The formation of single sdB stars through common-envelope mergers

Marc van der Sluys

University of Alberta, Edmonton, AB, Canada

Mike Politano, Ron Taam, Bart Willems

September 29, 2009
Outline

1. The formation of single sdB stars
 - Properties of sdB stars
 - Population-synthesis models
 - Population-synthesis results
 - Conclusions and future work

2. GW binary inspirals with LIGO/Virgo
 - LIGO/Virgo
 - Binary inspirals
 - Markov-chain Monte Carlo
 - Conclusions
sdB stars

Basic properties:

- Core helium burning stars with very thin ($\lesssim 0.02 \, M_\odot$) hydrogen-rich envelope
- In the field ~ 40–70% are found in binaries
- In GCs mostly observed as **single** sdB stars
- Masses observed $\sim 0.39 \, M_\odot$ – $0.7 \, M_\odot$ (e.g. asteroseismology)
Possible formation channels:

In wide binaries:
- One or two phases of stable Roche-lobe overflow

In close binaries:
- One or two CE/spiral-in phases

Single sdB stars:
- He-WD–He-WD mergers ($M \gtrsim 0.4 \, M_\odot$)
- Strong mass loss at tip of RGB (e.g. capture of planet; Soker & Harpaz, 2000, 2007; Livio & Siess, 1999a,b)
- **CE merger on the RGB** (Soker 1998, Soker & Harpaz 2000, 2007)
Eggleton code TWIN:

- 116: single-star models: 0.5, 0.6, \ldots, 10.0, 10.5, \ldots, 20.0 \, M_\odot
- Solar composition
- Core mass: \(M_c \equiv \text{central region where } X < 0.1 \)
- Envelope binding energy: \(E_{\text{bind}} \equiv \int_{M_c}^{M_s} \left(E_{\text{int}}(m) - \frac{Gm}{r(m)} \right) \, dm \)
- Convective mixing: \(l/H_P = 2.0 \)
- Convective overshooting: none for \(M < 1.2 \, M_\odot \), \(\delta_{\text{ov}} = 0.12 \) for \(M \geq 1.2 \, M_\odot \)
- Stellar wind: Reimers-like (\(\eta = 0.2 \)), De Jager
- *Helium-flash-avoidance routine*
Randomly select 10^7 binaries:

- M_p: Miller-Scalo IMF
- $q \equiv M_s / M_p$: $g(q) \, dq = \{1, q, q^{-0.9}\} \, dq$

Follow the evolution of track closest in mass to primary

When mass comes closer to next track, jump with conservation of M_c

Assume synchronous, rigid rotation on RGB, AGB

If $v_{\text{rot}} > v_{\text{crit}}$: lose additional mass and AM until $v_{\text{rot}} \leq v_{\text{crit}}$

$v_{\text{crit}} \equiv \{0.1, 1/3, 1.0\} \cdot v_{\text{br}}$
CE and spiral-in

- CE occurs if:
 - $R_p > R_{RL,p}$ and $q > q_{\text{crit}}(M_p, M_c)$ (Hurley et al.)
 - Darwin instability

- Classical energy formalism to determine post-CE orbit:
 \[
 E_{\text{bind}} = \alpha_{\text{CE}} \left(\frac{GM_p M_s}{2 a_i} - \frac{GM_c M_s}{2 a_f} \right)
 \]
 \[
 \alpha_{\text{CE}} = \{0.1, 0.5, 1.0\}
 \]

- Merger occurs if: $R_{RL,s,\text{postCE}} < R_{s,\text{postCE}}$
Merger product

The merged object has:

- the core mass of the original primary
- the maximum mass for which the star is spinning subcritically (and $M \leq M_p + M_s$)
- the evolutionary state of the primary, or later

The merged object does:

- evolve in the same way as a single star
- lose additional mass to ensure that $v_{\text{rot}} \leq v_{\text{crit}}$
Population-synthesis results

