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Preface

These lecture notes are intended for an advanced astrophysice ocaussellar Structure and Evolu-
tion given at Utrecht University (NS-AP434M). Their goal is to provateoverview of the physics
of stellar interiors and its application to the theory of stellar structure andtewo)at a level appro-
priate for a third-year Bachelor student or beginning Master studerstiareomy. To a large extent
these notes draw on the classical textbook by Kippenhahn & Weiger0(+2@ below), but leaving
out unnecessary detail while incorporating recent astrophysicahiissand up-to-date results. At
the same time | have aimed to concentrate on physical insight rather tharnusgedvations, and
to present the material in a logical order, following in part the very luciddamewhat more basic
textbook by Prialnik (2000). Finally, I have borrowed some ideas fromtéRtbooks by Hansen,
Kawaler & Trimble (2004), Salaris & Cassissi (2005) and the recenk bydvaeder (2009).

These lecture notes are evolving and | try to keep them up to date. If yabarfinerrors or incon-
sistencies, | would be grateful if you could notify me by em@ilK.Pols@uu.nl).

Onno Pols
Utrecht, September 2011
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Physical and astronomical constants

Table 1. Physical constants in cgs units (CODATA 2006).

gravitational constant G 6.6743x 108 cm’gts?
speed of light in vacuum ¢ 2.99792458< 10%cm st
Planck constant h 6.626 069x 102" erg s
radiation density constant a 7.56578x 10 erg cn3 K
Stefan-Boltzmann constanto = 1ac 5.67040x 10 °ergcnt?s 1K
Boltzmann constant k 1.380650x 10716 erg K1
Avogadro’s number Na =1/m, 6.022142x 1073 gt

gas constant R = KNa 8.31447x 10" erg gt K1

electron volt
electron charge

16021765 10 2 erg
4.80326x 1010 esu
1.44000x 107 eV cm
9.109382x 1028 g
1.6605388x 102 g
1.6726216x10%*g
1.674927 2 102 g
6.644 656 2¢< 1024 g

electron mass
atomic mass unit
proton mass
neutron mass
a-particle mass

33333%%e

Table 2. Astronomical constants, mostly from the Astronomical Atraa (2008).

Solar mass M,  1.9884x10%¢g

GM, 1.32712442< 10?5 cm® s72
Solar radius Ro 6.957x 1019 cm
Solar luminosity L 3.842x 1083 erg st
year yr 315576x 10’ s
astronomical unit AU #495978 71x 10'3 cm
parsec pc B85678x 108 cm




Chapter 1

Introduction

This introductory chapter sets the stage for the course, and brieflgtseg@me concepts from earlier
courses on stellar astrophysics (e.g. the Utrecht first-year ctntreduction to stellar structure and
evolutionby F. Verbunt).

Thegoal of this course on stellar evolution can be formulated as follows:

to understand the structure and evolution of stars, and their observgiropearties,
using known laws of physics

This involves applying and combining ‘familiar’ physics from manytelient areas (e.g. thermody-
namics, nuclear physics) under extreme circumstances (high tempehagiwrdensity), which is part
of what makes studying stellar evolution so fascinating.

What exactly do we mean by a ‘star’? A useful definition for the purpdskis course is as follows:
a star is an object that (1) radiates energy from an internal souro@piscbound by its own gravity.
This definition excludes objects like planets and comets, because they domply with the first
criterion. In the strictest sense it also excludes brown dwarfs, whiglmairhot enough for nuclear
fusion, although we will briefly discuss these objects. (The secondiontexcludes trivial objects
that radiate, e.g. glowing coals).

Animportant implication of this definition is that stars masblve(why?). A star is born out of an
interstellar (molecular) gas cloud, lives for a certain amount of time on its mtenergy supply, and
eventually dies when this supply is exhausted. As we shall see, a secdiwhtiop of the definition
is that stars can have only a limited range of masses, betw@dnand~100 times the mass of the
Sun. Thdife and deatiof stars forms the subject matter of this course. We will only briefly touch on
the topic ofstar formation a complex and much less understood process in which the problems to be
solved are mostly very fferent than in the study of stellar evolution.

1.1 Observational constraints

Fundamental properties of a star include thass M(usually expressed in units of the solar mass,
M, = 1.99 x 10%3g), theradius R(often expressed iR, = 6.96 x 10'°cm) and thduminosity L,

the rate at which the star radiates energy into space (often expredseeiB.84 x 10 ergs). The
gffective temperature & is defined as the temperature of a black body with the same energy flux
at the surface of the star, and is a good measure for the temperaturepbfatosphere. From the
definition of dfective temperature it follows that

L =4rRoTL. (1.1)



In addition, we would like to know thehemical compositiof a star. Stellar compositions are
usually expressed as mass fractiohswherei denotes a certain element. This is often simplified
to specifying the mass fraction$ (of hydrogen),Y (of helium) andZ (of all heavier elements or
‘metals’), which add up to unity. Another fundamental property isthation rateof a star, expressed
either in terms of the rotation peride}o or the equatorial rotation velocityeg.

Astronomical observations can yield information about these fundaméelial gjuantities:

e Photometric measurementild the apparent brightness of a star, i.e. the energy flux received
on Earth, in diferent wavelength bands. These are usually expressed as magratgdds;,
V, |, etc. Flux ratios or colour indice8(- V, V — I, etc.) give a measure of théfective
temperature, using theoretical stellar atmosphere modeleragmhpirical relations. Applying
a bolometric correction (which also dependsTan) yields the apparent bolometric flufso,
(inergstcm).

e In some cases thdistance dto a star can be measured, e.g. from the parallax. The Hipparcos
satellite has measured parallaxes with 1 milliarcsec accuracy of more thatat€ The lumi-
nosity then follows frormL = 4x d?f,o;, and the radius from eq. (1.1) if we have a measure of
Teg

¢ Anindependent measure of thiextive temperature can be obtained frioterferometry This
technique yields the angular diameter of a star if it ifisiently extended on the sky, i.e. the
ratio# = R/d. Together with a measurement 6, this can be seen from eq. (1.1) to yield
chgﬁ = fpoi/6°. This technique is applied to red giants and supergiants. If the distance is als
known, a direct measurement of the radius is possible.

