagram (and parallel to the Hayashi line).

We can understand the period-luminosity relation from the dependence péikkation period on
mass and radius (eg. 10.6). Since Cepheids follow a mass-luminosity relstienL*, and since
L oc R?TZ., we can write

B2 @420

Mx Q—— xQ
1/2 3
MY/ Teff

With & ~ 3 andTes ~ constant, we findI o« L6 or logL ~ 1.7 logIl + const. Detailed numerical
models give
logL = 1.270 logll + 2.570 (10.11)

for the blue edge, and a slope of 1.244 and a constant 2.326 for thdged Ehe smaller slope than
in the simple estimate is mainly due to the fact that theaive temperature of the instability strip is
not constant, but slightly decreases with increasing

Suggestions for further reading

The contents of this chapter are also covered by Chapters 25.3.2 ar@@6.bf Maeber, while
stellar pulsations and Cepheids are treated in detail in Chapter 15. Seamisaikin & W EIGERT,
Chapters 31 and 32.

Exercises

10.1 Conceptual questions
(a) Why does the luminosity of a star increase on the main seg®eWhy do low-mass stars, like
the Sun, expand less during the main sequence than higlesrstaas?

(b) Explain what happens during the ‘hook’ at the end of thénnsaquence of stars more massive
than the Sun.

(c) What isconvective overshootiffgThink of at least threefiects of overshooting on the evolution
of a star.

(d) Explain the existence of Hertzsprung gapn the HRD for high-mass stars. Why is there no
Hertzsprung gap for low-mass stars?

(e) What do we mean by thmirror principle?

() Why does the envelope become convective on the red giamchf What is the link with the
Hayashi lin@
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10.2 Evolution of the abundance profiles

(a) Use Fig. 10.3 to sketch the profiles of the hydrogen andimeabundances as a function of the
mass coordinate in aM,, star, at the ages corresponding to points C, E, G and H. Trg tasb
guantitative as possible, using the information providethe figure.

(b) Do the same for a M, star, using Figs. 10.5 and 10.8, at points B, D, F and H.

(c) The abundances plotted in Figs. 10.3 and 10.8 are ceftwaldances. What happens to the abun-
dances at the surface?

10.3 Red giant branch stars

(a) Calculate the total energy of the Sun assuming that thsityes constant, i.e. using the equation
for potential energyEy, = —%G M?/R. In later phases, stars like the Sun become red giants, with
R ~ 100R,. What would be the total energy, if the giant had constantiten&ssume that the
mass did not change either. Is there something wrong? If sp isit?

(b) What really happens is that red giants have a dense, degengure helium cores which grow to
~ 0.45M,, at the end of the red giant branch (RGB). What is the maximuriusatthe core can
have for the total energy to be smaller than the energy of thr® SN.B. Ignore the envelope —
why are you allowed to do this?)

(c) For completely degenerate stars, one has

M -1/3
R=26x10 ,ue_5/3(M—) cm, (10.12)

0]

wherepe is the molecular weight per electron aag= 2 for pure helium. Is the radius one finds
from this equation consistent with upper limit derived inb

10.4 Core mass-luminosity relation for RGB stars
Low-mass stars on the RGB obey a core mass-luminosity ealatvhich is approximately given by
ed. (10.2). The luminosity is provided by hydrogen shelhiing.
(a) Derive relation between luminosityand the rate at which the core growglg dt. Use the energy
released per gram in hydrogen shell burning.
(b) Derive how the core mass evolves in time, Mg,= Mc(t).

(c) Assume that a star arrives to the RGB when its core mass%s df the total mass, and that it
leaves the RGB when the core mass is W5 Calculate the total time aM, star spends on
the RGB and do the same for &, star. Compare these to the main sequence (MS) lifetimes of
these stars.

(d) What happens when the core mass reacheshNd.Z5Describe the following evolution of the star
(both its interior and the corresponding evolution in thel)R

(e) What is the dference in evolution with stars more massive thawi2?

10.5 Jump in composition
Consider a star with the following distribution of hydrogen

/01 form<me
X(m) = { 0.7 form<m (10.13)

(&) In this star a discontinuous jump in the composition peafccurs am = m.. What could have
caused such a chemical profile? Explain vihgndT must be continuous functions.
(b) Calculate the jump in densityp/p.

(c) Also calculate the jump in opacityix/«, if the opacity is given as:
- Kramers:kps ~ Z(1+ X)pT 35
- Electron scatteringke = 0.2(1+ X)

160



Chapter 11

Late evolution of low- and
Intermediate-mass stars

After the central helium burning phase a central core composed dfrcartd oxygen is formed. As
discussed before, the further evolution of a stéiieds greatly between massive stars on the one hand,
and low- and intermediate-mass stars on the other hand. The evolution dferstass, in which the
core avoids degeneracy and undergoes further nuclear burnitescwill be discussed in the next
chapter.