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>Fraction of previous group</th>
<th>Fraction of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total binary population:</td>
<td>10,000,000</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>No MT</td>
<td>7,094,523</td>
<td>71%</td>
<td>71%</td>
</tr>
<tr>
<td>Stable MT</td>
<td>1,267,854</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>Unstable MT:</td>
<td>1,637,623</td>
<td>16%</td>
<td>16%</td>
</tr>
<tr>
<td>CE Survivors:</td>
<td>789,807</td>
<td>48%</td>
<td>7.9%</td>
</tr>
<tr>
<td>Mergers:</td>
<td>847,816</td>
<td>52%</td>
<td>8.5%</td>
</tr>
<tr>
<td>Mergers due to RLOF</td>
<td>689,815</td>
<td>81%</td>
<td>6.9%</td>
</tr>
<tr>
<td>Mergers due to tidal capture</td>
<td>158,001</td>
<td>19%</td>
<td>1.6%</td>
</tr>
<tr>
<td>Mergers on RGB</td>
<td>738,385</td>
<td>87%</td>
<td>7.4%</td>
</tr>
<tr>
<td>Mergers on AGB</td>
<td>109,431</td>
<td>13%</td>
<td>1.1%</td>
</tr>
<tr>
<td>WDs</td>
<td>822,773</td>
<td>97%</td>
<td>8.2%</td>
</tr>
<tr>
<td>GB/HB stars:</td>
<td>25,042</td>
<td>3%</td>
<td>0.25%</td>
</tr>
<tr>
<td>RGB</td>
<td>9,301</td>
<td>37%</td>
<td>0.09%</td>
</tr>
<tr>
<td>HB:</td>
<td>14,306</td>
<td>57%</td>
<td>0.14%</td>
</tr>
<tr>
<td>AGB</td>
<td>1,435</td>
<td>6%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Critically rotating HB stars</td>
<td>4,504</td>
<td>31%</td>
<td>0.05%</td>
</tr>
</tbody>
</table>
The formation of single sdB stars through common-envelope mergers

HRD with merger population

All merged objects:

Merged objects on HB:

$v_{\text{crit}} = \frac{1}{3} v_{\text{br}}$

Marc van der Sluys
The formation of single sdB stars through common-envelope mergers

\[v_{\text{crit}} = \frac{1}{3} v_{\text{br}} \]
Rotational velocities

\[\frac{v_{\text{rot}}}{v_{\text{crit}}} : \]

\[v_{\text{rot}} (\text{km/s}): \]

Merged objects, single stars, \(v_{\text{crit}} = \frac{1}{3} v_{\text{br}} \)
Core and envelope masses

Helium-core masses:

- Fraction of objects
- Helium-core mass at present epoch (M_\odot)

Envelope masses:

- Fraction of objects
- Envelope mass at present epoch (M_\odot)

Merged objects, single stars
The formation of single sdB stars through common-envelope mergers

Rotational velocity vs. envelope mass

\[v_{\text{crit}} = \frac{1}{3} v_{\text{br}} \]

\[v_{\text{crit}} = v_{\text{br}} \]
The formation of single sdB stars through common-envelope mergers

Rotational velocity vs. envelope mass

$$v_{\text{crit}} = \frac{1}{3} v_{\text{br}}$$

Marc van der Sluys

The formation of single sdB stars through common-envelope mergers
Losing the envelope

Detailed model of an HB star with initial parameters $M \approx 0.59 \, M_\odot$, $M_{\text{env}} \approx 0.11 \, M_\odot$ and $v_{\text{rot}} \approx 25 \, \text{km/s}$:

- M_{env} vs. $\log R$:
 - M_{env} vs. $\log R_\odot$:
 - M_{env} vs. T_{eff}:
 - T_{eff} vs. M_{env}:
 - M_{env} vs. v_{rot}:
 - v_{rot} vs. M_{env}:
Conclusions

- Common-envelope mergers on the RGB lead to rapidly rotating merger products.
- Contraction of such a merged object due to helium ignition provides a natural way for the star to spin up and experience enhanced mass loss.
- This leads to a population of rapidly rotating HB stars.
- A small fraction of these HB stars have thin envelopes.
- With some additional mass loss, these stars may become single sdB stars.
Future work

- Use more flexible implementation for mass loss due to winds and rotation
- Include magnetic braking for merged object
- Look for mechanism to remove last bit of HB-star envelope (perhaps on RGB?)
- Combine population synthesis and entropy sorting:
 - do population synthesis to get the mergers
 - use entropy sorting to get a merged object
 - interpolate to create an evolution model
 - evolve it with a detailed stellar-evolution code (including rotation)
And now for something completely different...
How to measure gravitational waves from quite a long way away

Marc van der Sluys
University of Alberta, Edmonton, AB, Canada
Vivien Raymond, Ilya Mandel, Vicky Kalogera

September 29, 2009
Outline

1. The formation of single sdB stars
 - Properties of sdB stars
 - Population-synthesis models
 - Population-synthesis results
 - Conclusions and future work

