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What accelerates the wind?

o Water maser shell limits show V

- Relationship holds for M,

exp &

~1to >10 M@

T 0Or momentum coupling changes?

- Ivezic & Elitzur'10

e Dust absorption
efficiency evolves?

- Chapman & Cohen
86; Verhoelst+

e Also seen in other
lines incl. Hershel

- Decin + '10
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Mass loss problems

Can pulsation drive mass loss from the star's surface?
- Pulsation shocks <5 km/s (<10 km/s in RSG)

Can radiation pressure on dust drive O-rich winds?
- No: Woitke 2006

- Yes: Alumina nucleation Wittkowski+ 2007
- Large grains at 2 R, Barnaby+ 2012 (Nature)

- Si0 masers reach ~7 km/s but also infall
- H O masers show acceleration past escape velocity

Who made all the dust?
- Clumping scales - can it survive into the ISM?
Do solitary stars produce axisymmetric PNe?

- OH (and other) masers polarized, asymmetric
« What is role of magnetic field?



22 GHz HZO

« MERLIN images

- Compact front and
back caps

- Extended emission
in plane of sky

» Accelerating radial
outflow

- 10 mas beam 6

e 2D Gaussian
components

* GpOS - 6 /(S/Grms)
- 0.2mas @ 10 Jy
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Cloud measurements

« Each component
beamed size
- 1-2 km s series
e Gaussian spectra
- AV, = AV,
e Series = discrete clouds
e Ripgg 1 - 2 AU

- 2R, = gain length
- Density/temperature/
composition
determines cloud size

* Not just velocity
coherence
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Initially assume clouds ~spherical

* Linear strings of s Y -
components = 1000} D" " &
indi ' g § +
bnrglgiaetnetveloaty : a3 ++++
T : H_

* Not necessarily
elongated maser
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Flux density (mJy)
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Shrinking of brighter masers
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Beaming from spherical clouds

» “Amplification-bounded beaming”
— L, L = Measured size of multi-chan clouds

e Observed (beamed) size s
- Measured component size per channel

_h..._
=" % . Brighter maser (peak /), tighter beam
' « s« 1/sqrt[In(/,)]

+ Slope ~ -0.5 to -1.5 for S Per, | log(s) v. log [In(/,)]
RT Vir, IK Tau (mostly) S e

- Bright, well-filled maser
shells
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regular optical periods " S per
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Integrated flux density per component/channel (mdy)
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Beaming from shocked slabs

e Shock 'into page'
« Maser propagates perpendicular to shock
 Pump photons escape orthogonally
« Entire surface emission is amplified
e “Matter bounded” beaming
e apparent size ~ actual size (s ~ L)

log(s) v. log [In(/,)] —

» Slope > 0 or large scatter ; CERE S s 1 e
for U Ori, U Her Rl 77 2 e N

- Other evidence for shocks:

e OH 1612 MHz flares

- Pataki+74; Chapman+85; ot ]
Etoka+97 U Ori

« Reqgular, deep pulsations

In(1)



Maser properties
reveal wind
disturbances

« Brighter = smaller
beamed size?

e s 1/sqrt[In(/,)]

- Smoothly
expanding spheres
« Brightest emission

often ~cloud size?

e Rapid maser
variability

« Stars with deepest
periods

- Shocked slabs

Spatial intensity profiles |3
in a single velocity

channel

mas mas

». Amplification- Matter-bounded
bounded beaming beaming ‘
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Water maser clumps scale with *
e 22 GHz maser thick shell

-« ~5-50R, ———— ———
- Ten-fold range of 10.0f f
R, SRs to RSG ]
» Cloud radius ~ 1 R, < sq| f
» Assuming radial 3 o
expansion, birth E & )
radius 5%-10% R, $ 24 ’ ,
» Must be determined ¢ {,:E;/Qwux’
by stellar properties £ 19 P &,
» Not dust cooling or s e
other microphysics o 1
- Would be same [ A/ S | R .
0.5 1.0 2.0 5.0 10.0

scale for all stars Stellar radius R, (AU)



Cloud density
« H,0 22 GHz maser r, - -
o - RT Vir

) COllISIOn rate < maSIng 22:\?95{:515
rate Cooke & Elitzur '85 V860429 -

- Quenching density Crgi
~5x10*m™
 ~50x average wind density
- Clouds 50-90% wind mass#
* Filling factor <1%
- H,0 shell crossing times:

* Few decades (AGB stars); < century (RSG)
- Imaged clouds last <2 yr (AGB), <10 yr (RSG)
» Pushchino monitoring shows masers blink, clouds persist

e Overdense, probably hotter - how can clouds survive?
- Frozen-in magnetic field?
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S Per maser clumps

- MERLIN H,0
masers 22 GHz

- 10-mas beam

e EVN/Global VLBI
1.6 GHz OH
mainlines

- Same
resolution

- Interleave

- Extended OH
resolved-out
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Lower density surroundings

- Need ~1/50 H,0 gas density, T<500 K
- Seen for most RSG, about half AGB

« OH 1612 MHz further out where they belong



Modelling (sub-)mm water

ez GHz J25 GHz

 Vibrational ground-
state models
(Humphreys+'01):

- 325 GHz wide
span

- 321 GHz peaks
close to star
(inside dust
formation region?)

