Population synthesis of common-envelope mergers on the giant branches

Marc van der Sluys

University of Alberta, Edmonton / CITA

Mike Politano, Ron Taam, Bart Willems

Population-synthesis results

Conclusions O

Stellar mergers

Occurrence:

- Collisions: $au \sim ext{day}$? (Sills et al. 2001)
- Binary mergers: convective envelope: $\tau \sim \tau_{\rm dyn}$; yr - kyr?
- Binary mergers: radiative envelope: $\tau \sim \tau_{th} \rightarrow \tau_{dyn}$

- A significant fraction of stars (~ 10%?) may be involved in mergers
- Luminous red novae?
- V 838 Mon?

Population-synthesis results

Merger products

Physics:

- Angular momentum !
- Rapid, differential rotation
- Enhanced mixing
- Magnetic fields
- Enhanced mass loss

Observability:

- Rapid rotation?
- Abundance anomalies?
- Circumstellar material
- Blue stragglers
- "Weird binaries"

Population-synthesis results

Conclusions O

Input models

Stellar-evolution code ev (Eggleton, 1971,2, etc.):

- 116 single-star models: $0.5 20.0 M_{\odot}$ (primary, remnant)
- 28 brown-dwarf models: 0.01 0.60 M_{\odot} (secondary)
- Solar composition; X=0.70, Y=0.28, Z=0.02
- Core mass: $M_c \equiv \text{central region where } X < 0.1$
- Envelope binding energy: $E_{
 m bind}\equiv\int_{M_{
 m c}}^{M_{
 m s}}\left(E_{
 m int}(m)-rac{Gm}{r(m)}
 ight){
 m d}m$

Binary evolution

Population-synthesis models

Population-synthesis results

Stars

- Constant star-formation rate
- Randomly select 10⁷ binaries:
 - *M*_p: Miller-Scalo IMF
 - $q \equiv M_{s}/M_{p}$: $g(q) dq = \{q^{-0.9}, 1, q\} dq$
- Follow the evolution of track closest in mass to primary
- When mass comes closer to next track, jump with conservation of M_c

Orbit

- Assume synchronous rotation on RGB, AGB: $\omega_p = \omega_{orb}$
- Mass and AM loss from stellar wind
- Redistribute AM, so that $J_{\text{tot}} = (I_{\text{p}} + I_{\text{orb}}) \, \omega_{\text{orb}}$
- If v_{rot} > v_{crit}: lose additional mass and AM until v_{rot} ≤ v_{crit}
- $v_{\rm crit} \equiv \{0.1, 1/3, 1.0\} v_{\rm br}$

Population-synthesis results

Conclusions O

Common envelope and spiral-in

CE occurs when:

- $R_{\rm p} > R_{\rm RL,p}$ and $q > q_{\rm crit}(M_{\rm p}, M_{\rm c})$ (Hurley et al. 2002)
- $J_{\rm prim} > \frac{1}{3} J_{\rm orb}$ (Darwin 1879)
- Classical energy formalism to determine post-CE orbit (Webbink 1984):

$$\textit{E}_{bind} = \alpha_{CE} \left(\frac{\textit{GM}_{p}\textit{M}_{s}}{\textit{2}\textit{a}_{i}} - \frac{\textit{GM}_{c}\textit{M}_{s}}{\textit{2}\textit{a}_{f}} \right)$$

- $\alpha_{\rm CE} = \{0.1, 0.5, 1.0\}$
 - Merger occurs if after CE: $R_{RL,s} < R_{s}$

Evolution of the merger product

After the merger:

- the merger product evolves mostly in the same way as a normal single star
- difference: $v_{\rm rot}$, hence \dot{M}
- whenever $v_{rot} \ge v_{crit}$, the star undergoes enhanced mass loss, to ensure that it remains spinning sub-critically
 - this is especially important around core helium ignition

Population-synthesis results

Conclusions O

Population-synthesis results

	Number	Fraction of previous group	Fraction of initial population
Total binary population:	10,000,000	100%	100%
No MT	7,094,523	71%	71%
Stable MT	1,267,854	13%	13%
Unstable MT:	1,637,623	16%	16%
CE Survivors:	789,807	48%	7.9%
Mergers:	847,816	52%	8.5%
Mergers due to RLOF	689.815	81%	6.9%
Mergers due to tidal capture	158.001	19%	1.6%
Mergers on RGB	738.385	87%	7.4%
Mergers on AGB	109,431	13%	1.1%
WDs	822.773	97%	8.2%
GB/HB stars:	25,041	3%	0.25%
RGB	9,301	37%	0.09%
НВ	14,305	57%	0.14%
AGB	1,435	6%	0.01%
Critically rotating RGB stars	297	3.2%	0.003%
Critically rotating HB stars	4.504	31%	0.05%
Critically rotating AGB stars	1	0.1%	0.00001%

Introduction

Population-synthesis models

Population-synthesis results

Total mass:

Conclusions O

Merger population

HRD:

RGB HB AGB

 $v_{\rm crit} = \frac{1}{3} v_{\rm br}$

104

1000

001

9

of merged objects

Number

Population-synthesis models

Population-synthesis results

 $\mathbf{v}_{rot} \sin \mathbf{i} (\mathbf{km/s})$:

Conclusions O

Rotational velocities

 $\mathbf{v}_{\rm rot}/\mathbf{v}_{\rm crit}$:

RGB

AGB

 $v_{\rm crit} = \frac{1}{3} v_{\rm br}$

Introduction

104

1000

objects

of merged 90

Number 2

20

0

40

60

80

Population-synthesis results 00000

Comparison to single stars

Merger remnants:

RGB AGB

 $v_{\rm crit} = \frac{1}{3} v_{\rm br}$

Introduction

Population-synthesis models

Population-synthesis results ○○○○●

Comparison to single stars

Ev. phase	population	N	N N _{tot}	M (M⊙)	v sin i (km/s)	Fraction with	
						v _{rot} ≤ 0.1 v _{crit}	$f v_{ m rot} = f v_{ m crit}$
RGB	mergers	9301	0.37	1.20	18.4	(0.001)	0.0319
	single	178651	0.61	1.20	1.9	0.9627	0.000
НВ	mergers	14305	0.57	1.35	16.1	(0.0000)	0.3149
	single	104979	0.36	1.58	3.2	0.0886	0.0021
AGB	mergers	1435	0.06	1.34	6.0	0.0683	(0.0007)
	single	10487	0.04	1.45	1.3	0.5657	(0.0000)
Total	mergers	25041	1.00	1.28	16.2	0.0043	0.1918
	single	294117	1.00	1.23	2.3	0.6366	0.0008

Critical rotational velocity

- The observed (projected) rotational velocity is roughly an order of magnitude larger for merger products
- Most merger products on the GBs have ignited helium, most normal single stars have not

Population-synthesis results

Conclusions

Results:

- Common-envelope mergers on the giant branches lead to rapidly rotating merger products
- Merger products through this channel rotate roughly 10× faster than normal single stars
- In a population with 50% initial binaries, \sim 3.4% of the single stars would be a GB merger remnant

Observables:

- Telltales of (former) rapid rotation may include abundance anomalies, small envelope mass, oblate stars, IR excess and asymmetric nebulae
- Single sdB stars?