Magnetic capture and the CV formation channel for AM CVn stars

Marc van der Sluys

Northwestern University, Evanston, IL, USA

Lev Yungelson (Moscow), Gijs Nelemans (Nijmegen)

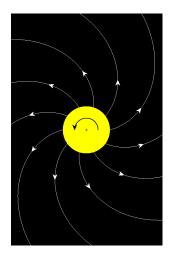
Wild stars in the Old West II, Tucson, March 17, 2009

Outline

- AM CVn stars
 - Properties of AM CVn stars
 - Magnetic capture
- 2 Models
 - Binary-evolution models
- Populations
 - CV populations
 - Ultra-compact populations
- Magnetic-braking
 - Dependency on choice of MB
- 6 Conclusions

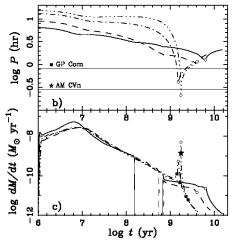
AM CVn stars

Properties


- ~ 20 systems known
- Short orbital periods: 5–65 min
 - degenerate or semi-degenerate donor
 - low-frequency gravitational-wave sources
- Helium-dominated spectra
 - No traces of H found
 - H/He $\lesssim 10^{-5}$
- Possible donors
 - He/hybrid He-CO white dwarf
 - helium star
 - evolved main-sequence star

Magnetic capture

AM CVn stars



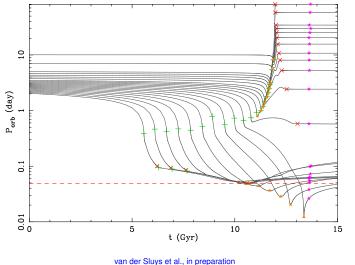
- Donor star fills Roche lobe around TAMS
- Magnetic braking on donor removes AM from orbit
- AM loss due to GWs takes over at short orbital periods
- Periods below 70–80 min possible

Podsiadlowski et al., 2003

Podsiadlowski et al., 2003

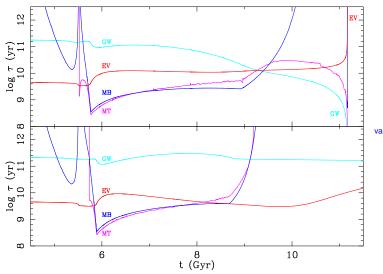
MB: Verbunt & Zwaan, 1981;
 Rappaport, Verbunt & Joss, 1983

- $M_{\rm WD}$: 0.6 1.0 M_{\odot}
- $M_{2,i}: 0.8-1.4\,M_{\odot}$
- $t_{\rm RLOF} \sim 7 11 \, {\rm Gyr}$
- $t_{P_{\min}} \sim \text{few Gyr}$
- P_{\min} down to $\sim 10 \min$
- $X_H \sim 1 20\%$


Binary-evolution models

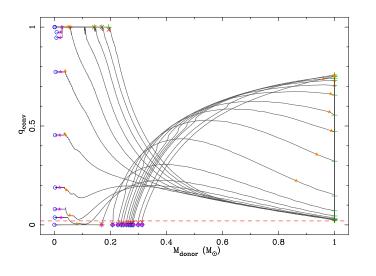
- Eggleton's TWIN binary-evolution code (Eggleton 1971, 1972, etc., Pols et al., 1995)
- MB: Rappaport, Verbunt & Joss, 1983; $\gamma = 4$:
 - MB decreases as $\exp\left(1-\frac{0.02}{q_{\rm conv}}\right)$ for $q_{\rm conv}\equiv\frac{M_{\rm conv}}{M_*}$ < 0.02 (Podsiadlowski et al., 2002)
 - No MB if $q_{conv} = 1$
- Analytic GW evolution after P_{min}
- Mass transfer fully non-conservative
- $M_{\rm WD} = 1.0 \, M_{\odot}$; $M_{2,i} = 0.7 1.5 \, M_{\odot}$
- $P_{\rm i} \sim 0.4 5.5 \, {\rm days}; \, \sim \! 20 \! 40 \, {\rm models \, per} \, M_{2,\rm i}$

Period evolution


 $M_{
m i} = 1.0 \, M_{\odot}$

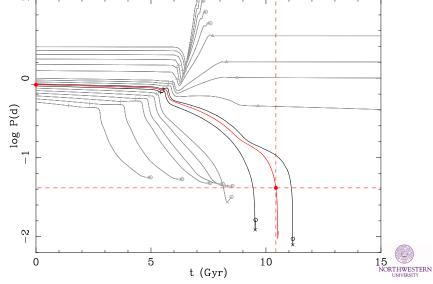
- start MT
- × end MT
 - P_{min}
 - t_H
- end track