e 183 GHz peaks
resemble 22 GHz

- Less variable
(Gonzales-
Alfonso+98)

321 GH= 183 GHz




(Sub)mm water maser spectra”k
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Observations of (sub-)mm water

 Compare spectral
extent

- 710% 22-GHz sources - = =
have 321, 325 GHz s
emISSIOH RTVir L"&!?E%!H%

. (Yates+ 96) m"@%
e 325 GHz spectra e Sy
resemble 22 GHz %‘“
Aleo  pEmERL,
e 321 GHz narrower, ﬁ
weaker, more oo g, o
variable ocer -mum
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Tracing different conditions

250 | & 22 GHz 2001

. Toy IK Tau model

- 658, 321 GHz peaks
inside 22-GHz r

- 325 GHz outside
- 183 GHz spans dust
formation
» Neufeld+ 91,
Humphreys+ 01
- 325 GHz traces
22-GHz clumps?
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- 321 GHz excited state maser from inter-clump gas?
« Equatorial density enhancement? biconical outflow?

e Gray, Baudry, Yates, Humphreys developing models



Proper motions

« 22-GHz masers identifiable ~1 yr |
- 5 km/s~4 mas/yr @ 250 pc
» Trackable with MERLIN/ ALMA ol
e SiO near star has shorter life
- 0.3 mas/month - VLBA

e Need VLBI for 321 (& 3257) GHz
kinematics

- Strong acceleration?
« Dense clumps

- Weak radial acceleration?
 Surrounding gas

— Qutflow and infall like SiO?
e Possible for 321-GHz masers




sub-mm maser physics

» Extended ALMA resolution similar to e-MERLIN
- Resolve 325-GHz clumps if they are similar to 22 GHz

- 321-GHz masers probably closer to star

 Also from similar, radially expanding clouds?
- More compact - need higher resolution

« Or emanate from inter-cloud gas?

« R ~2AU@15R_;0.4AU@ 3R, (1 mas@ 250 pc)

cloud

* Need to measure sub-mas component separations
- Are brighter sub-mm masers smaller?
« Emission from stable clouds is tightly beamed

- Bright emission random-sized/more extended?
« Suggests shocked material



Shocks and Turbulence

 How far does the stellar pulsational influence reach?
- Why are SIO maser motions so disordered?
* Direct measurements of turbulence:

- Line width fluctuations
- Maser proper motions

* Fractal scales
- Incompressible/ Kolmogorov

within clumps
- Shallower slope on larger

scales suggests supersonic

dissipation
* Need full range of scales

- Strelniski+'02, Silant'ev+06,

Gray'l2
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Copropagation

 Conditions for excitation of
321 and 325-GHz masers
overlap

« Copropagation or
segregatation constrains

temperature, density,
velocity gradient

* Need positions to <<1 mas

 Only maser VLBI can
achieve this in CSE
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Band 7 GHz water masers

Observed Frequency
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VLBI sensitivity

e A~ 0.9 mm, >6000 km baselines

- <30 pas resolution

- Say, collecting area/conditions ~ 1/2 ALMA (32 ants)
e 1 mm PVW

- Declination -26°

« Sensitivity at 325 GHz ~0.2 Jy in 2 hr
- 0.2 km/s bandwidth, 30 pas beam
-561)y~1.310"°K
- 321 GHz: 56 0.04 Jy ~ 5 10°K

 Maximum resolution ~15 uas, 0.03 km/s
- 325 GHz needs 1.4 10* K for 5¢ detection in 2 hr



VLBI detectability

Typical 22-GHz maser 0.1 - few mas
- Resolved by MERLIN, VLBA
- Peaks 10° - 10** K

325 GHz > 1000 Jy in VY CMa, 100 Jy in AGB stars
- Likely to exceed 1.3 10" K

321 GHz masers often ~1/10 strength

- But noise limits are better than 1/10 lower

What about calibration?
- Compact QSO continuum 1 Jy?
« Bandpass dynamic range per 0.2 km/s ~10 in 10 hr ®
- Can this be mitigated?
- Accurate delay vital to align lines
« Reasonable amplitudes, especially for physics



:

Missing flux

« RCas Si0 43 GHz, 176 pc
e Over half flux missed by VLBA e

- Scales > 5 mas ) Vst tmi)
* NB some polarization >100% - smaller-scale structure!

» VLBI likely to resolve out 90% of sub-mm masers

- Still measure kinematics, fractals,co-propagation...

 Total flux densities needed for full maser modelling
- Need within weeks? Ideally days.

« ALMA will detect all the flux, separate clouds
- Interpolate assuming Gaussian beamed profiles?
- Detect star, provide astrometry?

« Can ALMA alone also help bandpass calibration?
- e.g. half array phased, half extended?

Flux density (J¥) .
NN
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Summary

e 321/5 GHz VLBI tests CSE clumpy mass loss model

- Location:
e Does 325 GHz trace 22 GHz?

e 321 GHz from sub-AU clouds close to star?
- and/or inter-clump gas further out?

- Masers from ~spherical clouds or shocked slabs?
* High-resolution beaming properties differentiate

- Are clouds internally ~incompressible, but with
large-scale motions like dissipative turbulence?

* Different fractal degrees on pas v. mas scales

« ALMA half & half VLBI, extended configuration
- Detect all flux, star for astrometry
- Per-phased-array bandpass calibration?



