Water masers and the physics of stellar winds

Anita Richards
UK ALMA Regional Centre
thanks to K Assaf, I Bains, A Baudry, M Elitzur, S Etoka, M Gray, E Humphreys, M Masheder, K Murakawa, G Rudnitskij, H van Langevelde, J Yates and many others
Masers round cool late-type stars

- RSG VX Sgr Stellar disc at 2 μm Chiavassa+ 2010
 - R_{\star} 4 mas ~ 7 AU
 - SiO Chen+06 43 GHz 2—4 R_{\star}
 - H_2O Murakawa03 22 GHz
 - Overdense clumps
 - 5 – 50 R_{\star}

- Red Supergiants $>\sim 8 M_{\odot}$

- Lower-mass AGB stars have R_{\star} ~1 AU
 - Periods ~1 yr (RSG longer), T_{eff} ~2300–3300 K
 - Mass loss $10^{-7} - 10^{-5} M_{\odot}/yr$
Masers resolve winds on AU scales

- **SiO >42 GHz (\(T_E >2000\) K) < 4 \(R_\star\)**
- **H\(_2\)O 22GHz (\(T_E \sim 650\) K), 5-30 \(R_\star\)**
- **OH 1612 MHz (\(T_E\) few K, long column depth), at >50 \(R_\star\)**
- **OH mainlines (1665-7 MHz) can overlap H\(_2\)O and/or extend as far as 1612 MHz masers**
What accelerates the wind?

- Water maser shell limits show $V_{\text{exp}} \propto r$
 - Relationship holds for $M_* \sim 1$ to $>10 \, M_\odot$
- τ or momentum coupling changes?
 - Ivezic & Elitzur'10
- Dust absorption efficiency evolves?
 - Chapman & Cohen 86; Verhoelst+
- Also seen in other lines incl. Herschel
 - Decin + '10
Mass loss problems

- Can pulsation drive mass loss from the star's surface?
 - Pulsation shocks \(\lesssim 5 \text{ km/s} \) (\(\lesssim 10 \text{ km/s} \) in RSG)

- Can radiation pressure on dust drive O-rich winds?
 - No: Woitke 2006
 - Yes: Alumina nucleation Wittkowski+ 2007
 - Large grains at 2 \(R_\star \) Barnaby+ 2012 (Nature)
 - SiO masers reach \(\sim 7 \text{ km/s} \) but also infall
 - \(\text{H}_2\text{O} \) masers show acceleration past escape velocity

- Who made all the dust?
 - Clumping scales – can it survive into the ISM?

- Do solitary stars produce axisymmetric PNe?
 - OH (and other) masers polarized, asymmetric
 - What is role of magnetic field?
22 GHz H_2O channel maps

- MERLIN images
 - Compact front and back caps
 - Extended emission in plane of sky
- Accelerating radial outflow
- 10 mas beam θ
- 2D Gaussian components
 - $\sigma_{\text{pos}} \sim \theta / (S/\sigma_{\text{rms}})$
 - 0.2 mas @ 10 Jy
Cloud measurements

- Each component beamed size
 - 1-2 km s\(^{-1}\) series
 - Gaussian spectra
 - \(\Delta V_c \geq \Delta V_{th} \)
 - Series = discrete clouds
 - \(R_{c\text{AGB}} \) 1 - 2 AU
 - \(R_{c\text{RSG}} \) 10-15 AU
 - \(2R_c \geq \) gain length
 - Density/temperature/composition determines cloud size
 - Not just velocity coherence
Initially assume clouds \sim spherical

- Linear strings of components indicate velocity gradient
 - Not necessarily elongated maser

- Internal gradients vary at \sim sound speed

- Beaming angle
 $\Omega \sim \frac{\text{feature FWHM}}{\text{feature size}}^2$
Shrinking of brighter masers

- Brighter components near line peaks are generally smaller
- Coherent, curved spatial distribution
 - S Per, some AGB
Beaming from spherical clouds

• “Amplification-bounded beaming”
 - \(L \) = Measured size of multi-chan clouds
 - Observed (beamed) size \(s \)
 - Measured component size per channel
 - Brighter maser (peak \(I_v \)), tighter beam
 - \(s \propto 1/\sqrt{\ln(I_v)} \)

• Slope \(\sim -0.5 \) to \(-1.5 \) for S Per, RT Vir, IK Tau (mostly)
 - Bright, well-filled maser shells
 - Small-amplitude, less regular optical periods

\[
\log(s) \text{ v. } \log[\ln(I_v)]
\]