In low- and intermediate-mass stars, up to abdutg8the C-O core becomes degenerate and their
late evolution is qualitatively similar. These stars evolve along the so-cadhgdptotic giant branch
(AGB) in the H-R diagram. The AGB is a brief but interesting and importansela evolution,
among other things because it is the site of rich nucleosynthesis. AGB Earsufier from strong
mass loss, which eventually removes their envelope and leaves the deggedé core, which after
a brief transition stage as the central star of a planetary nebula, becdoreslaved coolingwhite
dwarf.

11.1 The asymptotic giant branch

The AGB phase starts at the exhaustion of helium in the centre. In the exadaifplee 5 and M
stars discussed in the previous chapter, this occurs at point H in theieadiacks (Figs. 10.2 and
10.5). The star resumes its climb along the giant branch, which was intedrbapteentral helium
burning, towards higher luminosity. In low-mass stars the AGB lies at similar lusitias but some-
what higher &ective temperature than the preceding RGB phase. This is the origin of the na
‘asymptotic’ giant branch. For stars more massive than aboutig.the AGB lies at higher lumi-
nosities than the RGB and the name has no morphological meaning.

One can distinguish two or three phases during the evolution of a star aledg3B. These are
highlighted in Fig. 11.1 for our M, example star, but the evolution of lower-mass stars is qualita-
tively similar.

The early AGB phase

After central He exhaustion the carbon-oxygen core contracts. @aribrief transition all layers
below the H-burning shell contract (shortly after point H), until He lngrshifts to a shell around
the CO core. The star now has two active burning shells and a double eftor operates: the core
contracts, the He-rich layers above expand, and the outer envelofecstatracting. However, due
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Figure 11.1. Evolution of luminosities (upper
20000y | panel) and internal structure (lower panel) with
Ll time in a 5M,, star (with compositiorX = 0.70,

] \\ T Z = 0.02) during the last stages of helium burning

and on the AGB. Compare with Fig. 10.3 for the
same star. The early AGB starts at point H, when
He burning shifts quite suddenly from the cen-
tre to a shell around the former convective core.
The H-burning shell extinguishes and at point K
second dredge-up occurs. The H-burning shell
is re-ignited some time later at point J. This is
the start of the double shell-burning phase, which
soon afterward leads to thermal pulses of the He-
burning shell (and break-down of this particular
model). The first thermal pulses can be seen in
the inset of the upper panel which shows the last
20000 yr of this model calculation. Strong mass

loss is then expected to remove the stellar enve-
0 g, | 1 ,CT(,)| el lope within< 10°yr, leaving the degenerate CO
105 106 107 108 core as a cooling white dwarf.
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to expansion of the He-rich zone the temperature in the H-shell decraaddise H-burning shell is
extinguished. Thus only one ‘mirror’ remains and now the entire enveldfeerich layer plus H-rich
outer envelope — starts expanding in response to core contractionlyddaig-lived phase follows in
which the stellar luminosity is provided almost entirely by He-shell burninggef&K in Fig. 11.1).
This is called theearly AGBphase.

The He-burning shell gradually adds mass to the growing CO core, wieichnies degenerate
due to its increasing density. As the envelope expands and cools thetomevelope penetrates
deeper until it reaches the composition discontinuity left by the extinct H-ahgoint K.

Second dredge-up

In stars of sfficiently high massM = 4 M, (depending somewhat on the initial composition and
on whether overshooting is included) a convective dredge-up epadeccur, called theecond
dredge-up At point K in Fig. 11.1 the convective envelope is seen to penetrate ddathia helium-
rich layers. This is due to a combination of the continuing expansion and goafithese layers,
which increases their opacity, and the growing energy flux producebebifie-burning shell — note
that the luminosity has been steadily growing. For lower-mass stars thertiiigushell remains
active at a low level, which prevents the convective envelope fromtpdimey deeper into the star.
Consequently, the second dredge-up does not occur in lower-mess sta

In the material that is dredged up hydrogen has been burned into heliita X and'®0O have
been almost completely converted idfdl by the CNO-cycle. The amount of He- and N-rich material
dredged up is about OM, in the example shown, and can be as much ks, In the most massive
AGB stars. This material is mixed with the outer convective envelope andaeppe the surface.
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Thus the second dredge-up has a qualitatively similar, but much more draefiaticthat the first
dredge-up phase that occurred on the RGB.

An additional important #ect of the second dredge-up is the reduction of the mass of the H-
exhausted core, thus limiting the mass of the white dwarf that rematfextizely, the occurrence of
second dredge-up thus increases the upper initial mass Niwjit,of stars that produce white dwarfs.

The thermally pulsing AGB phase

As the He-burning shell approaches the H-He discontinuity, its luminosityedses as it runs out of
fuel. The layers above then contract somewhat in response, thusghéegiextinguished H-burning
shell until it is re-ignited. Both shells now provide energy and a phadewble shell burnindpegins.
However, the shells do not burn at the same pace: the He-burning shelhles thermally unstable
and undergoes periodibermal pulsesdiscussed in detail in Sec. 11.1.1. This phase is thus referred
to as thehermally pulsing AGBTP-AGB).