e Spectroscopwt suficiently high resolution yields detailed information about the physical con-
ditions in the atmosphere. With detailed spectral-line analysis using stellar atenespbdels
one can determine the photospheric properties of a star:fithetiee temperature and surface
gravity (g = GM/R?, usually expressed as Igyj surface abundances of various elements (usu-
ally in terms of number density relative to hydrogen) and a measure of th@rotelocity
(vegsini, wherei is the unknown inclination angle of the equatorial plane). In addition, for
some stars the properties of th&ellar wind can be determined (wind velocities, mass loss
rates). All this is treated in more detail in the Master cours&matlar Atmospheres

e The most important fundamental property, the mass, cannot be meagaety dor a single
star. To measure stellar masses one nbausy starsshowing radial velocity variations (spec-
troscopic binaries). Radial velocities alone can only yield masses up ttoa $&u, wherei is
the inclination angle of the binary orbit. To determine absolute mass valuegeds mforma-
tion oni, either from a visual orbit (visual binaries) or from the presenceclijpses (eclipsing
binaries). In particular for so called double-lined eclipsing binaries, iichvthe spectral lines
of both stars vary, it is possible to accurately measure both the masseslarfaith 1-2 % ac-
curacy in some cases) by fitting the radial-velocity curves and the eclipsedrgk. Together
with a photometric or, better, spectroscopic determinatiomegfalso the luminosity of such
binaries can be measured with high accuracy, independent of the disforanore details see
the Master course dRinary Stars

All observed properties mentioned above are surface propertiesefdreewe need ¢heory of
stellar structureto derive the internal properties of a star. However, some direct wiadowthe
interior of a star exist:
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Figure 1.1. H-R diagram of solar neighbourhood. Source: Hipparcoss stéth d measured te< 10 %
accuracy.

e neutrinos which escape from the interior without interaction. So far, the Sun is tlye(non-
exploding) star from which neutrinos have been detected.

e oscillations i.e. stellar seismology. Many stars oscillate, and their frequency spectmitains
information about the speed of sound waves inside the star, and tleesdfout the interior
density and temperature profiles. This technique has provided accareteasnts on detailed
structure models for the Sun, and is now also being applied to other stars.

The timespan of any observations is much smaller than a stellar lifetime: obsesvatio like
snapshots in the life of a star. The observed properties of an indivitiaratontain no (direct) infor-
mation about its evolution. The diversity of stellar properties (radii, luminos#ig$ace abundances)
does, however, depend on how stars evolve, as well as on intringenties (mass, initial composi-
tion). Properties that are common to a large number of stars must correspond-lived evolution
phases, and vice versa. By studying samples of stars statistically we eathifrelative) lifetimes
of certain phases, which provides another important constraint on tbieytbestellar evolution.

Furthermore, observations of samples of stars reveal certain comalatitween stellar properties
that the theory of stellar evolution must explain. Most important are relatietveden luminosity and
effective temperature, as revealed by Hertzsprung-Russell diagrgrand relations between mass,
luminosity and radius.

1.1.1 The Hertzsprung-Russell diagram

The Hertzsprung-Russell diagram (HRD) is an important tool to test tlozytiod stellar evolution.
Fig. 1.1 shows the colour-magnitude diagram (CMD) of stars in the vicinityeilm, for which the
Hipparcos satellite has measured accurate distances. This is an exampldwha-limitedsample
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Figure 1.2. Colour-magnitude diagrams of a young open cluster, M45Rtb@des, left panel), and a globular
cluster, M3 (right panel).

of stars. In this observers’ HRD, the absolute visual magnitMgeis used as a measure of the
luminosity and a colour indexB(— V or V — |) as a measure for thdtective temperature. It is left
as an exercise to identify various types of stars and evolution phases HRBissuch as the main
sequence, red giants, the horizontal branch, white dwarfs, etc.

Star clusters provide an even cleaner test of stellar evolution. The starduster were formed
within a short period of time (a few Myr) out of the same molecular cloud armétbee share the same
age and (initial) chemical compositidrTherefore, to first-order approximation only the mass varies
from star to star. A few examples of cluster CMDs are given in Fig. 1.2a fgyung open cluster (the
Pleiades) and an old globular cluster (M3). As the cluster age incretagesjost luminous main-
sequence stars disappear and a prominent red giant branch armhtadriranch appear. To explain
the morphology of cluster HRDs atftkrent ages is one of the goals of studying stellar evolution.

1.1.2 The mass-luminosity and mass-radius relations

For stars with measured masses, radii and luminosities (i.e. binary starapvpéot these quantities
against each other. This is done in Fig. 1.3 for the components of doublditlipsing binaries for
which M, RandL are all measured wit 2% accuracy. These quantities are clearly correlated, and
especially the relation between mass and luminosity is very tight. Most of theistiig. 1.3 are
long-lived main-sequence stars; the spread in radii for masses beivwareh2M,, results from the
fact that several more evolved stars in this mass range also satisfy the@@aey criterion. The
observed relations can be approximated reasonably well by power laws:

LeM®*®  and R« MO (1.2)

Again, the theory of stellar evolution must explain the existence and slojpees# relations.

1The stars in a cluster thus consitute a so-cadlieaple stellar population Recently, this simple picture has changed
somewhat after the discovery of multiple populations in many star clusters.
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Figure 1.3. Mass-luminosity (left) and mass-radius (right) relatifmscomponents of double-lined eclipsing
binaries with accurately measurdt] RandL.

1.2 Stellar populations

Stars in the Galaxy are divided intofidirent populations:

e Population I: stars in the galactic disk, in spiral arms and in (relatively ypapgn clusters.
These stars have ages (° yr and are relatively metal-rictZ(~ 0.5 — 1Z,)

e Population II: stars in the galactic halo and in globular clusters, with age®Cyr. These stars
are observed to be metal-poar £ 0.01- 0.12Z,).

An intermediate population (with intermediate ages and metallicities) is also seen iiskhaf the
Galaxy. Together they provide evidence for #femical evolutiorof the Galaxy: the abundance
of heavy elementsZ) apparently increases with time. This is the result of chemical enrichment by
subsequent stellar generations.