S Per
But sometimes brighter = bigger

- Spectral peak components swell
- Disorderly spatial distribution
Beaming from shocked slabs

- Shock 'into page'
 - Maser propagates perpendicular to shock
 - Pump photons escape orthogonally
 - Entire surface emission is amplified
 - "Matter bounded" beaming
 - apparent size ~ actual size ($s \sim L$)

- Slope $\gg 0$ or large scatter for U Ori, U Her
 - Other evidence for shocks:
 - OH 1612 MHz flares
 - Pataki+74; Chapman+85; Etoka+97
 - Regular, deep pulsations

\[
\log(s) \text{ v. } \log [\ln(I_v)]
\]
Maser properties reveal wind disturbances

- Brighter = smaller beamed size?
 - \(s \propto 1/\sqrt{\ln(I_v)} \)
 - Smoothly expanding spheres
- Brightest emission often \(\sim \) cloud size?
 - Rapid maser variability
 - Stars with deepest periods
 - Shocked slabs

\[\text{Spatial intensity profiles in a single velocity channel} \]

\[\text{Amplification-bounded beaming} \]

\[\text{Matter-bounded beaming} \]

\[\text{Richards Elitzur & Yates 2011} \]
\[\text{Elitzur Hollenbach & McKee 1992} \]
Water maser clumps scale with \star

- 22 GHz maser thick shell
 - $\sim 5 - 50 \ R_\star$
 - Ten-fold range of R_\star, SRs to RSG
- Cloud radius $\sim 1 \ R_\star$
 - Assuming radial expansion, birth radius 5%-10% R_\star
- Must be determined by stellar properties
 - Not dust cooling or other microphysics
 - Would be same scale for all stars
Cloud density

- **H$_2$O** 22 GHz maser r_i
 - Collision rate $<$ masing rate Cooke & Elitzur '85
 - Quenching density
 $\sim5\times10^{15}$ m$^{-3}$
- $\sim50x$ average wind density
 - Clouds 50-90% wind mass
 - Filling factor \lesssim1%
 - **H$_2$O** shell crossing times:
 - Few decades (AGB stars); \lesssim century (RSG)
 - Imaged clouds last \lesssim2 yr (AGB), \lesssim10 yr (RSG)
 - Pushchino monitoring shows masers blink, clouds persist
- Overdense, probably hotter – how can clouds survive?
 - Frozen-in magnetic field?
S Per maser clumps

- MERLIN H$_2$O masers 22 GHz
 - 10-mas beam
- EVN/Global VLBI 1.6 GHz OH mainlines
 - Same resolution
 - Interleave H$_2$O
 - Extended OH resolved-out
Lower density surroundings

- **OH mainlines** interleave 22 GHz H_2O clouds
 - Need $\sim 1/50$ H_2O gas density, $T<500$ K
 - Seen for most RSG, about half AGB
- **OH 1612 MHz** further out where they belong
Modelling (sub-)mm water

- Vibrational ground-state models (*Humphreys*+01):
 - 325 GHz wide span
 - 321 GHz peaks close to star (inside dust formation region?)

- 183 GHz peaks resemble 22 GHz
 - Less variable (*Gonzales-Alfonso*+98)
(Sub)mm water maser spectra

Yates, Cohen & Hills '95, 96

VY CMa 325 GHz ALMA TEST spectrum

Menten+06
Observations of (sub-)mm water

- Compare spectral extent
 - 70% 22-GHz sources have 321, 325 GHz emission
 - (Yates+ 96)
- 325 GHz spectra resemble 22 GHz
- 321 GHz narrower, weaker, more variable
Tracing different conditions

- **Toy IK Tau model**
 - 658, 321 GHz peaks inside 22-GHz r_i
 - 325 GHz outside
 - 183 GHz spans dust formation
 - Neufeld+ 91, Humphreys+ 01
 - 325 GHz traces 22-GHz clumps?
 - 321 GHz excited state maser from inter-clump gas?
 - Equatorial density enhancement? biconical outflow?