Timescales

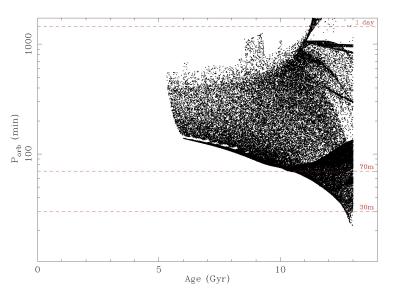


van der Sluys et al., 2005

Convective mass fraction


 $M_{\rm i} = 1.0 \, M_{\odot}$

- start MT
- × end MT
- P_{min}
- t_H
- end track

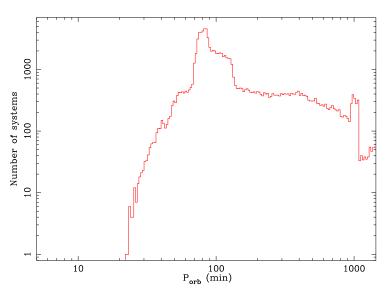


Interpolation of $t - \log P$ tracks

Monte-Carlo simulation

 $M_{\rm i} = 1.0 \, M_{\odot}$

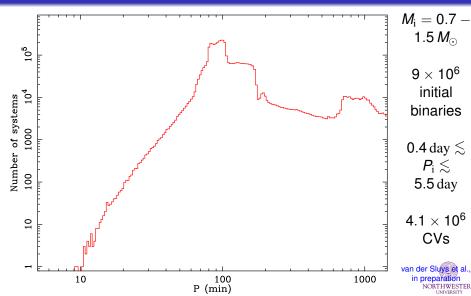
10⁶ binaries


 $0.5 \, \mathrm{day} \lesssim$ $P_{\mathrm{i}} \lesssim$ $5.5 \, \mathrm{day}$

van der Sluys et al., in preparation

Period histogram

 $M_{\rm i} = 1.0 \, M_{\odot}$


10⁶ binaries

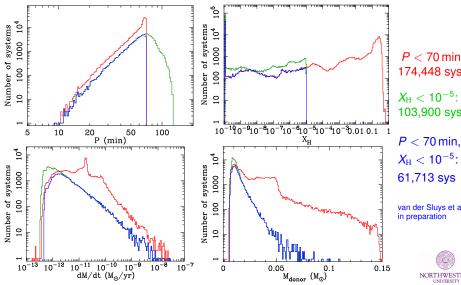
 $0.5 \, \mathrm{day} \lesssim$ $P_{\mathrm{i}} \lesssim$ $5.5 \, \mathrm{day}$

Combined period histogram

 $M_{\rm i} = 0.7 -$ 1.5 *M*⊙

> initial binaries

 9×10^6


 $0.4 \, \mathrm{day} \lesssim$ $P_{\rm i} \lesssim$ 5.5 day

 4.1×10^6 **CVs**

in preparation

Ultra-compact/AM CVn population

P < 70 min: 174,448 sys

 $X_{\rm H} < 10^{-5}$: 103,900 sys

 $X_{\rm H} < 10^{-5}$:

van der Sluys et al.,

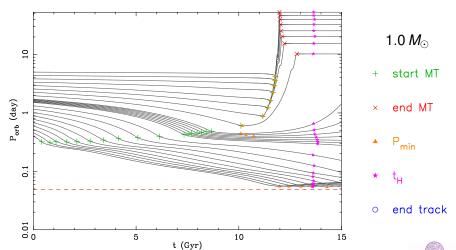
Choice of magnetic-braking prescription

Rappaport, Verbunt & Joss

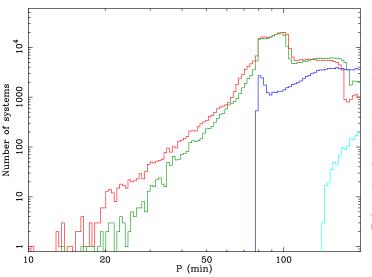
$$\frac{dJ_{\rm MB}}{dt} = -3.8 \times 10^{-30} \, \eta \, \left(\frac{M}{M_{\odot}}\right) \left(\frac{R}{R_{\odot}}\right)^4 \omega^3 \, \, \, \mathrm{dyn \, cm}$$

Sills et al., 2000; Andronov et al., 2003

$$\frac{dJ_{\text{MB}}}{dt} = -K \left(\frac{R}{R_{\odot}}\right)^{0.5} \left(\frac{M}{M_{\odot}}\right)^{-0.5} \omega^{3}, \qquad \omega \leq \omega_{\text{crit}}$$


$$= -K \left(\frac{R}{R_{\odot}}\right)^{0.5} \left(\frac{M}{M_{\odot}}\right)^{-0.5} \omega \omega_{\text{crit}}^{2}, \qquad \omega > \omega_{\text{crit}}$$

$$K=2.7 \times 10^{47} \, \mathrm{g \, cm}^2 \, \mathrm{s}; \quad \omega_{\mathrm{crit}} = \omega_{\mathrm{crit},\odot} \, \frac{\tau_{\mathrm{to},\odot}}{\tau_{\mathrm{to}}}; \quad \omega_{\mathrm{crit},\odot} \approx 2.5 \, \mathrm{day}$$


Saturated magnetic braking

Effect of magnetic-braking prescription

Rappaport, Verbunt & Joss;

 $\eta = 1.00$

Rappaport, Verbunt & Joss;

 $\eta = 0.25$

Andronov et al.

GW only

van der Sluys et al., in preparation

Conclusions & to do

Conclusions

- With the magnetic-capture scenario, a relatively large number of ultra-compact CVs can be produced
- \bullet A sizable fraction of these have $X_{\rm H} < 10^{-5}$ and would be observed as AM CVn stars
- If H-poor, ultra-compact CVs would be observed as AM CVns, we would expect many H-rich systems
- \bullet A saturated magnetic-braking prescription increases the minimum period found from \sim 10 min to \sim 75 min

To do

- Expand range of WD-accretor masses
- Convert relative numbers to absolute number of systems in the Galaxy
- Find observable distinction between He-WD channel and CV-channel AM CVn stars