The structure of a star during the TP-AGB phase is schematically depicted.iiE2. The
thermally pulsing phase of the AGB has a number of salient properties:

e The periodic thermal pulses alternate with mixing episodes and give rise tquemucleosyn-
thesisof (among others}?C, 1N, and elements heavier than iron (Sec. 11.1.2). This process
gradually makes the stellar envelope and atmosphere more carbon-rich.

e Similar to the RGB, the stellar properties mainly depend on the size of the dateQ&D core.
In particular there is a tightore mass-luminositselation,

L=59x10L, (% - 0.52), (11.1)

©

which is not as steep as the RGB relation (10.2).

CS envelope Figure 11.2. Schematic structure of

an AGB star during its thermally puls-
ing phase. The CO core is degenerate
and very compact, and is surrounded
by two burning shells very close to-
gether in mass coordinate. The con-
vective envelope by contrast is very ex-
tended and tenuous, having a radius
10*~1® times the size of the core.
This loosely bound envelope is gradu-
ally eroded by the strong stellar wind,
which forms a dusty circumstellar enve-
lope out to several hundreds of stellar
radii. The convective envelope, stellar
atmosphere and circumstellar envelope
have a rich and changing chemical com-
position driven by nucleosynthesis pro-
cesses in the burning shells in the deep
interior.

stellar wind

convective
envelope

H burning

He burning

deg. core

0.01Rg 100-500R ~1 pc?
0.5-1.0Mg 0.1-fewMg
~0.05 R,
0.001-0.02M,
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e Strongmass losg10~7 — 107* My/yr), probably driven by dynamical (Mira) pulsations com-
bined with radiation pressure on dust particles formed in the cool atmosfBece 11.1.3),
gradually removes the envelope and replenishes the interstellar medium winthesized
elements.

e The extended stellar atmosphere and circumstellar envelope, formed hytfllbevohave a rich
molecular and dust chemistry. This is mainly revealed in their infra-red speghich have
been observed by space telescope missions such as ISO and Spitzer.

11.1.1 Thermal pulses and dredge-up

After the H-burning shell is reignited, the He-burning shell that lies umeksth it becomes geomet-
rically thin. Nuclear burning in such a thin shell is thermally unstable, for thears discussed in

Sect. 7.5.2. This gives rise to periodieermal pulse®f the He-burning shell. What happens during
a thermal pulse cycle is depicted schematically in Fig. 11.3.

e For most of the time, the He-burning shell is inactive. The H-burning sldel$ anass to the
He-rich region between the burning shells (the intershell region), whimeases the pressure
and temperature at the bottom of this region.

e When the mass of the intershell region reaches a critical value, helium isdgmigée unstable
manner, giving rise to a thermonuclear runaway calledlaim shell flash(Note the dfference
with thecoreHe flash in low-mass red giants, where electron degeneracy causesrthenio-
clear runaway.) Values dfye ~ 108 L, are reached during 1 year. The large energy flux
drives convection in the whole intershell region (producinggershell convection zonéCz).

convective envelope

dredge—up

mass —>

3¢ pocket
intershell ez Ny
region
ﬁe —->C,0
_______________ ~ . '
degenerate core | He shell flash |
time

Figure 11.3. Schematic evolution of an AGB star through two thermal-pwgcles. Convective regions are
shown as gray shaded areas, where ‘ICZ’ stands for the h@kionvection zone driven by the He-shell flash.
The H-exhausted core mass is shown as a thin red solid linéhantde-exhausted core mass as a dashed line.
Thick red lines indicate when nuclear burning is active iestshells. Only the region around the two burning
shells is shown, comprising 0.01M,. The hatched region indicates a shell or ‘pocket’ ricH38 that is
formed at the interface of the H-rich envelope and the C-ntérshell region, following a dredge-up episode.
Note that the time axis is highly non-linear: the He sheldffland dredge-up phases (lastind00 years) are
expanded relative to the interpulse phase (1Q0° years).
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Figure 11.4. Evolution of a 3M, star with X =
0.7,Z = 0.02 during the TP-AGB phase. Time is
counted since the first thermal pulse. The three pan-
els show (a) the growth of the hydrogen-exhausted
core mass and helium-exhausted core mass, (b) the
He-burning luminosity and (c) the changes in surface
abundances by mass fraction BtC, 1N and 1°0.
Except for the first few pulses, each thermal pulse
is followed by a dredge-up episode (sudden drop in

100000 500000 or0 50206 core mass) and a sudden increasé® abundance.

Time (years) Figure adapted from Stanfik et al. (2004, MNRAS
352, 984).

This mixes'?C produced by the Breaction, as well as other elements produced during He
burning, throughout the intershell region.

The large energy release by the He-shell flash mostly goes into expasfsiba intershell
region against the gravitational potential. This eventually allows the Heriushell to expand
and cool as well, so that the He-shell flash dies down after sevena. ye&@hase of stable He-
shell burning follows which lasts up to a few hundred years. As a re§tiiecexpansion and
cooling of the intershell region after the He-shell flash, the H-burnimg sitinguishes.

