Towards the Event Horizon

Heimo Falcke Radboud University Nijmegen

ASTRON, Netherlands Institute for Radio Astronomy, Dwingeloo Netherlands Institute for Nuclear & High-Energy Physics (NIKHEF) Max-Planck-Institut für Radioastronomie, Bonn

Dark Mass in the Galactic Center

- Stellar proper motions
 have revealed a dark
 mass in the Galactic
 Center of 4 Million solar
 masses within the size of
 the solar system.
- The center of gravity coincides with Sgr A* within 215 R_s (15 AU).

The Galactic Center in the radio: Sagittarius A* (Sgr A*)

- The very center of the Galaxy is a compact bright radio source (Balick & Brown 1974, Ekers et al. 1975).
- It has a flat-to inverted radio spectrum, similar to the nuclei of bright AGN, Quasars, and radio galaxies.
- It's luminosity is 10¹⁰ times lower then in quasars!

Zhao & Goss (1999)

What is Sgr A* (radio)

Radboud University Nijmegen

- Long standing question: is the radio emission of Sgr A* produced in
 - an accretion flow (ADAF/RIAF)?

Melia (1994) Narayan et al. (1998), Yuan et al. (2004) Quataert & Gruzinov (2000)

– or a moderately relativistic jet?

Falcke, Mannheim, Biermann (1993), Falcke (1996) Falcke & Markoff (2000)

LLAGN Jetmodel: collimated within a few Rg, $Y \sim 2$, supersonic, pressure driven expanison into Mach cone of some tens of degrees.

THE ASTROPHYSICAL JOURNAL, 499:731-734, 1998 June 1 © 1998, The American Astronomical Society, All rights reserved, Printed in U.S.A.

THE SIMULTANEOUS SPECTRUM OF SAGITTARIUS A* FROM 20 CENTIMETER TO 1 MILLIMETER AND THE NATURE OF THE MILLIMETER EXCESS

HEINO FALCKE,^{1,2} W. M. GOSS,³ HIROSHI MATSUO,⁴ PETER TEUBEN,¹ JUN-HUI ZHAO,⁵ AND ROBERT ZYLKA⁶ Received 1997 November 6; accepted 1998 January 12

ABSTRACT

We report results of a multiwavelength campaign to measure the simultaneous spectrum of the supermassive black hole candidate Sgr A* in the Galactic center from centimeter to millimeter wavelengths using the Very Large Array, the Berkeley-Illinois-Maryland Array (BIMA), the Nobeyama 45 m, and the Institut de Radioastronomie Millimetrique (IRAM) 30 m telescopes. The observations confirm that the previously detected millimeter excess is an intrinsic feature of the spectrum of Sgr A*. The excess can be interpreted as and effect of the presence of an ultracompact component of relativistic plasma with a size of a few Schwarzschild radii near the black hole. If so, Sgr A* might offer a unique possibility to image

ity Nijmegen

Spectrum: Melia & Falcke (2001, ARA&A)

updated from Falcke, Markoff, Bower (2009)

Radboud University Nijmegen

- In Sgr A* there is optically thin emission on event horizon scales!
- Photon orbits are bent due to the black hole.
- At R~4-5R_g orbits can become circular – closed "photon orbit".
- Closer orbits end in event horizon.
- This produces a "shadow" in the emitting region around the black hole, surrounded by a circular photon-ring

(Bardeen 1973, Falcke et al. 2000, de Vries 2000)

Radboud University Nijmegen

H. Falcke

Varying the Models

Radboud University Nijmegen

Infall:

a=0

 $i=90^{\circ}$

 $I=r^{-2}$

Jet: a=0 i=45° I=hollow

(Falcke, Melia, Agol)

Shadow Industry

Dolence

3DGRMHD

Radboud University Nijmegen

3D general relativistic magnetohydrodynamic simulations with radiation transfer and ray tracing in the Kerr metric.

Gammie et al. (2009)

Testing the No-Hair Theorem -Quadropole Effects on Shadow

H. Falcke Johannsen & Psaltis 2010, 2011, ApJ

350 GHz VLBI images from 2D MHD simulations

350 GHz VLBI images from 2D MHD simulations

Tracing orbiting blobs around Sgr A* with just three Antennas

Tracing orbiting blobs around Sgr A* with just three Antennas

Tracing orbiting blobs around Sgr A* with just three Antennas

Radboud University Nijmegen

ALMA cycle 0 campaign underway ...

A. Rushton,....

What else to look at ...

Radboud University Nijmegen

H. Falcke

Johannsen, Psaltis et al. (2012)

The Supermassive Black Hole and Jet in M87

Size and Spectrum of M87

Radboud University Nijmegen

Spectrum of M87 core

Almudena Prieto

Hada et al. (2012)

Conclusions

- mmVLBI of Sgr A* (and M87) offers a unique and very realistic chance to image the black hole shadow for the very first time
 - Precise mass of BH known
 - optically thin radio emission on event horizon scales confirmed
 - VLBI technique works in principle
- This will be sufficient evidence for the existence of an event horizon and allow fundamental tests of GR and variants thereof.
- We will be able to study accretion disk and jet physics where it really matters near the BH.
- There are risks:
 - Unknown source structure may complicate identification of shadow
 - Accretion rate increases due to cloud falling in by 2013 (Gillessen et al. 2012) emission might become optically thick
 - Non-ALMA telescope go out of business in next few years
 - We don't get our act together ...
- 10% << Chance of success < 100% we should take that risk!