The study of chemical evolution has led to the hypothesis of a ‘Populatiocoltkisting of the
first generation of stars formed after the Big Bang, containing only lgetraand helium and no
heavier elements (‘metal-freeZ,= 0). No metal-free stars have ever been observed, probably due to
the fact that they were massive and had short lifetimes and quickly edricbéJniverse with metals.
However, a quest for finding their remnants has turned up many very pmalstars in the halo,
with the current record-holder having an iron abundaxge= 4 x 1(T6XFQ®.

1.3 Basic assumptions

We wish to build a theory of stellar evolution to explain the observational contstrhighlighted
above. In order to do so we must make some basic assumptions:

e stars are considered to [s®latedin space, so that their structure and evolution depend only on
intrinsic properties (mass and composition). For most single stars in the Galaxy thlisi@on
is satisfied to a high degree (compare for instance the radius of the Sun evilistance to its
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nearest neighbour Proxima Centauri, see exercise 1.2). Howewstafs in dense clusters, or
in binary systems, the evolution can be influenced by interaction with neiginigostars. In
this course we will mostly ignore these complicatirfeeets (many of which are treated in the
Master course oBinary Star3.

e stars are formed withlmomogeneous compositiamreasonable assumption since the molecular
clouds out of which they form are well-mixed. We will often assume a so-dtaljeasi-solar’
composition K = 0.70,Y = 0.28 andZ = 0.02), even though recent determinations of solar
abundances have revised the solar metallicity dowf #00.014. In practice there is relatively
little variation in composition from star to star, so that the initial mass is the most importan
parameter that determines the evolution of a star. The composition, in partioellaetallicity
Z, is of secondary influence but can have importdfaats especially in very metal-poor stars
(see§ 1.2).

e spherical symmetrywhich is promoted by self-gravity and is a good approximation for most
stars. Deviations from spherical symmetry can arise if non-centrat$dnecome important
relative to gravity, in particular rotation and magnetic fields. Although mang sta&robserved
to have magnetic fields, the field strength (even in highly magnetized neutrshistalways
negligible compared to gravity. Rotation can be more important, ancbthgon ratecan be
considered an additional parameter (besides mass and composition) dietgtiménstructure
and evolution of a star. For the majority of stars (e.g. the Sun) the forcelv@/are small
compared to gravity. However, some rapidly rotating stars are seen (hsroéamterferome-
try) to be substantially flattened.

1.4 Aims and overview of the course

In the remainder of this course we will:
¢ understand the global properties of stars: energetics and timescales

¢ study the micro-physics relevant for stars: the equation of state, nueksaions, energy trans-
port and opacity

¢ derive the equations necessary to model the internal structure of stars
e examine (quantitatively) the properties of simplified stellar models

e survey (mostly qualitatively) how stars offfirent masses evolve, and the endpoints of stellar
evolution (white dwarfs, neutron stars)

e discuss a few ongoing research areas in stellar evolution

Suggestions for further reading

The contents of this introductory chapter are also largely covered bgpt&hh of RuaLnik, which
provides nice reading.




Exercises

1.1 Evolutionary stages

In this course we use many concepts introduced in the inttody astronomy classes. In this exercise
we recapitulate the names of evolutionary phases. Duriadetttures you are assumed to be familiar
with these terms, in the sense that you are able to explain thgeneral terms.

We encourage you to usesgkorL & OsrtLIE, Introduction to Modern Astrophysicsr the book of the
first year course (¥kBunt, Het leven van sterrgrto make a list of the concepts printedifalic with a

brief explanation in your own words.

(a) Figure 1.1 shows the location of stars in the solar naigiind in the Hertzsprung-Russel dia-
gram. Indicate in Figure 1.1 where you would find:

main-sequence stars,

neutron stars,

the Sun, black holes,

red giants, binary stars,

horizontal branch stars, planets,

asymptotic giant branch (AGB) stars, pre-main sequenas sta
centrals star of planetary nebulae, hydrogen burning stars

white dwarfs,

helium burning stars.

(b) Through which stages listed above will the Sun evolvettfiam in chronological order. Through
which stages will a massive star evolve?

(c) Describe the following concepts briefly in your own wardfsu will need the concepts indicated
with * in the coming lectures.

ideal gas*, Jeans mass,

black body, Schwarzschild criterion,

virial theorem?*, energy transport by radiation,

first law of thermodynamics*, energy transport by convettio
equation of state, pp-chain,

binary stars, CNO cycle,

star cluster, nuclear timescale*,

interstellar medium, thermal or Kelvin-Helmholtz timeleta
giant molecular clouds, dynamical timescale*

1.2 Basic assumptions
Let us examine the three basic assumptions made in the tbéstgllar evolution:

(a) Stars are assumed to be isolated in spathe star closest to the sun, Proxima Centauri, is 4.3
light-years away. How many solar radii is that? By what fegtare the gravitational field and
the radiation flux diminished? Many stars are formed in eltssand binaries. How could that
influence the life of a star?

(b) Stars are assumed to form with a uniform compositidfhat elements is the Sun made of? Just
after the Big Bang the Universe consisted almost purely dfbgen and helium. Where do all
the heavier elements come from?

(c) Stars are assumed to be spherically symmetritthy are stars spherically symmetric to a good
approximation? How would rotatiorffact the structure and evolution of a star? The Sun rotates
around its axis every 27 days. Calculate the ratio of is therifegal acceleratiora over the
gravitational acceleratiog for a mass element on the surface of the Sun. Does rotatiaeirde
the structure of the Sun?

1.3 Mass-luminosity and mass-radius relation

(&) The masses of stars are approximately in the rar@®M, < M < 100M,. Why is there an
upper limit? Why is there a lower limit?
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(b)

(©)

(d)

Can you think of methods to measure (1) the mass, (2) tthegaand (3) the luminosity of a
star? Can your methods be applied for any star or do theyneegpécial conditions. Discuss your
methods with your fellow students.

Figure 1.3 shows the luminosity versus the mass (leff)tae radius versus the mass (right) for
observed main sequence stars. We can approximate a masgsitpnand mass-radius relation
by fitting functions of the form

L M \* R M\

= (M) ~_ (M (1.3)

Lo \Mo Lo \Mo
Estimatex andy from Figure 1.3.
Which stars live longer, high mass stars (which have moed) for low mass stars? Derive an
expression for the lifetime of a star as a function of its mé3s
[Hints: Stars spend almost all their life on the main seqedmarning hydrogen until they run

out of fuel. First try to estimate the life time as functiontbeé mass (amount of fuel) and the
luminosity (rate at which the fuel is burned).]