Expansion and cooling of the intershell region can also lead to a deepetrgi@on of the
outer convective envelope. In some cases convection can penetyateditde now extinct
H-burning shell, such that material from the intershell region is mixed into titer @nvelope.
This phenomenon is callatird dredge-up Note that this term is used even for stars that do
not experience the second dredge-up, and is used for all sulnéeljedge-up events following
further thermal pulses. Helium as well as the products of He burning, riicplar 12C, can
thus appear at the surface.

Following third dredge-up, the H-burning shell is reignited and the Haibgrshell becomes
inactive again. A long phase of stable H-shell burning follows in which thesnad the inter-
shell region grows until the next thermal pulse occurs. The durationi®frtterpulse period
depends on the core mass, lasting between 50,000 yrs (for low-masstasBvith CO cores
of ~ 0.5 M) to < 1000 yrs for the most massive AGB stars.

This thermal pulse cycle can repeat many times, as shown fdviga AGB star in Fig. 11.4.
The pulse amplitude (the maximum helium-burning luminosity) increases with eds#, puhich
facilitates dredge-up after several thermal pulses. In the example stiawhdredge-up first occurs
after the 7th thermal pulse-(5 x 10° yr after the start of the TP-AGB phase) and then follows after
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every subsequent pulse. Th&&i@ency of dredge-up is often measured by a paramgtarich is
defined as the ratio of the mass dredged up into the envelope over the masishyhe H-exhausted
core has grown during the preceding interpulse period (see Fig. 11.3),

_ AMdu
AMy’

Third dredge-up has two important consequences. First, unlike tharidstecond dredge-up which
only mix up H-burning products, the third dredge-up bring productsetitim burningo the surface.
This leads to important nucleosynthesis (see Sec. 11.1.2). Second,rddgkelip limits the growth

of the CO core mass. fEcient dredge-up witil ~ 1 means that in the long run, the core mass does
not increase.

1 (11.2)

11.1.2 Nucleosynthesis and abundance changes on the AGB

The main €ect of thermal pulses and third dredge-up operating in AGB stars is theaepe

of helium-burning products at the surface, in particular a large producticarbon. In the 31,
model shown in Fig. 11.4, the surfat&C abundance increases after every dredge-up episode and
thus gradually increases, until it exceeds ¥#@ abundance after3x 10°yr.

At the low temperatures in the stellar atmosphere, most of the C and O atomsuackibtm CO
molecules, such that the spectral features of AGB stars strongly depetice GO number ratio.

If n(C)/n(0O) < 1 (simply written as ‘@O0 < 1’), then the remaining O atoms foramxygen-rich
molecules and dust particles, such as TiQOHaNnd silicate grains. The spectra of such O-rich AGB
stars are classified as type M or S. As a result of repeated dredgetugisme point the O ratio

can exceed unity. If © > 1 then all O is locked into CO molecules and the remaining C forms
carbon-richmolecules and dust grains, e.g;, N and carbonaceous grains like graphite. Such
more evolved AGB stars are classifiedcasbon starswith spectral type C.

Besides carbon, the surface abundances of many other elementstapeéssthange during the
TP-AGB phase. The direct evidence for active nucleosynthesis in 8188 was the detection in
1953 of technetium, an element with only radioactive isotopes of which thestiged one °Tc)
decays on a timescale of210°yrs. AGB stars are nowadays considered to be major producers in
the Universe of carbon, nitrogen and of elements heavier than iron s/recess They also make
an important contribution to the production’8f, 2°Mg, 2Mg and other isotopes.

Production of heavy elements: the s-process

Spectroscopic observations show that many AGB stars are enrichedhiergkeheavier than iron,
such as Zr, Y, Sr, Tc, Ba, La and Pb. These elements are producsldwiaeutron capture reactions
on Fe nuclei, the so-callestprocess In this context ‘slow’ means that the time between successive
neutron captures is long compared to fhdecay timescale of unstable, neutron-rich isotopes.

The synthesis of s-process elements requires a source of freengwutioch can be produced in
the He-rich intershell region by either of two He-burning reactidf€{e, n)*60 and?’Ne(a, n)*>Mg.

The latter reaction can take place during the He-shell flash if the tempeeatceeds 3 x 10°K,
which is only reached in rather massive AGB stars. 3Ie required for this reaction is abundant
in the intershell region, because tH& that is left by the CNO-cycle is all converted imtéNe by
He-burning:*N(a, y)8F(8+)180(a, v)**Ne.

The main neutron source in low-mass stars (uph,3is probably thé3C(a, n)!°0 reaction. The
current idea is that a thin shell or ‘pocket’ 8iC is formed (shown as a hatched region in Fig. 11.3)
by partial mixing of protons and?C at the interface between the H-rich envelope and the C-rich
intershell region, which producésC by the first step of the CN-cycle. THEC subsequently reacts
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with helium when the temperature reache$§ KQreleasing the required neutrons. The s-enriched
pocket is ingested into the ICZ during the next pulse, and mixed througheduntershell region,
together with carbon produced by He burning. The carbon and gsanaterial from the intershell
region is subsequently mixed to the surface in the next dredge-up EeesEig. 11.3).

