Backward evolutionary calculations to model double white dwarf systems

Marc van der Sluys

Astronomical Institute Utrecht The Netherlands

> Supervisors: Frank Verbunt Norbert Langer

Outline:

Introduction:

- Title
- Outline
- Context
- Observations
- Previous work Calculation
- scheme
- · Second mass
- transfer phase
- Possible first
- mass transfer
- phases
- Future work

Marc van der Sluys

Outline of the talk

Introduction

Observed double white dwarfs

Previous work by Gijs Nelemans

Backward calculation scheme

Second mass transfer phase

Possible first mass transfer phases

Future work

Outline:

Introduction:

• Title

- Context
- Observations
 Previous work
- Calculation
- scheme
- · Second mass
- transfer phase
- · Possible first
- mass transfer phases
- Future work

Astrophysical context

Possibly progenitors of Supernova type Ia

Sources of low-frequency gravitational waves

Binary evolution theory

White dwarf cooling theory

Population synthesis

Outline:

Introduction:

• Title

Outline

Context

Observations

Previous work

Calculation

scheme

• Second mass

transfer phase Possible first

mass transfer

phases

• Future work

Observed double white dwarfs

Double white dwarf systems of which both masses are known:

Name	M1 (Mo)	M2 (Mo)	q	P (d)	a (R₀)
WD 0136+768	0.34	0.44	0.77	1.407	4.86
WD 0957-666	0.32	0.37	0.86	0.061	0.58
WD 1101+364	0.36	0.31	1.16	0.145	1.02
WD 0135-052	0.52	0.47	1.11	1.556	5.63
WD 1204+450	0.51	0.51	1.00	1.603	5.80
WD 1704+481A	0.56	0.39	1.44	0.145	1.14
He 1414-0848	0.71	0.55	1.29	0.518	2.93
He 1047-0436	> 0.44	0.47	> 0.94	1.213	> 4.64
KPD 0422+5421	0.53	0.51	1.04	0.09	0.86
KPD 1930+2752	0.97	0.5	1.94	0.095	1.00
Average:	0.52 (0.07)	0.45 (0.07)	1.16 (0.34)	0.68 (0.67)	2.85 (2.17)

Outline:

- Introduction
- Observations
- · Previous work
- Calculation scheme
- Second mass
- transfer phase
- Possible first mass transfer
- phases • Future work

Average:

- Introduction
- Observations
- Previous work
- Calculation scheme
- Second mass transfer phase
- · Possible first
- mass transfer
- phases
- Future work

Second Mass Transfer Phase

Average orbital separation: 3 Ro

Second mass transfer phase must have been a Common Envelope:

Mass transfer is unstable, because the donor is expanded and has a deep convective envelope

Mass transfer time scale ~ 1 kyr

Primary will be engulfed by secondary envelope, hence *Common Envelope*

The Common Envelope phase lasts very short, so that the primary white dwarf will not accrete and the secondary core will not evolve

- Introduction
- Observations
- Previous work
- Calculation
- scheme
- Second mass transfer phase:
 - Common
 - Envelope
 - Stellar models
 - Results
- Possible first mass transfer
- phases
- Future work

Common Envelope

Friction causes spiral in of the primary and heating of the envelope

Idea of treating CE:

Orbital energy difference is used to expell the envelope to infinity

Use this to calculate the progenitor systems of the three observed double white dwarf systems, assuming a common envelope

- Introduction
- Observations
- Previous work
- Calculation
- scheme
- Second mass transfer phase:
 - Common
 - Envelope
 - Stellar models
 - Results
- Possible first mass transfer
- phases
- Future work

Calculate Common Envelope Equate giant envelope binding energy to orbital energy difference: $U_{\text{bind}} = \alpha_{\text{CE}} \left(\frac{GM_{\text{wd1}}M_{\text{wd2}}}{2q_{\text{f}}} - \frac{GM_{\text{wd1}}M_{\text{g2}}}{2q_{\text{m}}} \right)$

Outline:

- Introduction
- Observations
- Previous work
- · Calculation
- scheme
- Second mass transfer phase:
 - Common
 - Envelope
 - Stellar models
 - Results
- Possible first
- mass transfer
- phases
- Future work