1.4 The ages of star clusters
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Figure 1.4. H-R diagrams of three star clusters (fromARNix).

The stars in a star cluster are formed more or less simultefeby fragmentation of a large molecular
gas cloud.

(@)
(b)

(©)

In Fig. 1.4 the H-R diagrams are plotted of the stars indldiferent clusters. Which cluster is
the youngest?

Think of a method to estimate the age of the clustersudswith your fellow students. Estimate
the ages and compare with the results of your fellow students

(*) Can you give an error range on your age estimates?



Chapter 2

Mechanical and thermal equilibrium

In this chapter we apply the physical principles of mass conservation amgntom conservation to
derive two of the fundamental stellar structure equations. We shall sesténg are generally in a
state of almost complet@echanical equilibriumwhich allows us to derive and apply the important
virial theorem We consider the basic stellar timescales and see that most (but not alBrstalso

in a state of energy balance callégdrmal equilibrium

2.1 Coordinate systems and the mass distribution

The assumption of spherical symmetry implies that all interior physical quar(sties as density,
pressureP, temperaturd’, etc) depend only on one radial coordinate. The obvious coordinateto u
in a Eulerian coordinate system is the radius of a spherical sh@l,0...R). In an evolving star,
all quantities also depend on timeWhen constructing the fierential equations for stellar structure
one should thus generally consider partial derivatives of physicaitijies with respect to radius and
time, d/0r andd/ot, taken at constartandr, respectively.

The principle of mass conservation applied to the mam®fia spherical shell of thickness ct
radiusr (see Fig. 2.1) gives

dm(r,t) = 4nr?pdr — dar?pudt, (2.1)
wherev is the radial velocity of the mass shell. Therefore one has

om 5 om 2

o Anr< p and o Anr<p . (2.2)

The first of these partial fierential equations relates the radial mass distribution in the star to the
local density: it constitutes the first fundamental equation of stellar steictdote thajp = p(r, t)

is not known a priori, and must follow from other conditions and equatiohg. Second equation of
(2.2) represents the change of mass inside a sphere of radiiesto the motion of matter through

its surface; at the stellar surface this gives the mass-loss rate (if thesteibaa wind withv > 0) or
mass-accretion rate (if there is inflow with< 0). In a static situation, where the velocity is zero, the
first equation of (2.2) becomes an ordinarffeliential equation,

Z—T = 4nr? p. (2.3)

This is almost always a good approximation for stellar interiors, as we alllategration yields

the massn(r) inside a spherical shell of radius

r
m(r) = f 4nr?pdr’.
0



m+dm

P(r+dr)

Figure 2.1. Mass shell inside a spherically symmetric
star, at radius and with thicknessd The mass of the
shell is dn = 4ar?p dr. The pressure and the gravita-
tional force acting on a cylindrical mass element are
dr also indicated.

Sincem(r) increases monotonically outward, we can alsorngg as our radial coordinate, instead
of r. Thismass coordinateoften denoted asy or simplym, is a Lagrangian coordinate that moves
with the mass shells:

I
m:=m :f 4nr?pdr’ (me0...M). (2.4)
0

It is often more convenient to use a Lagrangian coordinate instead déedfucoordinate. The mass
coordinate is defined on a fixed interval,e 0... M, as long as the star does not lose mass. On the
other hand depends on the time-varying stellar radRisFurthermore the mass coordinate follows
the mass elements in the star, which simplifies many of the time derivatives thatr apfiee stellar
evolution equations (e.g. equations for the composition). We can thus wirieaitities as functions
of m,i.e.r =r(m), p = p(m), P = P(m), etc.

Using the coordinate transformation» m, i.e.

0 o or
the first equation of stellar structure becomes in terms of the coordimate
or 1
= - = 2.6
om  4nr2p (2.:6)

which again becomes an ordinarytdrential equation in a static situation.

2.1.1 The gravitational field

Recall that a star is a self-gravitating body of gas, which implies that gravityeiiriving force
behind stellar evolution. In the general, non-spherical case, the drandbacceleratiorg can be
written as the gradient of the gravitational potentik —V®, where® is the solution of the Poisson
equation

V2® = 4rGp.
Inside a spherically symmetric body, this reduceg te |g| = d®/dr. The gravitational acceleration
at radiusr and equivalent mass coordinaias then given by

_Gm

=7 2.7)
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Spherical shells outsideapply no net force, so thatonly depends on the mass distribution inside
the shell at radius. Note thaty is the magnitude of the vectgrwhich points inward (toward smaller
r or m).

2.2 The equation of motion and hydrostatic equilibrium

We next consider conservation of momentum inside a star, i.e. Newtorgadéaw of mechanics.

The net acceleration on a gas element is determined by the sum of alléotoeson it. In addition to

the gravitational force considered above, forces result from thespre exerted by the gas surround-

ing the element. Due to spherical symmetry, the pressure forces actingritatiy (perpendicular to

the radial direction) balance each other and only the pressure fartieg along the radial direction

need to be considered. By assumption we ignore other forces that mighside a star (Sect. 1.3).
Hence the net acceleratior="0°r /4t? of a (cylindrical) gas element with mass

dm= pdrdS (2.8)
(where d is its radial extent andSlis its horizontal surface area, see Fig. 2.1) is given by
i dm=—-gdm+ P(r)dS — P(r + dr) dS. (2.9)

We can writeP(r + dr) = P(r) + (aP/or) - dr, hence after substituting egs. (2.7) and (2.8) we obtain
theequation of motiotior a gas element inside the star:

’r Gm 10P

- = _=- 2.10

o2 r2  por (2.10)
This is a simplified from of the Navier-Stokes equation of hydrodynamiqdjebto spherical sym-
metry (see Meper). Writing the pressure gradied/dr in terms of the mass coordinate by
substituting eq. (2.6), the equation of motion is

2
P

= 2.11
ot? r2 om ( )

Hydrostatic equilibrium  The great majority of stars are obviously in such long-lived phases of
evolution that no change can be observed over human lifetimes. This meaessmo noticeable
acceleration, and all forces acting on a gas element inside the star alractly éalance each other.
Thus most stars are in a state of mechanical equilibrium which is more commdlely lepdrostatic
equilibrium(HE).