Hot bottom burning

In stars withM > 4-5 M, the temperature at the base of the convective envelope during the Iagerpu
period becomes so higigce = 3 x 10°K) that H-burning reactions take place. The CNO cycle
then operates on material in the convective envelope, a process kisdvat bottom burning Its
main dfects are: (1) an increase in the surface luminosity, which breaks therass-luminosity
relation; (2) the conversion of dredged-t4€ into 1N, besides many other changes in the surface
composition. Hot bottom burning thus prevents massive AGB stars froomtiag carbon stars, and
turns such stars intdigcient producers afitrogen Other nuclei produced during hot bottom burning
are’Li, 2°Na, and?>?%Mg.

11.1.3 Mass loss and termination of the AGB phase

Once a star enters the TP-AGB phase it can experience a large nuntivemoél pulses. The number
of thermal pulses and the duration of the TP-AGB phase is limited by (1) threaling mass of the
H-rich envelope and (2) the growing mass of the degenerate CO cottee @O core mass is able
to grow close to th&€handrasekhar mas#ich ~ 1.46 Mg, carbon will be ignited in the centre in a
so-called ‘carbon flash’ that has the power to disrupt the whole staGkapter 13). However, white
dwarfs are observed in rather young open clusters that still containv@asain-sequence stars. This
tells us that the carbon flash probably never happens in AGB starsy#namthe total mass isM,
much larger tharMcp. The reason is thahass losvecomes so strong on the AGB that the entire
H-rich envelope can be removed before the core has had time to growcagtlifi The lifetime of
the TP-AGB phase, 2 x 10°yr, is essentially determined by the mass-loss rate.

\ start 3rd DU—~

(2nd DU)—/,

Figure 11.5. Schematic evolution track
of a low-mass star in the H-R diagram,
showing the occurrence of the various
dredge-up episodes. Stars on the upper
AGB are observed to be enriched in s-
process elements (S stars) and in carbon
(C stars).

eff
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Figure 11.6. Mass loss of AGB stard_eft: the observed cor- B i 3
relation between the pulsation periBdf Mira variables and e
their mass-loss rat®! (in Mg/yr) (from Vassiliadis & Wood ' '
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et al. 2005, A&A 437, 273) showing streamlines in the outer

atmosphere of an AGB star undergoing radial pulsations. At

r 2 2R, dust particles form in the dense shocked regions and

radiation pressure on the dust then pushes the mass out.

AGB mass loss

That AGB stars have strong stellar winds is clear from their spectrabgrdistributions, which
show a large excess at infrared wavelengths. Many AGB stars (kmew@HIR stars) are even
completely enshrouded in a dusty circumstellar envelope and are invisibfgiealovavelengths.
The mechanisms driving such strong mass loss are not yet completelstaumdibut a combination
of dynamicalpulsationsandradiation pressureon dust particles formed in the atmosphere probably
plays an essential role. Stars located on the AGB in the H-R diagram amd fowndergo strong
radial pulsations, they are known Rbra variables (see Fig. 10.11). An observational correlation
exists between the pulsation period and the mass-loss rate, shown in Fig. &k.@& star evolves
towards larger radii along the AGB, the pulsation period increases addesthe mass-loss rate,
from ~ 1078 My/yr to ~ 1074 M/yr for pulsation periods in excess of about 600 days.

The basic physical picture is illustrated in Fig. 11.6b. The pulsations induaeksvaves in
the stellar atmosphere, which brings gas out to larger radii and thus sesré@e gas density in the
outer atmosphere. At aboutsl- 2 stellar radii, the temperature is low enough(500 K) that dust
particles can condense. The dust particles are very opaque ardth@ychave formed, can easily
be accelerated by the radiation pressure that results from the high staliaogity. In the absence
of pulsations, the gas density at such a distance from the star would bemao form dust. Even
though the gas in the atmosphere is mostly in molecular forpy D, etc.) and the dust fraction
is only about 1%, the molecular gas is dragged along by the acceleratepbdiicles resulting in a
large-scale outflow.

Observationally, the mass-loss rate levef at a maximum value ok 107 Mg/yr (this is
the value inferred for dust-enshrouded (Ristars, the stars with the largest pulsation periods in
Fig. 11.6). This phase of very strong mass loss is sometimes called a ‘snger®@nce an AGB
star enters this superwind phase, the H-rich envelope is rapidly remdtezimarks the end of the
AGB phase. The high mass-loss rate during the superwind phase tieatefermines both the maxi-
mum luminosity that a star can reach on the AGB, and its final mass, i.e. the ntassadiite-dwarf
remnant (Fig. 11.7).
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Post-AGB evolution

When the mass of the H-rich envelope becomes very smalf, 4003 M, depending on the core
mass, the envelope shrinks and the star leaves the AGB. The resultiegskear stellar radius occurs
at almost constant luminosity, because the H-burning shell is still fully aetingethe star keeps
following the core mass-luminosity relation. The star thus follows a horizordaktm the H-R
diagram towards higherfiective temperatures. This is tipest-AGBphase of evolution. Note that
the star remains in complete equilibrium during this phase: the evolution towigltsr i is caused
by the decreasing mass of the envelope, which is eroded at the bottonshglHurning and at the
top by continuing mass loss. The typical timescale for this phasel¥ yrs.

