# Part II: GWs

# Outline

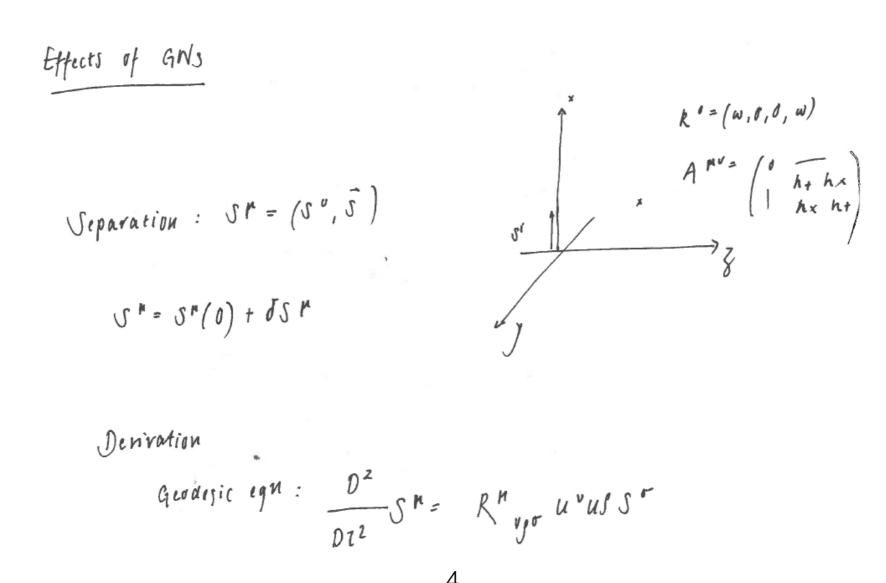
- Perturbation Theory: linearised field equations of GR
- Tranverse-Traceless Gauge
- Effects of GWs on freely falling test particles
- Production of GWs
- GW Energy Loss

TABLE 23.1 Production of Linearized Gravitational and Electromagnetic Waves

|                                           | Linearized gravitation $(c = G = 1)$                                                          | Electromagnetism $(c = 1)$                                                                           |
|-------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Field equation                            | Einstein equation with $g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta}$               | Maxwell's equations                                                                                  |
| Basic<br>potentials                       | Linearized metric perturbations $h_{\alpha\beta}(x)$                                          | Vector and scalar potentials $(\Phi(x), \vec{A}(x))$                                                 |
| Sources                                   | Stress-energy $T_{\alpha\beta}$                                                               | Charge and current $(\rho_{\mathrm{elec}},\bar{J})$                                                  |
| Lorentz gauge                             | $\frac{\partial \bar{h}^{\alpha\beta}}{\partial x^{\alpha}} = 0$                              | $\frac{\partial \Phi}{\partial t} + \vec{\nabla}  \vec{A} = 0$                                       |
| Wave equation with source                 | $\Box \bar{h}_{ij} = -16\pi T_{ij}$                                                           | $\Box \vec{A} = -\mu_{\rm tr} \vec{I}$                                                               |
| General solution                          | $\bar{h}^{ij} = 4 \int d^3x' \frac{[T^{ij}]_{\text{ret}}}{ \vec{x} - \vec{x}' }$              | $\vec{A} = \frac{\mu_0}{4\pi} \int d^3x \ \frac{ \vec{J} _{\text{res}}}{ \vec{J}  -  \vec{x} }$      |
| Large $r$ , long-wavelength approximation | $\tilde{h}^{ij} = \frac{2[\tilde{I}^{ij}]_{\text{ret}}}{r}$ $I^{ij} = \int d^3x  \mu x^i x^j$ | $\vec{A} = \frac{\mu_0}{4\tau} \frac{[\vec{p}]_{\tau, \tau}}{r}$ $\vec{p} = \int d^2 r \cos \vec{r}$ |
| Time-averaged radiated power              | $\frac{dE}{dt} = \frac{1}{5} \langle \ddot{I}_{ij} \ddot{I}^{ij} \rangle$                     | $\frac{dE}{dt} = \frac{n}{6\pi} \ \vec{p}^2$                                                         |

#### Effect of GWs

Consider a local inertial frame of a test particle with a second test particle separated by  $S^{\mu}$ :



#### Effect of GWs II

#### Effect of GWs II

Note 
$$S^0 = coast$$
,  $S^3 = const$  (no longitudinal mode)

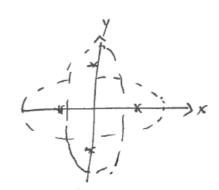
$$\int S' = \frac{1}{2}h_{+}e^{-i\omega t + i\omega \xi}S'(0)$$

$$\int S^{2} = -\frac{1}{2}h_{+} = e^{-i\omega t + i\omega \xi}S'(0)$$

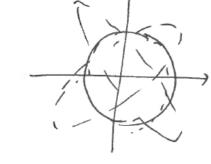
$$\int S' = \frac{1}{2} h \times e^{-i\omega t + i\omega z} S^{2}(0)$$

$$\int S^{2} = \frac{1}{2} h \times e^{-i\omega t + i\omega z} S'(0)$$









## Energy of GWs

~ 0th order: object with internal forces, the GW strain acts as an oscillating driving force for mass element m separated by displacement  $\xi_{k}$ 

$$F_j = \frac{1}{2} m h_{jk}^{TT} \xi_k$$

GWs act as a force -> must carry energy and angular momentum localised within a few wavelengths (not point!!!):

$$T^{00} = \frac{T^{0z}}{c} = \frac{T^{zz}}{c^2} = \frac{1}{16\pi} \frac{c^2}{G} \langle (\dot{h}_+)^2 + (\dot{h}_\times)^2 \rangle,$$
energy
flux
flux
flux
flux
flux