The state of hydrostatic equilibrium, setting="0 in eq. (2.10), yields the secondfféirential
equation of stellar structure:

dP Gm
a = —r—zp, (212)
or with eq. (2.6)
dP Gm

A direct consequence is that inside a star in hydrostatic equilibrium, theyseealways decreases
outwards.

Egs. (2.6) and (2.13) together determine thechanical structuref a star in HE. These are
two equations for three unknown functionsrof(r, P andp), so they cannot be solved without a
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third condition. This condition is usually a relation betwdemndp called theequation of state
(see Chapter 3). In general the equation of state depends on the temgé&ras well, so that the
mechanical structure depends also on the temperature distribution insidarttieeson its thermal
structure. In special cases the equation of state is independdntarid can be written aB =
P(p). In such cases (known as barotropes or polytropes) the mechatrigeture of a star becomes
independent of its thermal structure. This is the case for white dwarfge ahall see later.

Estimates of the central pressure A rough order-of-magnitude estimate of the central pressure can
be obtained from eq. (2.13) by setting

dp Psurt — Pc Pc
e VR m~ M, r~3R
which yields
p. . 2GM° (2.14)
C r R '

For the Sun we obtain from this estima®g ~ 7 x 105 dyn/cn? = 7 x 10° atm.
A lower limit on the central pressure may be derived by writing eq. (2.13) as

dP  Gmdm _ d(sz) Gn?

& e @~ a e 2
and thus
d Gn? Gn?

The quantity¥(r) = P+ Gn?/(8ar%) is therefore a decreasing functionrofAt the centre, the second
term vanishes because « r3 for smallr, and hence?(0) = P.. At the surface, the pressure is
essentially zero. From the fact thEtmust decrease withit thus follows that

1 GM?
"8 R
In contrastto eq. (2.14), this is a strict mathematical result, valid for aningtgdrostatic equilibrium
regardless of its other properties (in particular, regardless of its detfisitibution). For the Sun we
obtainP; > 4.4 x 10" dyn/cn?. Both estimates indicate that an extremely high central pressure is
required to keep the Sun in hydrostatic equilibrium. Realistic solar models skeogettiral density
to be 24 x 107 dyn/cn?.

b (2.16)

2.2.1 The dynamical timescale

We can ask what happens if the state of hydrostatic equilibrium is violated:fést do changes
to the structure of a star occur? The answer is provided by the equatiotafn, eq. (2.10). For
example, suppose that the pressure gradient that supports the #tat goavity suddenly drops. All
mass shells are then accelerated inwards by gravity: the star starts toediidfree fall”. We can
approximate the resulting (inward) acceleration by

i~ o J
N — THE X | —
T2 ||
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whereryg is the free-fall timescale that we want to determine. Sinice- g ~ GM/R? for the entire
star, we obtain

R | R3

Of course each mass shell is accelerated affardint rate, so this estimate should be seen as an
average value for the star to collapse over a dist@&CEhis provides one possible estimate for the
dynamical timescalef the star. Another estimate can be obtained in a similar way by assuming that
gravity suddenly disappears: this gives the timescale for the outwarspesgradient to explode the
star, which is similar to the time it takes for a sound wave to travel from the ctenthe surface of

the star. If the star is close to HE, all these timescales have about the samegivaluby eq. (2.17).
Since the average densjty= 3M/(47R%), we can also write this (hydro)dynamical timescale as

R -1/2
Tdyn = G_M r5 (Gﬁ) . (218)
For the Sun we obtain a very small valuergf, ~ 1600 sec or about half an hour (0.02 days). This

is very much smaller than the age of the Sun, which is 4.6 Gy &5 x 10" sec, by 14 orders of
magnitude. This result has several important consequences for tren8uther stars:

¢ Any significant departure from hydrostatic equilibrium should very dyitdéad to observable
phenomena: either contraction or expansion on the dynamical timescalee gfahcannot
recover from this disequilibrium by restoring HE, it should lead to a collapsa explosion.

e Normally hydrostatic equilibrium can be restored after a disturbance (wecuwiiider this
dynamical stabilityof stars later). However a perturbation of HE may lead to small-scale oscil-
lations on the dynamical timescale. These are indeed observed in the Smaaydther stars,
with a period of minutes in the case of the Sun. Eq. (2.18) tells us that the puolgatiod is a
(rough) measure of the average density of the star.

e Apart from possible oscillations, stars are extremely close to hydrostatiGbemym, since
any disturbance is immediately quenched. We can therefore be confideetith(2.13) holds
throughout most of their lifetimes. Stars do evolve and are thereforeongpletely static, but
changes occur very slowly compared to their dynamical timescale. Stal®ecid to evolve
guasi-staticallyi.e. through a series of near-perfect HE states.

2.3 The virial theorem

An important consequence of hydrostatic equilibrium is\thi@l theorem which is of vital impor-
tance for the understanding of stars. It connects two important enesgywoirs of a star and allows
predictions and interpretations of important phases in the evolution of stars.

To derive the virial theorem we start with the equation for hydrostatic eqiuifibeq. (2.13). We
multiply both sides by the enclosed voluie= %m’3 and integrate ovam:

M M
dpP Gm
4_.3 1
Zar°—dm= -2 ——dm 2.1

The integral on the right-hand side has a straightforward physical netatpon: it is thegravitational
potential energyf the star. To see this, consider the work done by the gravitational Fotoedring
a mass elemedim from infinity to radiusr:

r r
6W:f F-dr:f GTzémdr:—GTMém.

()
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The gravitational potential energy of the star is the work performed byrthetgtional force to bring
all mass elements from infinity to their current radius, i.e.