As the star gets hotter afidgs exceeds 30,000 K, twdtects start happening: (1) the star develops
a weak but fast wind, driven by radiation pressure in UV absorptiors l{sénilar to the winds of
massive OB-type stars, see Sec. 12.1); and (2) the strong UV flwogedtre dust grains in the
circumstellar envelope, dissociates the molecules and finally ionizes theagasf e circumstellar
envelope thus becomes ionized (an HIl region) and starts radiating imbéeation lines, appearing
as aplanetary nebula Current ideas about the formation of planetary nebulae are that thelf re
from the interaction between the slow AGB wind and the fast wind from theaesiar, which forms
a compressed optically thin shell from which the radiation is emitted.

When the envelope mass has decreased t®NIg, the H-burning shell is finally extinguished.
This happens whefigs ~ 10°K and from this point the luminosity starts decreasing. The remnant
now cools as a white dwarf. In some cases the star can still experiencd thémmal pulse during
its post-AGB phase (kate thermal pulsg or even during the initial phase of white dwarf cooling (a
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Figure 11.7. Left: Relation between between the initial and final mass of lovd iatermediate-mass stars,
from Kalirai et al. (2008, ApJ 676, 594). The data points espnt white dwarfs observed in open clusters,
for which the mass has been determined from their spectra.agb of the clustdg and the cooling time of
the white dwarft,y have been used to estimate the initial mass, becausd,,y corresponds to the lifetime
of the progenitor star. The solid line shows model preditifor the core mass of a star at the start of the
TP-AGB phase (from Marigo 2001, A&A 370, 194) for solar métdtly. The dotted line shows the final mass
of these models, which is reasonably consistent with the jgaihts. The growth of the core mass on the AGB
is severely limited by dredge-up and strong mass loss.

Right: Observed mass distribution of white dwarfs, for a large dangp DA white dwarfs and a smaller
sample of DB white dwarfs (from Bergeron et al. 2007). Thera sharp peak between 0.55 andM£ as
can be expected from the initial-final mass relation becausst white dwarfs come from low-mass stars with
M < 2 M.
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very late thermal pul9e This can temporarily bring the star back to the AGB (sometimes referred to
as the ‘born-again AGB’ scenario).

11.2 White dwarfs

All stars with initial masses up to about\g, develop electron-degenerate cores and lose their en-
velopes during the AGB phase, and thus end their lives as white dwatfsle&t fusion no longer
provides energy and white dwarfs shine by radiating the thermal entngadsn their interiors, cool-

ing at almost constant radius and decreasing luminosities. The faintestawratés detected have

L ~ 104%L,. Observed WD masses are mostly in a narrow range arourid{).6ee Fig. 11.7b,
which corresponds to the CO core mass of low-m&saN,) AGB progenitors. This sharply peaked
mass distribution, along with the observationally induced initial-to-final mastaeléFig. 11.7a),

are further evidence that AGB mass loss is veficent at removing the stellar envelope.

The great majority of white dwarfs are indeed composed of C and O. WitiseM < 0.45Mg
are usually He white dwarfs, formed by a low-mass star that lost its envelogedy on the RGB.
This is not expected to happen in single stars, but can result from himtaraction and indeed most
low-mass WDs are found in binary systems. White dwarfs with> 1.2 M, on the other hand,
are mostly ONe white dwarfs. They result from stars that underwehbodsurning in the core but
developed degenerate ONe cores, which is expected to happen in a stadliviass range around
8 Me.

The surfacecomposition of white dwarfs is usually completelyffdrent than their interior com-
position. The strong surface gravity has resulted in separation of themigreech that any hydrogen
left is found as the surface layer while all heavier elements have settlegpedlayers. Most white
dwarfs, regardless of their interior composition, therefore show speotmnpletely dominated by H
lines and are classified as DA white dwarfs. A minority of white dwarfs shoky belium lines and
have spectroscopic classification DB. These have lost all hydrogemtfre outer layers during their
formation process, probably as a result of a late or very late thermal. pulse

11.2.1 Structure of white dwarfs

As discussed earlier, the equation of state of degenerate matter is indapehtemperature, which
means that the mechanical structure of a white dwarf is independent ofritsahroperties. As a
white dwarf cools, its radius therefore remains constant. As long as theogle@re non-relativistic
the structure of a white dwarf can be described ausa% polytrope with constanK. Such stars
follow a mass-radius relation of the forR «« M~Y3, depicted in Fig. 11.8 as a dashed line. A
proper theory for WDs should take into account that the most energeticais in the Fermi sea
can move with relativistic speeds, even in fairly low-mass white dwarfs. Thismmthat the equation
of state is generally not of polytropic form, but the relati®fp) has a gradually changing exponent
betweeng and%, as shown in Fig. 3.3. The pressure in the central region is therefaneveat
smaller than that of a purely non-relativistic electron gas. Thus WD raglisaraller than given by
the polytropic relation, the ffierence growing with increasing mass (and increasing central density).
The relativistic theory, worked out by Chandrasekhar, predicts the-naasus relation shown as a
solid line in Fig. 11.8. As the mass approaches the Chandrasekhar nvasshygieq. (4.22),