2. GW binary inspirals with LIGO/Virgo
 - LIGO/Virgo
 - Binary inspirals
 - Markov-chain Monte Carlo
 - Conclusions
Laser Interferometer GW Observatory (LIGO)
Predicted detection rates

Realistic estimate:

<table>
<thead>
<tr>
<th></th>
<th>Rates (yr$^{-1}$)</th>
<th>Horizon (Mpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS-NS</td>
<td>BH-NS</td>
</tr>
<tr>
<td>Initial</td>
<td>0.015</td>
<td>0.004</td>
</tr>
<tr>
<td>Enhanced</td>
<td>0.15</td>
<td>0.04</td>
</tr>
<tr>
<td>Advanced</td>
<td>20</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Plausible, optimistic estimate:

<table>
<thead>
<tr>
<th></th>
<th>Rates (yr$^{-1}$)</th>
<th>Horizon (Mpc)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS-NS</td>
<td>BH-NS</td>
</tr>
<tr>
<td>Initial</td>
<td>0.15</td>
<td>0.13</td>
</tr>
<tr>
<td>Enhanced</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>Advanced</td>
<td>200</td>
<td>190</td>
</tr>
</tbody>
</table>

Estimates assume $M_{NS} = 1.4 M_{\odot}$ and $M_{BH} = 10 M_{\odot}$

CBC group, rates document
Goals of this project

LIGO
- Show that Markov-Chain Monte Carlo (MCMC) with a large number of parameters (12–15) on LIGO data can be done
- Automated parameter estimation on detected inspiral signal:
 - Confirm spinning inspiral nature of signal
 - Determine *physical* parameters (masses, spin, position, ...)

Astrophysics
- BH/NS mass distributions, BH spins and spin alignments
- Association of GW and EM events, *e.g.* GRB
- Merger rates, NS-NS/BH-NS/BH-BH merger ratios
- Evolution of massive stars (in binaries), CEs
- Initial-mass range for BH progenitors
Inspiral waveforms with increasing spin

\[a_{\text{spin}} \equiv \frac{S}{M^2} = 0.0, 0.1 \text{ and } 0.5 \]
Signal injection into detector noise

- Using 2 4-km detectors \(H1, L1 \)
- Gaussian, stationary noise
- Do 1.5-pN software injections
- Retrieve physical parameters with 1.5-pN template

Here, \(\Sigma \text{SNR} = 17 \)
Compute posterior distribution

- Find posterior density of the model parameters
- Bayesian approach
- The likelihood for each detector i is:
 \[
 L_i(d|\vec{\lambda}) \propto \exp\left(-2 \int_0^\infty \frac{\left|\tilde{d}(f) - \tilde{m}(\vec{\lambda}, f)\right|^2}{S_n(f)} df \right)
 \]

- Coherent network of detectors:
 - PDF($\vec{\lambda}$) \propto prior($\vec{\lambda}$) \times $\prod_i L_i(d|\vec{\lambda})$

- Use Markov-Chain Monte Carlo to sample the posterior
Markov chains

- Choose starting point for chain: $\tilde{\lambda}_1$
- Compute its likelihood: $L_j \equiv L(d|\tilde{\lambda}_j)$ and prior: $p_j \equiv p(\tilde{\lambda}_j)$
- do $j = 1, N$
 - draw random jump size $\Delta \tilde{\lambda}_j$ from Gaussian with width $\tilde{\sigma}$
 - consider new state $\tilde{\lambda}_{j+1} = \tilde{\lambda}_j + \Delta \tilde{\lambda}_j$
 - calculate $L_{j+1} \equiv L(d|\tilde{\lambda}_{j+1})$ and $p_{j+1} \equiv p(\tilde{\lambda}_{j+1})$
 - if($\frac{p_{j+1}}{p_j} \frac{L_{j+1}}{L_j} > \text{ran}_\text{unif}[0, 1]$) then
 - Accept new state $\tilde{\lambda}_{j+1}$
 - Increase jump size $\tilde{\sigma}$
 - else
 - Reject new state; $\tilde{\lambda}_{j+1} = \tilde{\lambda}_j$
 - Decrease jump size $\tilde{\sigma}$
 - end if
- save state $\tilde{\lambda}_{j+1}$
- end do (j)
The formation of single sdB stars
GW binary inspirals with LIGO/Virgo

LIGO/Virgo
Binary inspirals
Markov-chain Monte Carlo
Conclusions

MCMC example

\[\mathcal{M} \left(M_\odot \right) \]