- Gray, Baudry, Yates, Humphreys developing models
Proper motions

- 22-GHz masers identifiable ~1 yr
 - 5 km/s~4 mas/yr @ 250 pc
 - Trackable with MERLIN/ ALMA
- SiO near star has shorter life
 - 0.3 mas/month – VLBA
- Need VLBI for 321 (& 325?) GHz kinematics
 - Strong acceleration?
 - Dense clumps
 - Weak radial acceleration?
 - Surrounding gas
 - Outflow and infall like SiO?
 - Possible for 321-GHz masers
sub-mm maser physics

- Extended ALMA resolution similar to e-MERLIN
 - Resolve 325-GHz clumps if they are similar to 22 GHz
 - 321-GHz masers probably closer to star
 - Also from similar, radially expanding clouds?
 - More compact – need higher resolution
 - Or emanate from inter-cloud gas?
- \(R_{\text{cloud}} \sim 2 \text{ AU} @ 15 \, R_*; 0.4 \text{ AU} @ 3 \, R_* \) (1 mas @ 250 pc)
- Need to measure sub-mas component separations
 - Are brighter sub-mm masers smaller?
 - Emission from stable clouds is tightly beamed
 - Bright emission random-sized/more extended?
 - Suggests shocked material
Shocks and Turbulence

• How far does the stellar pulsational influence reach?
 – Why are SiO maser motions so disordered?

• Direct measurements of turbulence:
 – Line width fluctuations
 – Maser proper motions

• Fractal scales
 – Incompressible/ Kolmogorov within clumps
 – Shallower slope on larger scales suggests supersonic dissipation

• Need full range of scales
 – Strelniski+’02, Silant’ev+06, Gray’12
 – Richards, Lekht+’04
Copropagation

- Conditions for excitation of 321 and 325-GHz masers overlap
- Copropagation or segregation constrains temperature, density, velocity gradient
- Need positions to <<1 mas
- Only maser VLBI can achieve this in CSE
Band 7 GHz water masers

Observed Frequency

321.244 GHz
325.153 GHz

Goodish PWV

0.913mm (3rd Octile)

~10% transmission
VLBI sensitivity

- $\lambda \sim 0.9$ mm, >6000 km baselines
 - $<30 \mu$as resolution
 - Say, collecting area/conditions $\sim 1/2$ ALMA (32 ants)
 - 1 mm PVW
 - Declination -26°
- Sensitivity at 325 GHz ~ 0.2 Jy in 2 hr
 - 0.2 km/s bandwidth, 30μas beam
 - 5σ 1 Jy $\sim 1.3 \times 10^{10}$ K
 - 321 GHz: 5σ 0.04 Jy $\sim 5 \times 10^8$ K
- Maximum resolution $\sim 15 \mu$as, 0.03 km/s
 - 325 GHz needs 1.4×10^{11} K for 5σ detection in 2 hr
VLBI detectability

- Typical 22-GHz maser 0.1 – few mas
 - Resolved by MERLIN, VLBA
 - Peaks 10^9 – 10^{14} K
- 325 GHz > 1000 Jy in VY CMa, 100 Jy in AGB stars
 - Likely to exceed 1.3×10^{10} K
- 321 GHz masers often ~1/10 strength
 - But noise limits are better than 1/10 lower
- What about calibration?
 - Compact QSO continuum 1 Jy?
 - Bandpass dynamic range per 0.2 km/s ~10 in 10 hr 😞
 - Can this be mitigated?
 - Accurate delay vital to align lines
 - Reasonable amplitudes, especially for physics
Missing flux

- R Cas SiO 43 GHz, 176 pc
- Over half flux missed by VLBA
 - Scales > 5 mas
 - NB some polarization >100% - smaller-scale structure!
- VLBI likely to resolve out 90% of sub-mm masers
 - Still measure kinematics, fractals, co-propagation...
 - Total flux densities needed for full maser modelling
 - Need within weeks? Ideally days.
- ALMA will detect all the flux, separate clouds
 - Interpolate assuming Gaussian beamed profiles?
 - Detect star, provide astrometry?
- Can ALMA alone also help bandpass calibration?
 - e.g. half array phased, half extended?
Summary

• 321/5 GHz VLBI tests CSE clumpy mass loss model
 – Location:
 • Does 325 GHz trace 22 GHz?
 • 321 GHz from sub-AU clouds close to star?
 – and/or inter-clump gas further out?
 – Masers from ~spherical clouds or shocked slabs?
 • High-resolution beaming properties differentiate
 – Are clouds internally ~incompressible, but with large-scale motions like dissipative turbulence?
 • Different fractal degrees on μas v. mas scales
 – ALMA half & half VLBI, extended configuration
 – Detect all flux, star for astrometry
 – Per-phased-array bandpass calibration?