2
2
Mch = 1.459(—) Mo, (11.3)

He

the radius goes to zero as all electrons become extremely relativistic. Whaidsdwore massive
thanMch must collapse as the relativistic degeneracy pressure iffitisnt to balance gravity.
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Chandrasekhar’s white dwarf theory assumes the electrons are fgépeeate and non-interacting.
In reality, certain corrections have to be made to the structure, in parteleletrostatic interactions
between the electrons and ions (see Sec. 3.6.1). These give a negathation to the electron pres-
sure, leading to a somewhat smaller radius at a particular mass. Furthegatrfugh densitiegwverse
B-decayshecome important. Examples are the reactions

Mg + e > **Na+v, 2Na+ e — Ne+v.

A neutron-rich nucleus such &¥Na is normally unstable t8-decay £*Na — 2*Mg + e + V), but at
high density is stabilized by the Fermi sea of energetic electrons: the dep@vented because the
energy of the released electron is lower than the Fermi energy. Reastionss these (also called
electron capturgsdecrease the electron pressure at high density. Their nfi@ict & a lowering of
the dfective Chandrasekhar mass, from the ‘ideal’ value of 1M5%or a CO white dwarfto 1.Ms.

11.2.2 Thermal properties and evolution of white dwarfs

In the interior of a white dwarf, the degenerate electrons provide a higm#teonductivity (Sec.
5.2.4). This leads to a very small temperature gradient, especially belcasisdso very low. The
degenerate interior can thus be considered to a have a constant temgpdfatuever, the outermost
layers have much lower density and are non-degenerate, and hegy &aasport is provided by
radiation. Due to the high opacity in these layers, radiation transport is mashgfective than
electron conduction in the interior. The non-degenerate outer layerathus insulate the interior
from outer space, and here a substantial temperature gradient intprese

We can obtain a simple description by starting from the radiative envelopgos@uliscussed in
Sec. 7.2.3, assuming an ideal gas and a Kramers opacity tawg pT ="/, and assuming andT
approach zero at the surface:

. 17 3  «kou L
TY2=BP> with B== — —.
4 l6racG R M

ReplacingP = (R/u)pT and solving forp, we find that within the non-degenerate envelope

(11.4)

o= B‘l/z% TL3/4 (11.5)

171



CO WD 0.6 Mun

|
=

]

””” simple cooling theory Figure 11.9. Theoretical cooling curves for a CO

white dwarf with a typical mass of OM,. The
dashed (blue) line shows the evolution of luminos-
ity with time based on the simple cooling theory by
Mestel, which yieldd. « t~7/°. The solid (red) line

is a detailed cooling model for a DA white dwarf
by M. Wood (1995, LNP 443, 41). This model
takes into account (among other things) tlikeet

of crystallization a phase transition that releases an
additional amount of energy, visible as the slowing
down of the cooling after about 2 Gyr. When crys-
tallization is almost complete after about 7 Gyr, the
cooling speeds up again.

——— detailed cooling model

IOg L/Lsun
‘/,
TR B A R R B R A B AN

|
I
I e e I I

o

t/ 1P yr

Let us assume that the transition point with the degenerate interior is locatye e degenerate
electron pressure equals the ideal-gas pressure efébgonsn the envelopePe = (R/ue)pT, since
the ions are non-degenerate everywhere. At this point, denoted wihrgutdb’, we have

5/3

R b
—ppTh = KNR (p_)
He H

e

Tp andpp, must match the value given by eq. (11.5) at the transition point. Eliminatjigives

pe_ Roug o SR gL (11.6)
b K32 64racGK, u M

Since the degenerate interior is nearly isothermglis approximately the temperature of the entire
interior or ‘core’ of the white dwarf. We can thus write (11.6)'5£2 = aL/M. To evaluate the
proportionality constant we have to substitute appropriate valuesdgmland the compositionué
andu), which is somewhat arbitrary. Assuming bound-free absorption (88) andue = 2 in the
envelope, which is reasonable because the envelope is H-depletgd fexdbe very surface layers,
we gete ~ 1.38x 107°Z/u in cgs units. In a typical DA white dwarf, most of the non-degenerate
layers are helium-rich so assumidg= 0.02 andu ~ 1.34 is reasonable. With these assumptions we
obtain the following relation between the temperature in the interior and the lumirogltynass of
the white dwarf,

L/Ly )2/7

Te~ 7.7x 10'K
o> fIX (M/Mo

(11.7)
The typical masses and luminosities of white dwaMs~ 0.6 My, andL < 1072 L, imply ‘cold’
interiors withT < 2 x 10" K.