Signal: 2.994
Median: 2.967
\[\Delta_{95\%} \]: 2.71%

Iteration: 4.63E+06
Data points: 3.09E+05

Chain:

log(L):

Marc van der Sluys

How to measure gravitational waves from quite a long way away
MCMC runs

MCMC parameters

Masses: \(M \equiv (M_1 + M_2) \eta^{3/5} \) & \(\eta \equiv \frac{M_1 M_2}{(M_1 + M_2)^2} \), distance: \(\log d_L \), time and phase at coalescence: \(t_c \) & \(\varphi_c \), position: R.A. & sin Dec, spin magnitude: \(a_{\text{spin}1,2} \), spin orientation: \(\cos \theta_{\text{spin}1,2} \) & \(\varphi_{\text{spin}1,2} \), orientation: \(\cos(\iota) \) & \(\psi \)

MCMC set-up

- 5 serial chains per run, starting from the true parameter values
- Chain length: \(5 \times 10^6 \) states, burn-in: \(5 \times 10^5 \) states
- Run time: 10 days on a 2.8 GHz CPU for 1.5-pN waveform (\(\sim 2.5 \times \) longer for 3.5-pN)

- Signals injected in simulated noise for H1L1V @ SNR \(\approx 17.0 \)
- Fiducial binary: \(M_{1,2} = 10 + 1.4 M_\odot \), \(d_L = 16-21 \text{ Mpc} \)
- Spin: \(a_{\text{spin}} = 0.0, 0.1, 0.5, 0.8 \), \(\theta_{\text{SL}} = 20^\circ, 55^\circ \)
Spinning MCMC results

Parameters:
- H1 & L1
- $M = 10, 1.4 \, M_\odot$
- $d_L = 18.7 \, \text{Mpc}$
- $a_{\text{spin}} = 0.5$, $\theta_{\text{SL}} = 20^\circ$
- $\sum\text{SNR} \approx 17.0$
- Black dashed line: true value
- Red dashed line: median
- Δ's: 90% probability

Marc van der Sluys
How to measure gravitational waves from quite a long way away
Spinning MCMC results

Spinning BH, non-spinning NS:

$10 + 1.4 \, M_\odot$, 16–22 Mpc, $\Sigma \text{SNR}=17$

- 2 detectors, $a_{\text{spin}} = 0.0$
- 2 detectors, $a_{\text{spin}} = 0.5$
- 3 detectors, $a_{\text{spin}} = 0.5$

van der Sluys et al., 2008; Raymond et al., 2009
Accuracy of parameter estimation

