Ultracompact binaries

Paul Groot,
Radboud University Nijmegen & Caltech

Collaboration:
Gijs Nelemans, Tom Marsh, Danny Steeghs, Patrick Woudt, Lev Yungelson, Lars Bildsten, Tom Prince, Shri Kulkarni, Gijs Roelofs, David Levitan, Thomas Kupfer

TAPIR seminar, June 3, 2011
Ultracompact Binaries

Stellar binaries with degenerate primary and secondary star

- White dwarf
 - Detached
 - Semi-detached: AM CVn stars
 + WD
 + NS

- Neutron Star
 - Detached WD+NS systems: WD+pulsar
 - Semi-detached: Ultracompact X-ray binary
 + WD
 + NS
 + BH

- Black Hole
 + WD
 + NS
 + BH

Short period systems: $P_{\text{orbital}} < \text{few hrs}$
Intrinsically rare! Observationally rare!
Astrophysical Interest

• Endpoints of binary evolution: common-envelope physics

• Gravitational wave sources: LISA/LIGO domain

• Accretion disk & Jet physics:
 - Chemical composition
 - AGN connection

• Explosive phenomena
 - Dwarf novae outburst
 - Nova outbursts
 - Supernovae Type Ia
 - Supernovae Type Ia
 - (Short) Gamma-ray bursts
Number of AM CVn stars

AM CVn System Discoveries

of AM CVn Systems Known

Year

AM CVn
CR Boo
GP Com
SDSS
PTF

Courtesy David Levitan
AM CVn stars: An evolutionary challenge

Paul Groot \textit{(Radboud University Nijmegen)}

Gijs Nelemans, Gijs Roelofs, Danny Steeghs, Tom Marsh, Patrick Woudt, Lev Yungelson, Lars Bildsten, Chris Deloye, Brian Warner, Matt Wood, Gavin Ramsay, Chris Copperwheat, Dean Townsley
AM CVn stars

- Interacting binary white dwarfs
- Completely hydrogen deficient
- Orbital periods: 5.4-65 minutes
- Only 32 systems known
- Only known LISA sources
- Ultimate survivors: 2 x CE phase + Direct impact phase
- Evolution fully (?) set by GWR losses

\[
\frac{\dot{J}}{J} = -\frac{32}{5} \frac{G^3}{c^5} \frac{M_1 M_2 (M_1 + M_2)}{a^4}
\]

\[
\frac{\dot{M}_2}{M_2} = \frac{\dot{J}}{J} \frac{2}{\zeta_2 + 5/3 - 2q}
\]
Evolutionary paths

Gravitational wave evolution

Orbital Period (log s)

Gravitational wave strength

Post CE-system

Detached

LISA visible

LISA invisible

AM CVn

RLOF

Merger SN Ia?
Gravitational wave evolution

- Nelemans et al., 2004
- Roelofs et al., 2006
- Hils & Bender, 2000

![Graph showing gravitational wave evolution](graph.png)

- AM CVn systems
- UC X-ray binaries
- Double WD/ sdB + WD

LISA 5σ limit at T=1yr

Nelemans et al., 2004
Roelofs et al., 2006
Hils & Bender, 2000
Galactic population in Gravitational waves

Nelemans, Yungelson & Portegies Zwart, 2004
Follow the evolution:

Start at 'first contact': at shortest orbital periods

Move out to longer periods.
Direct impact phase

At first contact between 2 white dwarfs: separation so small that direct impact occurs

\[P_{\text{orb}} \leq 10 \text{ min} \ (\text{HM Cnc, V407 Vul}) \]

Stability depends on synchronization timescale of spin-orbit coupling:

short = stable
long = unstable

Marsh, Nelemans, Steeghs, 2004
Nelemans et al., 2001
Webbink, 1984
Smarr & Blandford, 1976
Campbell, 1984
Direct impact phase

And on degeneracy (entropy) of the donor star at start of mass transfer

\[\log \frac{E_{F,c}}{kT_c} = \text{“(degeneracy/thermal)”} = 2.0, 4.0 \]

High entropy = More stable

Low entropy = Less stable

Roelofs and Deloye, 2010, in prep.
Deloye, Taam et al, 2007
HM Cnc & V407 Vul

- Detected as soft X-ray sources with ROSAT (Motch et al. 1996; Israel et al. 1999)
- X-ray and optical photometric period of 321s & 569s
- These are also only detected periods
- Period is currently decreasing at 1×10^{-17} and 3×10^{-16} s s$^{-1}$ (Strohmayer 2005)
- Optically faint: $V=19.9$ (V407 Vul) and $V=21.1$ (HM Cnc)

Barros et al., 2007
Three models

Intermediated polar

Motch/Isreal/Norton et al.

Direct impact

Wu/Dall’Osso et al.

Period is not orbital but spin

→ What is orbital period?

→ What causes phase lag?

No transfer, period is orbital

→ Phase lag? Emission lines?

→ Physics? Slipping footpoints?

Mass transfer, period is orbital

→ Decreasing orbital period?

→ Presence hydrogen?

Radial velocity changes needed to set orbital period

Three models
HM Cnc: radial velocity changes

Difficult!