M
Eg = —f LU (2.20)
0 r
The left-hand side of eq. (2.19) can be integrated by parts:
Ps Vs
f VdP:[V-P]i—f Pdv (2.21)
Pe 0

wherec ands denote central and surface values. Combining the above expressieqs(119) we
obtain

Vs
%@mm_i;pwzg%n (2:22)

with P(R) the pressure at the surface of the volume. This expression is udedul tive pressure from
the surrounding layers is substantial, e.g. when we consider only thetarstar. If we consider
the star as a whole, however, the first term vanishes because tharprasshe stellar surface is
negligible. In that case

3 f PV = Egn (2.23)
0
or, since & = dm/p,
M
o P

This is the general form of the virial theorem, which will prove valuable ldteells us that that the
average pressure needed to support a star in HE is equ%l&@f/v. In particular it tells us that a
star that contracts quasi-statically (that is, slowly enough to remain in HE) nurebse its internal
pressure, sinciey,| increases while its volume decreases.

The virial theorem for an ideal gas The pressure of a gas is related to its internal energy. We will
show this in Ch. 3, but for the particular case of an ideal monatomic gas gyteaee. The pressure
of an ideal gas is given by

P = nkT = £k, (2.25)
pumy

wheren = N/V is the number of particles per unit volume, gnés mass of a gas particle in atomic
mass units. The kinetic energy per particlegis: %kT, and the internal energy of an ideal monatomic
gas is equal to the kinetic energy of its particles. The internal energynitenass is then
uo SKT _3P
S 2umy 2p°
We can now interpret the left-hand side of the virial theorem (eq. 2.2fijR®) dm = £ [udm =
%Eim, whereEjq is the total internal energy of the star. The virial theorem for an idealkghgsrefore

(2.26)

Eint = —%Egr (2.27)

This important relation establishes a link between the gravitational potentigyeaerd the internal
energy of a star in hydrostatic equilibrium that consists of an ideal gas.s{\&ll see later that the
ideal gas law indeed holds for most stars, at least on the main sequereeyirial theorem tells
us that a more tightly bound star must have a higher internal energy, i.e. itombstter. In other
words, a star that contracts quasi-statically must get hotter in the prddestull implications of this
result will become clear when we consider the total energy of a star inravshite.
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Estimate of the central temperature Using the virial theorem we can obtain an estimate of the
average temperature inside a star composed of ideal gas. The gravitatiergy of the star is found
from eq. (2.20) and can be written as

GM?
where« is a constant of order unity (determined by the distribution of matter in the stahyi.e
the density profile). Using eq. (2.26), the internal energy of the stBmhis= %k/(,umU)dem =
gk/(,umu)T M, whereT is the temperature averaged over all mass shells. By the virial theorem we
then obtain
- aumy G
T=-—
k

= (2.29)

wIR

Takinga ~ 1 andu = 0.5 for ionized hydrogen, we obtain for the Stin~ 4 x 10°K. This is the
average temperature required to provide the pressure that is needegptthle Sun in hydrostatic
equilibrium. Since the temperature in a star normally decreases outwardslsit Braapproximate
lower limit on the central temperature of the Sun. At these temperatureydgmdand helium are
indeed completely ionized. We shall see thiatx 10’ K is high enough for hydrogen fusion to take
place in the central regions of the Sun.

The virial theorem for a general equation of state Also for equations of state other than an ideal
gas a relation between pressure and internal energy exists, whicmweitagenerally as

u=gr. (2.30)
e,

We have seen above that= % for an ideal gas, but it will turn out (see Ch. 3) that this is valid not
only for an ideal gas, but for all non-relativistic particles. On the otlerd if we consider a gas of
relativistic particles, in particular photons (i.e. radiation pressuyre) 3. If ¢ is constant throughout
the star we can integrate the left-hand side of eq. (2.23) to obtain a moreabfawe of the virial
theorem:

Eint = —;Tl;¢Egr (2-31)

2.3.1 The total energy of a star

The total energy of a star is the sum of its gravitational potential energy,tésal energy and its
kinetic energyExin (due to bulk motions of gas inside the star, not the thermal motions of the gas
particles):

Etot = Egr + Eint + Exin. (2.32)

The star is bound as long as its total energy is negative.

For a star in hydrostatic equilibrium we can &&f, = 0. Furthermore for a star in HE the virial
theorem holds, so th&y, andEjy; are tightly related by eq. (2.31). Combining egs. (2.31) and (2.32)
we obtain the following relations:

-3
Etot = Eint+ Egr = ¢7Eint = (1_ %¢)Egr (2-33)
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As long asp < 3 the star is bound. This is true in particular for the important case of a staisting
of an ideal gas (eq. 2.27), for which we obtain

Eiot = Eint + Egr = — Eint = %Egr <0 (2.34)

In other words, its total energy of such a star equals half of its gravitdgiamtantial energy.
From eq. (2.34) we can see that the virial theorem has the following impadtasequences:

e Gravitationally bound gas spheres musthotto maintain hydrostatic equilibrium: heat pro-
vides the pressure required to balance gravity. The more compact sspieee, the more
strongly bound, and therefore the hotter it must be.

e A hot sphere of gas radiates into surrounding space, therefore m$$atose energy from its
surface. The rate at which energy is radiated from the surface igrfiaosityof the star. In
the absence of an internal energy source, this energy loss musttleeukcrease of the total
energy of the stal. = —dE;y¢/dt > 0, sinceL is positive by convention.

e Taking the time derivative of eq. (2.34), we find that as a consequériasing energy:
Egr = 2L <0,
meaning that the staontracts(becomes more strongly bound), and
Eim =L>0,

meaning that the stggets hotter— unlike familiar objects which cool when they lose energy.
Therefore a star can be said to havaegative heat capacityHalf the energy liberated by
contraction is used for heating the star, the other half is radiated away.

For the case of a star that is dominated by radiation pressure, we finhat—Eg, and there-
fore the total energ¥:,: = 0. Therefore a star dominated by radiation pressure (or more generally,
by the pressure of relativistic particles) is only marginally bound. No gnisrgequired to expand or
contract such a star, and a small perturbation would be enough to liendstable and to trigger its
collapse or complete dispersion.

2.3.2 Thermal equilibrium

If internal energy sources are presentin a star due to nuclear reatalang place in the interior, then
the energy loss from the surface can be compenséated.L, . = —dE,,/dt. In that case the total
energy is conserved and eq. (2.34) tells us Bagt= Eint = Egr = 0. The virial theorem therefore
states that botli; and Ey, are conserved as well: the star cannot, for example, contract and cool
while keeping its total energy constant.