<table>
<thead>
<tr>
<th>2 detectors (H1 & V):</th>
<th>a_{spin}</th>
<th>θ_{SL}</th>
<th>d_L</th>
<th>M_1</th>
<th>M_2</th>
<th>M</th>
<th>η</th>
<th>t_c</th>
<th>d_L</th>
<th>a_{spin}</th>
<th>θ_{SL}</th>
<th>Pos.</th>
<th>Ori.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(°)</td>
<td>(Mpc)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(ms)</td>
<td>(%)</td>
<td>(%)</td>
<td>(°)</td>
<td>(°²)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>0.0</td>
<td>0</td>
<td>16.0</td>
<td>95</td>
<td>83</td>
<td>2.6</td>
<td>138</td>
<td>18</td>
<td>86</td>
<td>0.63</td>
<td>—</td>
<td>537</td>
<td>19095</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>20</td>
<td>16.4</td>
<td>102</td>
<td>85</td>
<td>1.2</td>
<td>90</td>
<td>10</td>
<td>91</td>
<td>0.91</td>
<td>169</td>
<td>406</td>
<td>16653</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>55</td>
<td>16.7</td>
<td>51</td>
<td>38</td>
<td>0.88</td>
<td>59</td>
<td>7.9</td>
<td>58</td>
<td>0.32</td>
<td>115</td>
<td>212</td>
<td>3749</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>20</td>
<td>17.4</td>
<td>53</td>
<td>42</td>
<td>0.90</td>
<td>50</td>
<td>5.4</td>
<td>46</td>
<td>0.26</td>
<td>56</td>
<td>111</td>
<td>3467</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>55</td>
<td>17.3</td>
<td>31</td>
<td>24</td>
<td>0.62</td>
<td>41</td>
<td>4.9</td>
<td>21</td>
<td>0.12</td>
<td>24</td>
<td>19.8</td>
<td>178</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>20</td>
<td>17.9</td>
<td>54</td>
<td>42</td>
<td>0.86</td>
<td>54</td>
<td>6.0</td>
<td>56</td>
<td>0.16</td>
<td>25</td>
<td>104</td>
<td>1540</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>55</td>
<td>17.9</td>
<td>21</td>
<td>16</td>
<td>0.66</td>
<td>29</td>
<td>4.7</td>
<td>22</td>
<td>0.15</td>
<td>15</td>
<td>22.8</td>
<td>182</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 detectors (H1, L1 & V):</th>
<th>a_{spin}</th>
<th>θ_{SL}</th>
<th>d_L</th>
<th>M_1</th>
<th>M_2</th>
<th>M</th>
<th>η</th>
<th>t_c</th>
<th>d_L</th>
<th>a_{spin}</th>
<th>θ_{SL}</th>
<th>Pos.</th>
<th>Ori.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(°)</td>
<td>(Mpc)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(%)</td>
<td>(ms)</td>
<td>(%)</td>
<td>(%)</td>
<td>(°)</td>
<td>(°²)</td>
<td>(%)</td>
<td>(%)</td>
</tr>
<tr>
<td>0.0</td>
<td>0</td>
<td>20.5</td>
<td>114</td>
<td>90</td>
<td>2.6</td>
<td>119</td>
<td>15</td>
<td>69</td>
<td>0.98</td>
<td>—</td>
<td>116</td>
<td>4827</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>20</td>
<td>21.1</td>
<td>70</td>
<td>57</td>
<td>0.92</td>
<td>72</td>
<td>7.0</td>
<td>60</td>
<td>0.49</td>
<td>160</td>
<td>64.7</td>
<td>3917</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>55</td>
<td>21.4</td>
<td>62</td>
<td>48</td>
<td>0.93</td>
<td>68</td>
<td>6.2</td>
<td>51</td>
<td>0.52</td>
<td>123</td>
<td>48.7</td>
<td>976</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>20</td>
<td>22.3</td>
<td>54</td>
<td>44</td>
<td>0.89</td>
<td>48</td>
<td>3.3</td>
<td>52</td>
<td>0.28</td>
<td>69</td>
<td>28.8</td>
<td>849</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>55</td>
<td>22.0</td>
<td>33</td>
<td>25</td>
<td>0.62</td>
<td>43</td>
<td>4.6</td>
<td>23</td>
<td>0.14</td>
<td>27</td>
<td>20.7</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>20</td>
<td>23.0</td>
<td>53</td>
<td>41</td>
<td>0.85</td>
<td>52</td>
<td>3.8</td>
<td>55</td>
<td>0.17</td>
<td>23</td>
<td>36.4</td>
<td>645</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>55</td>
<td>22.4</td>
<td>30</td>
<td>22</td>
<td>0.86</td>
<td>40</td>
<td>5.0</td>
<td>26</td>
<td>0.21</td>
<td>21</td>
<td>27.2</td>
<td>288</td>
<td></td>
</tr>
</tbody>
</table>

90%-probability ranges, injection SNR = 17.0

| a | the true value lies outside the 90%-probability range |
| b | idem, outside the 99%-probability range, but inside the 100% range |

van der Sluys et al., 2008

Marc van der Sluys

How to measure gravitational waves from quite a long way away
MCMC with two spins

- 3.5-pN waveform
- 3 detectors
- $M = 3.0 \, M_\odot$, $\eta = 0.22$
- $a_{\text{spin}} = 0.5, 0.8$
- $\Sigma \text{SNR}=20$
Conclusions GW parameter estimation

MCMC code:

We have developed an MCMC code that can recover the 12–15 parameters of a binary inspiral, including one or two spins

Accuracies:

- Detection with only 2 detectors can produce astronomically relevant information when spin is present, with typical accuracies for low/higher spin:
 - individual masses: $\sim 32\%/39\%$
 - dimensionless spin: $0.17 - 0.18$
 - distance: $\sim 55\%/45\%$
 - sky position: $\sim 500^2 / 40^2$
 - binary orientation: $\sim 2500^2 / 175^2$
 - time of coalescence: 11ms / 6ms

- Combination of the above can lead to association with an electromagnetic detection (e.g. gamma-ray burst)
The formation of single sdB stars
GW binary inspirals with LIGO/Virgo

LIGO/Virgo
Binary inspirals
Markov-chain Monte Carlo
Conclusions

End...