#### Generation of E&M

Leading order multipole radiation for non-relativistic charge distribution:

$$A_j(t,\mathbf{x}) = \frac{1}{cr}\dot{d}_j\left(t - \frac{r}{c}\right),\,$$

As 1/r electric and magnetic fields depend only on components of  $\mathbf{d}$  transverse to the propagation direction  $\mathbf{n}$ 

$$d_j^T \equiv P_{jk}d_k,$$

where  $P_{ik}$  is the projection tensor,

$$P_{jk} \equiv \delta_{jk} - n_j n_k.$$

## **Luminosity EM**

Angular distribution for energy flux:

$$\frac{d^2E}{dt\,d\Omega} = \frac{1}{4\pi c^3}\ddot{d}_j^T\ddot{d}_j^T$$
$$= \frac{1}{4\pi c^3}\Big[\ddot{d}_j\ddot{d}_j - \left(n_j\ddot{d}_j\right)^2\Big].$$

Integrating over solid angle:

$$L_{\rm em} \equiv \frac{dE}{dt} = \frac{2}{3c^3} \ddot{d}_j \ddot{d}_j.$$

#### Generation of GWs

Leading order gravitational radiation for quadrupole mass distribution:

$$h_{jk}^{TT}(t,\mathbf{x}) = \frac{2}{r} \frac{G}{c^4} \ddot{f}_{jk}^{TT} \left(t - \frac{r}{c}\right),\,$$

where  $I_{jk}$  is the mass quadrupole moment

$$I_{jk} \equiv \sum_{A} m_{A} \left[ x_{j}^{A} x_{k}^{A} - \frac{1}{3} \delta_{jk} (x^{A})^{2} \right].$$

Taking transverse-traceless part:

$$I_{jk}^{TT} \equiv P_{jl}P_{km}I_{lm} - \frac{1}{2}P_{jk}(P_{lm}I_{lm}).$$

**ORDER OF MAGNITUDE:** 

$$h \sim \frac{r_{\rm Sch}}{r} \frac{v^2}{c^2},$$

## Returning to luminosity of GWs

Energy flux is given by stress-matter energy tensor:

$$T_{0r} = \frac{1}{32\pi} \frac{c^4}{G} \langle h_{jk,0}^{TT} h_{jk,r}^{TT} \rangle$$

$$\frac{d^2E}{dt\ d\Omega} = \frac{1}{8\pi} \frac{G}{c^5} \langle \ddot{T}_{jk}^{TT} \ddot{T}_{jk}^{TT} \rangle$$

$$=\frac{1}{8\pi}\frac{G}{c^5}\left\langle \ddot{\vec{T}}_{jk}\ddot{\vec{T}}_{jk}-2n_i\ddot{\vec{T}}_{ij}\ddot{\vec{T}}_{jk}n_k+\frac{1}{2}\left(n_jn_k\ddot{\vec{T}}_{jk}\right)^2\right\rangle,$$

# NEWTONIAN QUADRUPOLE FORMULA

slow motion sources, weak internal gravity

$$L_{\rm GW} \equiv \frac{dE}{dt} = \frac{1}{5} \frac{G}{c^5} \langle \ddot{T}_{jk} \ddot{T}_{jk} \rangle.$$

# **Energy Balance: Radiation Reaction Force**

$$\mathbf{F}^{(\text{react})} = -m\nabla\Phi^{(\text{react})}, \qquad \Phi^{(\text{react})} = \frac{1}{5}\frac{G}{c^5}I_{jk}^{(5)}x_jx_k.$$

$$\frac{dE}{dt} = \sum_{A} \mathbf{v}_{A} \cdot \mathbf{F}_{A}^{(\text{react})}$$

$$= -\sum_{A} m_{A} v_{Aj} \frac{2}{5} \frac{G}{c^{5}} f_{jk}^{(5)} x_{k}^{A}$$

$$= -\frac{1}{5} \frac{G}{c^{5}} f_{jk}^{(5)} \frac{d}{dt} \sum_{A} m_{A} x_{j}^{A} x_{k}^{A}$$

$$= -\frac{1}{5} \frac{G}{c^{5}} f_{jk}^{(5)} f_{jk}^{(1)},$$

# Order of magnitude estimate

$$\ddot{f}_{jk} \sim \frac{MR^2}{T^3} \sim \frac{Mv^3}{R},$$

COMPACT sources v ~ c; R ~ r\_sch

$$\frac{dE}{dt} \sim \frac{G}{c^5} \left(\frac{M}{R}\right)^2 v^6 \sim L_0 \left(\frac{r_{\rm Sch}}{R}\right)^2 \left(\frac{v}{c}\right)^6,$$

for a binary system

$$L = \frac{+2}{5} \frac{G^* M^J}{R^J}$$

$$L_0 \equiv \frac{c^5}{G} = 3.6 \times 10^{59} \,\mathrm{erg} \,\mathrm{s}^{-1}.$$

# Radiated energy and peak luminosity

 Using fits from NR simulations for the total energy radiated from infinity and the posterior distributions for masses and spins from the analysis we also infer:

• Radiated energy:  $3.0 \pm 0.5 M_{\odot}$ 

• Peak luminosity:  $3.6 \pm 0.4 \times 10^{56} \rm erg\,s^{-1}$ 

 $\sim$  Solar luminosity  $\times$  10<sup>23</sup>

~ the visible Universe's galactic luminosity × 50

for a binary system

$$L = \frac{+2}{5} \frac{6^{\circ} M^{5}}{R^{5}}$$

Efficiency of GW emission

$$\Delta E = \varepsilon M c^2,$$

$$\varepsilon \sim \left(\frac{r_{\rm Sch}}{R}\right)^{1/2}$$