- HM Cnc is faint \((V = 21.1) \)
- Need to resolve orbital motion \((T_{\text{int}} < 1 \text{ min}) \)
- Emission lines are weak \((< 10\%) \)

Could only be done on Keck +LRIS

Hydrogen, not Hel}
HM Cnc: $P_{\text{orb}} = 5.4 \text{ min}$

System just started mass transfer:

Will most likely merge
(Roelofs & Deloye, 2010)

\[M_1 = 0.55 \, M_{\text{sun}} \]
\[M_2 = 0.27 \, M_{\text{sun}} \]
Helium (super)novae

Helium supernova (Type Ia)
Fusion on dynamical timescale

Evolution
AM CVn star

Log \(t \)

Log \(M_{\text{dot}} \)

Log \(L \)
First helium nova: V445 Puppis
Supernovae Type Ia ('point Ia')

Thermonuclear flashes in high state systems: $L \sim 0.1 \ L_{\text{SN}Ia}$,
$\tau \sim 0.1 \ \tau_{\text{SN}Ia}$, $f = 0.1 \ f_{\text{SN}Ia}$

Bildsten et al., 2007
Shen et al., 2009, 2011

SN2002bj: SN Ia?
Poznanski et al., 2009

SN2010X: PTF discovery
Kasliwal et al., 2010
Intermediate period systems

- $10 \text{ min} < P_{\text{orb}} < 20 \text{ min}$: Three systems in high, stable \dot{M} state (AM CVn, HP Lib)

- $20 \text{ min} < P_{\text{orb}} < 40 \text{ min}$: Ten systems showing DN-type outbursts (4 found in PTF within 1 year!)

![Graph showing spectral data for SDSS J1240-01 and SN 2003aw, comparing flux in erg cm$^{-2}$ s$^{-1}$ Å with log(R_2/R_0). The graph includes labels for different models and astronomical objects such as GP Com, SN 2003aw, and degenerate models.](image-url)
First eclipsing system: SDSSJ 0926+38

$P_{\text{orb}} = 28 \text{ min}$

Copperwheat et al., 2010
Long period systems from SDSS (>35min)

Thirteen systems found in SDSS photometry/spectroscopy (Roelofs et al., 2005; Anderson et al., 2005; 2008; Roelofs et al., 2009; Rau et al., 2010)

Space density: $2 \times 10^{-6} \text{ pc}^{-3}$ (…seems to be even lower) (Roelofs, Nelemans & Groot, 2007)
Observational/Theoretical questions

Five major outstanding, theory related, questions
Observational/Theoretical questions: I

What is the 'real' orbital period distribution?

- SDSS Follow-up: 5 long period systems instead of 25
- PTF: already 4 shorter period systems without trying.. (work by David Levitan)
- Kepler: A 15-minute system in 100 sq.degr.: what are the odds?

All seems to point at steeper orbital period profile:

More at shorter periods, fewer at longer.
- Extra angular momentum loss over GR (winds, braking)?
- Influence of chemical evolution Galaxy?
- Age of the Galaxy?
- Destruction/Decoupling at long periods?
Observational/Theoretical questions: II

What happens during direct impact?

Stable

Unstable

$M_{\text{tot}} < M_{\text{ch}}$

Unstable

$M_{\text{tot}} > M_{\text{ch}}$

AM CVn

Single WD

SN Ia
Observational/Theoretical questions: III

Which evolutionary channel dominates/exists/contributes?

- Determine M_{dot} at a given P_{orb}:
 Difficult, requires distances (Roelofs et al., 2006)

- Determine abundances of the secondary!

![Graphs showing abundances of C, O, Ne, N for 0.2 M_{\odot} WD and 0.45 M_{\odot} He*](image-url)
Observational/Theoretical questions: IV

How do we translate abundances into spectra and vice versa?

- Stability of disk models at low M_{dot}
- Vertical structure of the disk?
Observational/Theoretical questions: IV

Precursors! Which, where, what, how

WD Channel: Low mass WD binaries found in SDSS,
- SDSS J1257+5428 (Marsh et al., 2010; Kulkarni & Van Kerkwijk, 2010)
- SDSS J1436+5010 & SDSSJ1053+5200 (Mullaly et al. 2010)
- Short period systems by Kilic et al., 2011 (48, 40 and 12(!) minutes)

Evolved CV Channel: Short period, high He-content CVs
- V485 Cen; $P_{\text{orb}} = 59$ min; EI Psc, $P_{\text{orb}} = 64$ min
- SDSS J1111+57

Helium Channel: sdB+WD systems
- GALEX 2349+3844 (Kawka et al. 2010)
- NLTT 11748 & 54331 (Kawka et al., 2010)
Pre-cursor systems

All Sloan Cataclysmic Variables & AM CVn systems

SDSSJ1111+57

SDSSJ0932+47

AM CVn

CVs

EW(Hα)/EW(HeI)=2.5
Open questions

Only 32 systems known (but increasing rapidly)

- Formation channel? Abundances! (Nelemans, Yungelson et al., 2010)
 Disk modeling (e.g. Nagel et al., 2010)

- Space density? Population characteristics?
- Gravitational wave sources/LISA Population:

Large-scale (variability) surveys: EGAPS, Omegawhite, PTF, etc.

- Connection to SN Ia, SN Ia, helium novae?

Variability surveys (see above)

Theory: physics of direct impact, synchronization, accretion disk physics, common-envelope physics
Thanks!

I'll be at Caltech until the end of 2011
Room 317
pgroot@caltech.edu
Radboud University Nijmegen

Department of Astrophysics: founded in 2001

Staff members:
Paul Groot, Heino Falcke, Gijs Nelemans, Jörg Hörandel, Jan Kuijpers, Elmar Körding, Marijke Haverkorn

Adjunct staff members:
Conny Aerts (Leuven), Carsten Dominik (Amsterdam), Peter Jonker (SRON)
Radboud University Nijmegen
The Universe is talking. We are listening

Free format after NASA/ESA LISA poster
Astrophysics in Nijmegen

- Compact objects and binaries:
 White dwarfs, neutron stars and (supermassive) black holes

- Astroparticle physics:
 Ultra-high energy cosmic rays and gravitational waves