We get Ubind from our stellar models

We can calculate am as a function of M_{g2} , if we know α_{CE}

Problem:

We haven't got a clue, except that α_{CE} lies in the range of 0.1 - 10

Calculate Common Envelope

However, there is a second constraint:

At the moment the Common Envelope started, the giant secondary had to fill its Roche Lobe

The Roche Lobe radius is an indication of the orbital separation or orbital period, for known Mwd1 and assumed Mg2

The giant radius can be calculated using our stellar models

This gives us a second method to calculate the orbital period before the CE phase

Outline:

- Introduction
- Observations
- Previous work
- Calculation
- scheme
- Second mass transfer phase:
 - Common
 - Envelope
 - Stellar models
 - Results
- Possible first
- mass transfer
- phases • Future work

Marc van der Sluys

Coloulato Com	mon Envolono	outilite		
Calculate Common Envelope				
Se	 Observations Previous work Calculation scheme 			
We know	We don't know	 Second mass transfer phase Common Envelope Stellar models 		
Mass transfer mechanism	$\alpha_{_{C\!E}}$	Results Possible first mass transfer		
Primary WD mass (Mwd1)	Orbital separation or period before CE (am, Pm)	phases · Future work		
Giant secondary core mass, at the start of the CE = secondary WD mass (Mwd2)	Giant secondary mass (Mg2)			
Final orbital separation or period (af, Pf)				
Using our stellar moo α and am (or Pm) a SEnce we have the of binding ene	dels, we can calculate as a function of Mg2, e two conditions rgy and radius			

Stellar Models

Since all WDs in the three systems are He-WDs, we need stellar evolutionary models upto core helium ignition

We calculated single star models from ZAMS to the tip of the giant branch, with masses between 1.0 and 2.4 Mo

After the main sequence, the core mass M_{cor} of the star can be used as a 'time coordinate'

For each mass, the radius of the star and the binding energy of the envelope at the 'time' $M_{cor} = M_{wd2}$ is needed

Each combination of Mg2 and Mcor gives unique values for R and Ubind

- Introduction
- Observations
- Previous work
- Calculation
 scheme
- Second mass
- transfer phase:
 - Common
 - Envelope
 - Stellar models
 - Results
- Possible first mass transfer
- mass tran phases
- Future work

Stallar Madala

- Introduction
- Observations
- · Previous work
- Calculation scheme
- · Second mass
- transfer phase: • Common
 - Envelope
 - Stellar models
- Results
- Possible first
 mass transfer
- phases
- **Future work**

Marc van der Sluys

Institute of Astrophysics, Innsbruck

December 17, 2002

16/20

Possible first mass transfer phases

For each of the common envelope outcomes, multiple ranges of possibile first mass transfer phases must be investigated:

> Different scenarios: stable, conservative MT stable, non-conservative MT Common Envelope

For each scenario: different initial mass ratios different initial periods

- Introduction
- Observations
- Previous work
- Calculation
 scheme
- · Second mass
- transfer phase • Possible first
- mass transfer phases:
 - Possibilities
 - Stable mass
 - transfer
 - Problems
- Future work

Marc van der Sluys

Institute of Astrophysics, Innsbruck

December 17, 2002

Stable, conservative mass transfer

Problems sofar:

Mass transfer in possible progenitor systems is unstable

or

Mass transfer rate is too high: Primary core mass doesn't grow enough during mass transfer phase

Possible solutions:

Shorter, but not too short, initial period

Include rotation in models, non-conservative mass transfer

- Introduction
- Observations
- Previous work
- Calculation
 scheme
- Second mass
- transfer phase Possible first
- mass transfer phases:
- Possibilities
- Stable mass
- transfer
- Problems
- Future work

Future work

Find a better criterion for stable mass transfer

Do forward binary evolution calculations to confirm the outcome of the first mass transfer phase

Consider partially conservative mass transfer to explain WD0136+768

Include the non-helium WDs in the sample

Include WD cooling age constraints

- Introduction
- ·Observations
- Previous work
- Calculation
 scheme
- Second mass transfer phase
- Possible first
- mass transfer
- phases
- Future work