In this state, known ahermal equilibrium(TE), the star is in a stationary state. Energy is radiated
away at the surface at the same rate at which it is produced by nucéediorss in the interior. The
star neither expands nor contracts, and it maintains a constant interiorregorpe We shall see
later that this temperature is regulated by the nuclear reactions themselels,isvaombination
with the virial theorem act like a stellar thermostat. Main-sequence stars likeuthare in thermal
equilibrium, and a star can remain in this state as long as nuclear reactiongppiythe necessary
energy.
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Note that the arguments given above imply that both hydrostatic equilibriurthanahal equilib-
rium arestableequilibria, an assumption that we have yet to prove (see Ch. 7). It isveliaiasy to
understand why TE is stable, at least as long as the ideal-gas presmirnatés ¢ < 3 in eq. 2.31).
Consider what happens when TE is disturbed, e.g. vihgn> L temporarily. The total energy then
increases, and the virial theorem states that as a consequence the stexpaond and cool. Since
the nuclear reaction rates typically increase strongly with temperature t¢hef rauclear burning and
thusLnyc Will decrease as a result of this cooling, until TE is restored whenL .

2.4 The timescales of stellar evolution

Three important timescales are relevant for stellar evolution, associatedhaitiges to the mechani-
cal structure of a star (described by the equation of motion, eq. 2.1dngekl to its thermal structure
(as follows from the virial theorem, see also Sect. 5.1) and changes imifsosition, which will be
discussed in Ch. 6.

The first timescale was already treated in Sec. 2.2.1: it isdgmamical timescalgiven by
eq. (2.18),

= R\32 Mo 1/2
Tdyn ~ \’ G_M =~ 002(@) (V) dayS (235)

The dynamical timescale is the timescale on which a star reacts to a perturbatiairagtatic equi-
librium. We saw that this timescale is typically of the order of hours or less, whighns that stars
are extremely close to hydrostatic equilibrium.

2.4.1 The thermal timescale

The second timescale describes how fast changes in the thermal strfctuséar can occur. It is
therefore also the timescale on which a star in thermal equilibrium reacts whEg issperturbed.

To obtain an estimate, we turn to the virial theorem: we saw in Sec. 2.3.1 thatsthiaut a nuclear
energy source contracts by radiating away its internal energy conteatEi,; ~ —2Egr, where the

last equality applies strictly only for an ideal gas. We can thus definghérenalor Kelvin-Helmholtz

timescaleas the timescale on which this gravitational contraction would occur:

——yr (2.36)

Here we have used eq. (2.28) &g with « ~ 1.

The thermal timescale for the Sun is abols g 10’ years, which is many orders of magnitude
larger than the dynamical timescale. There is therefore no direct oliserlaevidence that any
star is in thermal equilibrium. In the late 19th century gravitational contractiapieposed as the
energy source of the Sun by Lord Kelvin and, independently, by Hammman Helmholtz. This led to
an age of the Sun and an upper limit to the age the Earth that was in conflictmetigieg geological
evidence, which required the Earth to be much older. Nuclear reactiomessirece turned out to be
a much more powerful energy source than gravitational contraction, iatiostars to be in thermal
equilibrium for most & 99 %) of their lifetimes. However, several phases of stellar evolutionngur
which the nuclear power source is absent offingnt, do occur on the thermal timescale.
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2.4.2 The nuclear timescale

A star can remain in thermal equilibrium for as long as its nuclear fuel supgly.|d he associated
timescale is called theuclear timescaleand since nuclear fuel (say hydrogen) is burned into ‘ash’
(say helium), itis also the timescale on which composition changes in the stelléorimecur.

The energy source of nuclear fusion is the direct conversion of a smaetlion ¢ of the rest mass
of the reacting nuclei into energy. For hydrogen fusipry 0.007; for fusion of helium and heavier
elementsp is smaller by a factor 10 or more. The total nuclear energy supply carfahelae written
asEnuc = ¢Mnuc? = ¢ fucMc?, wheref, ¢ is that fraction of the mass of the star which may serve as
nuclear fuel. In thermal equilibriurh = Ly = Enue SO We can estimate the nuclear timescale as

Thuc = @: = (f’fnuc'\/I ~ 1010 ML—LO r. (2.37)
The last approximate equality holds for hydrogen fusion in a star like thev@tmhas 70 % of its
initial mass in hydrogen and fusion occurring only in the inset0 % of its mass (the latter result
comes from detailed stellar models). This long timescale is consistent with theggedlevidence
for the age of the Earth.

We see that, despite only a small fraction of the mass being available for fue®muclear
timescale is indeed two to three orders of magnitude larger than the thermal fiené3terefore the
assumption that stars can reach a state of thermal equilibrium is justified. Mioamze, we have
found:

Thnuc > TKH > Tdyn-

As a consequence, the rates of nuclear reactions determine the ptallaoésgolution, and stars may
be assumed to be in hydrostatic and thermal equilibrium throughout mostmivas.

Suggestions for further reading

The contents of this chapter are covered more extensively by Chapité 4eoer and by Chapters 1
to 4 of KipPENHAHN & W EIGERT.

Exercises

2.1 Density profile

In a star with mas$/, assume that the density decreases from the center to flaeesas a function of
radial distance, according to

r 2
o=nel1- (&) | (2.38)
wherep. is a given constant arilis the radius of the star.

(&) Findm(r).
(b) Derive the relation betweer andR.
(c) Show that the average density of the star.&pQ
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2.2 Hydrostatic equilibrium
(a) Consider an infinitesimal mass elememtidside a star, see Fig. 2.1. What forces act on this mass
element?

(b) Newton’s second law of mechanics, or the equation of ongtstates that the net force acting on
a body is equal to its acceleration times it mass. Write dowvenetiuation of motion for the gas
element.

(c) In hydrostatic equilibrium the net force is zero and tlas glement is not accelerated. Find an
expression of the pressure gradient in hydrostatic egiuititn

(d) Find an expression for the central pressBgeby integrating the pressure gradient. Use this to
derive the lower limit on the central pressure of a star inrbgtatic equilibrium, eq. (2.16).

(e) Verify the validity of this lower limit for the case of asstwith the density profile of eq. (2.38).

