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Abstract.

High-energy cosmic ray air-showers have been known for over 30 years to emit strong radio pulses in the regime
between a few and several 100 MHz (Allan 1971). To date, however, a thorough analysis of the emission mechanisms
has not yet been conducted. Adopting a simplified shower geometry and electron-positron energy distribution, we
calculate theoretical pulse spectra in the scheme of synchrotron emission from highly relativistic e± pairs gyrating
in the Earth’s magnetic field. These calculations will play an important role for the calibration of observational
data of radio-emission from cosmic ray air-showers acquired with LOPES and later LOFAR and SKA.

1. Introduction

The pulsed radio-emission from high-energy cosmic ray
air-showers allows to study their physics with forthcom-
ing digital radio-interferometers such as LOFAR – an ap-
proach offering a number of advantages over other meth-
ods (Falcke & Gorham 2002, hereafter FG02). The aim of
the LOPES project is to develop and test the necessary
hardware, software and techniques for future implementa-
tion in LOFAR. Additionally, a thorough understanding
of the underlying emission processes is necessary to inter-
pret and calibrate the observational data. Past modeling
efforts for radio-emission from cosmic ray air-showers have
concentrated on scenarios such as charge-separation and
transverse currents induced by the Earth’s magnetic field
(Kahn & Lerche 1966). An equivalent, but conceptually
more attractive and flexible approach is the scenario of
coherent synchrotron emission from e− and e+ gyrating
in the Earth’s magnetic field.

2. Emission process and model calculations

Our emission model is based on standard synchrotron the-
ory for highly relativistic particles as described by Jackson
(1975). To circumvent problems associated with retarda-
tion effects, the E-field is calculated in the frequency-
domain, E(ω), rather than the time-domain, E(t). The
far-field energy spectrum per unit solid angle and unit
frequency (∝ |E(ω)|2) generated by a single e± pair as
a function of the angle of the particle trajectories to the
line of sight, θ, and the curvature radius ρ (depending on
the B-field and Lorentz γ-factor) is then given by (Kν =
modified Bessel-function of order ν):
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1 Data not included in the original conference proceedings.
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Fig. 1. Equivalent flux density spectrum at the centre of
a 1017 eV shower radio pulse with R = 6 km, ∆ν = 1 MHz
and γ ≡ 60. Solid: full coherence, short-dashed: uniform
2 m line-charge, long-dashed: Gaussian 2 m line-charge
(noise at highest frequencies being due to numerical er-
ror), dash-dotted: FG02 approximation, dotted: empirical
formula (see text), dash-2x-dotted: LOPES 100 antenna
station root-mean-square noise, points: Prah (1971) data1

(could be subject to systematic errors due to uncertainties
in primary particle energy calibration)

which takes advantage of the symmetry arising from the
pair-wise creation of e− and e+. N e± pairs radiating
fully coherently (i.e. simultaneously at the same location)
would yield an N2 enhancement of this spectrum. If the
e± pairs are spatially distributed, however, their contribu-
tions have to be added taking into account the appropri-
ate phase-delays. Compared to the fully coherent case this
leads to an attenuation by a coherence-factor S(ω) (see
Aloiso & Blasi (2002) for an analysis of coherence effects
regarding synchrotron radiation). The simplest shower ge-
ometry taking into account coherence effects is a line of
length d (given by the typical thickness of the air-shower
“pan-cake” at its maximum development and set to 2 m
here) on which the N radiating e± pairs are uniformly dis-
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Fig. 2. Radial dependence of the equivalent flux density
for a 1017 eV 2 m Gaussian line-charge shower at ν =
50 MHz with R = 6 km and ∆ν = 1 MHz for the γ ≡ 60
case (solid) and for broken power-law distributions from
γ = 5–120 (short-dashed), γ = 5–1000 (long-dashed) and
γ = 5–10000 (dash-dotted).

tributed. A more realistic Gaussian distribution of the e±

pairs along the line is also considered. The air-shower max-
imum consists of approximately Ep/GeV particles with a
mean γ of 60 (see, e.g., Allan 1971). The simplest approx-
imation then is to set γ ≡ 60 for all e±. As a more realistic
energy distribution, we adopt a broken power-law rising
linearly with γ, peaking at γ = 60 and declining with γ−2

towards higher γ. The corresponding spectrum can then
be calculated by integrating over the e± pair spectra with
the normalisation such that the total energy is the same
as in the monoenergetic case. Given a specific observation
bandwidth, the pulse associated with the spectrum can be
reconstructed as the Fourier-transform of E(ω). We for-
mally define an “equivalent flux-density” Sν as in FG02.
With distance R from the air-shower maximum to the ob-
server (typically 5–7 km for a 1017 eV shower), pulse du-
ration ∆t, and taking into account bandwidth effects via
the quotient of observation bandwidth ∆ν and the (pure)
synchrotron spectrum “critical frequency” νc, this is:

Sν =
d2I

dωdΩ

2π
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)
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3eγ2B

4πmec

Using this formalism, we can produce a set of model
calculations. Fig. 1 shows the attenuation of the fully
coherent synchrotron spectrum due to interference ef-
fects. A uniform particle distribution introduces the typ-
ical (sin x/x)2 modulation that also appears as the inter-
ference pattern of a rectangular opening. The first min-
imum occurs at 150 MHz, which corresponds to c/d. In
the Gaussian distribution, the smaller mean particle dis-
tance allows the spectrum to extend to higher frequen-
cies but leads to stronger attenuation afterwards. Past
experimental results have been described by an empiri-
cal formula (Allan 1971). Its trend fits well with the uni-
form line-charge spectrum at high frequencies. As later
measurements show, however, the spectrum flattens below
∼ 100 MHz (see FG02) and the formula over-predicts the
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Fig. 3. Reconstructed pulse in the centre of a 1017 eV
shower with γ ≡ 60, R = 6 km and using an idealised
rectangle filter spanning 10–200 MHz. Solid: full coher-
ence, short-dashed: 2 m uniform line-charge

flux there. Also included is the estimated RMS noise level
for a 100 antenna LOPES configuration (see FG02), which
should be able to easily detect (SNR > 100) a typical
1017 eV air-shower. Fig. 2 illustrates the radial dependence
of the air-shower emission on the ground. One has to keep
in mind, however, that a more realistic shower-geometry
will distribute most of the particles away from the shower
core, leading to a significant broadening as well as attenua-
tion in the centre region. The more realistic e± energy dis-
tribution only broadens the emission pattern very slightly
due to the presence of low-energy particles. The overall
emission gets weaker as the total number of particles drops
when more energy is distributed to high-energy e± pairs.
Fig. 3 shows two reconstructed radio-pulses. The ∼ 6 ns
timescale of the fully-coherent pulse is given by the obser-
vation bandwidth of ∼ 200 MHz = 1/5 ns – the pulse is
unresolved. The timescale of the uniform line-charge pulse
is governed by the spectral cut-off at 150 MHz. Decreasing
the bandwidth will linearly decrease the pulse amplitude,
and below bandwidths of 150 MHz both pulses will be-
come unresolved.

3. Conclusions

We have shown that known properties of radio-emission
from extended cosmic ray air-showers can be successfully
reproduced using the approach of coherent synchrotron
emission from e± pairs gyrating in the Earth’s magnetic
field. The comparison with the FG02 approximation and
empirical results is encouraging, and the next step will
be to incorporate a more realistic geometry for the air-
shower. All predictions show that LOPES (or a single
LOFAR station) should easily be able to detect the ra-
dio pulses of a 1017 eV shower.
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