We can use these properties of white dwarfs to obtain a simple model for tdading, i.e. the
change in WD luminosity with time. Since there are no nuclear energy souhecsirial theorem
applied to degenerate objects tells us that the luminosity radiated away comethé&aecrease of
internal energy. Since the electrons fill their lowest energy states up teeting level, their internal
energy cannot change and neither can energy be released byctiontrdhe only source of energy
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Figure 11.10. Observed and theoretical distri-
butions of white dwarf luminosities in the Galac-
tic disk, from Wood (1992, ApJ 386, 539), based
on cooling models similar to the one shown in
Fig. 11.9. The curves are for assumed ages of the
Galactic disk between 6 and 13 Gyr. The paucity
of observed white dwarfs with log{L,) < —4.3,

| shown as a slanted box, implies an age of the local
0 —2 -4 —6  Galactic disk of 8—-11 Gyr.
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available is the thermal energy stored in the non-degenerate ions, thauméhke bulk of the mass
of the white dwarf. Since the interior is isothermal at temperatyréhe total thermal energy is

Ein = cMT, (11.8)

wherecy is the specific heat per unit mass. For ions behaving as an ideal gaveve/ha %R/,uion
which is a constant. The luminosity is thus given by

dEm ch
L=— = —CcyM— 11.9
at Cv at ( )
whereL is related toM and T by eq. (11.6). If we write this relation &% = o L/M we obtain
ar
T = —an—dtC,

which can be easily integrated between an initial ti;y@vhen the white dwarf forms, and a generic
timet to give

2 _ _
T=t-to=zooy (Tg 2T 2. (11.10)

Once the white dwarf has cooled significantly, its core temperature is much sithaltethe initial
value so thaﬂ'c‘g’/2 can be neglected. We thus obtain a simple relation between the cooling tifne
a white dwarf and its core temperature, and thus betwesrd the luminosity,

-5/7

i 2 L
T~ Zacy To2? = Zoy azﬁ(m) . (11.112)

Making the same assumptions in calculatings in eq. (11.7), and substitutiog = %R/,uion, we can
write this relation as

(11.12)

_ . 105x 108yr( L/Ly )‘5/7
Hion M/Mo

This approximate cooling law was derived by Mestel. It shows that moreiveashite dwarfs evolve
more slowly, because more ionic thermal energy is stored in their interior, liis@asing the mean
mass of the iongion in @ white dwarf of the same total mass decreases the cooling time, becagse ther
are fewer ions per unit mass storing heat. For a CO white dwarf composegdidt parts of C and O,

Hion ~ 14.
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This simple cooling law, depicted in Fig. 11.9 for a 86 CO white dwarf, predicts cooling times
greater than 1 Gyr wheh < 103 L., and greater than the age of the Universe when 10°° L.
More realistic models take into account theet of contraction of the non-degenerate envelope,
which provides some additional energy during the initial cooling phaseraré importantly, the
effects of Coulomb interactions and afystallizationin particular. As the ion gas cools, electrostatic
interactions become more important (Sec. 3.6.1) and the ions settle into a latticteirstruThis
releases latent heat (in other wordsg, > %R/,uion) and the cooling is correspondingly slower than
given by the Mestel law. Once crystallization is almost complgtelecreases and cooling speeds up
again. A more detailed WD cooling model that includes thdBects is shown in Fig. 11.9. White
dwarfs that have cooled for most of the age of the Universe canwetieached luminosities much
less than 1¢P L, and should still be detectable. Observed white dwarf luminosities thus pravide
way to derive the age of a stellar population (e.g. see Fig. 11.10).

Suggestions for further reading

The evolution of AGB stars is treated in Chapter 26.6—-26.8 afd¥k and Chapter 33.2—-33.3 of
KrpenaaaN & WeIGert. White dwarfs are discussed in more detail in Chapter 351ofekuanN &
WEeiGert and Chapter 7.4 of &Saris & Cassist.

Exercises

11.1 Core mass luminosity relation for AGB stars

The luminosity of an AGB star is related to its core mass veaRaczynski relation (11.1). The nuclear
burning in the H- and He-burning shells add matter to the abeerate oM./Mg = 1.0x 1071Y(L, /Lo).
Assume that a star enters the AGB with a luminosity of L9 and a total mass of Ri,.

(a) Derive an expression for the luminosity as a functionroétafter the star entered the AGB phase.

(b) Assume thaler remains constant at 3000 and derive an expression for thgsras a function of
time.

(c) Derive an expression for the core-mass as a functiomraf. ti

11.2 Mass loss of AGB stars

The masses of white dwarfs and the luminosity on the tip ofAB& are completely determined by
mass loss during the AGB phase. The mass loss rate is verytaincdut for this exercise assume that
the mass loss rate is given by the Reimers relation, eq.)1Wig n ~ 3 for AGB stars. Now, also
assume that a star entered the AGB phase with a masMgfahd a luminosity of 1®L.

(a) Derive an expression for the mass of the star as a funcofigime, usingL(t) and R(t) from
Exercise 11.1. (Hint=-MM = 0.5d(M?)/dt).
(b) Use the expression from (a) and the oneNtt) from Exercise 11.1 to derive:
e the time when the star leaves the AGB,, =~ 0).
¢ the luminosity at the tip of the AGB.
e the mass of the resulting white dwarf. (This requires a nicaksolution of a simple equa-
tion).
(c) Derive the same quantities in the cases when the masgalessn the AGB is three times larger,
i.e.,n =9, and when it is three times smaller, i+ 1.
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