2.3 The virial theorem
An important consequence of hydrostatic equilibrium ig fhénks the gravitational potential energy
Egr and the internal thermal ener@y.
(a) Estimate the gravitational enerBy; for a star with mas#! and radiuk, assuming (1) a constant
density distribution and (2) the density distribution of €2}38).

(b) Assume that a star is made of an ideal gas. What is the &iimé&irnal energy per particle for an
ideal gas? Show that the total internal enekgy, is given by:

L 2
E'm_fo (2’umup(r)T(r))4nr dr. (2.39)

(c) Estimate the internal energy of the Sun by assuming aahstensity and (r) ~ (T) = %Tc ~
5x 10PK and compare your answer to your answer for a). What is theeatigy of the Sun? Is
the Sun bound according to your estimates?

It is no coincidence that the order of magnitude Ky and Ei,; are the same This follows from
hydrostatic equilibrium and the relation is known as thévVitheorem. In the next steps we will derive
the virial theorem starting from the pressure gradient aftrm of eq. (2.12).

(d) Multiply by both sides of eq. (2.12) by and integrate over the whole star. Use integration by
parts to show that

R R
f 3P 4nr?dr = f wp%rrzdr. (2.40)
0 0

(e) Now derive a relation betwedsy, andE;n;, the virial theorem for an ideal gas.
() (*) Also show that for the average pressure of the star

1 R* 2 1Egr
<P>—v£ P 4nr dr——év,

where V is the volume of the star.

(2.41)

As the Sun evolved towards the main sequence, it contractddriugravity while remaining close to
hydrostatic equilibrium. Its internal temperature chahffem about 30 000 K to about® 10°K.

(g) Find the total energy radiated during away this conimact Assume that the luminosity during
this contraction is comparable L@, and estimate the time taken to reach the main sequence.

2.4 Conceptual questions

Lin reality Eg is larger than estimated above because the mass distribution is moretcateckto the centre.
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(a) Use the virial theorem to explain why stars are hot, iaeha high internal temperature and
therefore radiate energy.

(b) What are the consequences of energy loss for the stagialipéor its temperature?
(c) Most stars are in thermal equilibrium. What is compemggfdr the energy loss?

(d) What happens to a star in thermal equilibrium (and in hgtétic equilibrium) if the energy pro-
duction by nuclear reactions in a star drops (slowly enooghdintain hydrostatic equilibrium)?

(e) Why does this have a stabilizinffect? On what time scale does the change take place?
() What happens if hydrostatic equilibrium is violated,.ebg a sudden increase of the pressure.

(g) On which timescale does the change take place? Can yewegamples of processes in stars that
take place on this timescale.

2.5 Three important timescales in stellar evolution

(&) The nuclear timescatg,c.

i. Calculate the total mass of hydrogen available for fusieer the lifetime of the Sun, if 70%
of its mass was hydrogen when the Sun was formed, and only $38blydrogen is in the
layers where the temperature is high enough for fusion.

ii. Calculate the fractional amount of mass converted im@rgy by hydrogen fusion. (Refer to
Table 1 for the mass of a proton and of a helium nucleus.)

iii. Derive an expression for the nuclear timescale in soldts, i.e. expressed in termsRfR,,
M/Mg andL/Lg.

iv. Use the mass-radius and mass-luminosity relations fainfaequence stars to express the
nuclear timescale of main-sequence stars as a functioreoh#fss of the star only.

v. Describe in your own words the meaning of the nuclear toakes

(b) The thermal timescakey.
i-iii. Answer question (a) iii, iv and v for the thermal tinede and calculate the age of the Sun
according to Kelvin.
iv. Why are most stars observed to be main-sequence stars lapndswhe Hertzsprung-gap
called a gap?
(c) The dynamical timescaleyyn.

i-iii. Answer question (a) iii, iv and v for the dynamical temcale.

iv. In stellar evolution models one often assumes that savb/e quasi-statically i.e. that the
star remains in hydrostatic equilibrium throughout. Why senmake this assumption?

v. Rapid changes that are sometimes observed in stars megt@that dynamical processes are
taking place. From the timescales of such changes - usustilfasions with a characteristic
period - we may roughly estimate the average density of the $he sun has been observed
to oscillate with a period of minutes, white dwarfs with pels of a few tens of seconds.
Estimate the average density for the Sun and for white dwarfs

(d) Comparison.

i. Summarize your results for the questions above by comgutie nuclear, thermal and dy-
namical timescales for a 1, 10 and 5 main-sequence star. Put your answers in tabular
form.

ii. For each of the following evolutionary stages indicatewhich timescale they occupre-
main sequence contraction, supernova explosion, coreoggdrburning, core helium burn-
ing.

iii. When the Sun becomes a red giant (RG), its radius willéase to 208, and its luminosity
to 3000,. Estimatergy, andrky for such a RG.

iv. How large would such a RG have to becomefg), > txy? Assume both R and L increase
at constant fective temperature.
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Chapter 3

Equation of state of stellar interiors

3.1 Local thermodynamic equilibrium

Empirical evidence shows that in a part of space isolated from the réisé ddniverse, matter and
radiation tend towards a statetoErmodynamic equilibriumrhis equilibrium state is achieved when
suficient interactions take place between the material particles (‘collisions’patwdeen the pho-
tons and mass patrticles (scatterings and absorptions). In such a staentddlynamic equilibrium
the radiation field becomes isotropic and the photon energy distribution islokdy the Planck
function (blackbody radiation). The statistical distribution functions of ibthmass particles and
the photons are then characterized by a single temperature

We know that stars are not isolated systems, because they emit radiatigersrdte (nuclear)
energy in their interiors. Indeed, the surface temperature of the Suous &B00 K, while we have
estimated from the virial theorem (Sec. 2.3) that the interior temperature rfnihst order of 10K.
Therefore stars amotin global thermodynamic equilibrium. However, it turns out that locally within
a star, a state of thermodynamic equilibriigachieved. This means that within a region much smaller
than the dimensions of a stag(R.), but larger than the average distance between interactions of the
particles (both gas particles and photons), i.e. larger than the mean the¢hmme is a well-defined
local temperaturehat describes the particle statistical distributions.

We can make this plausible by considering the mean free path for photons:

tph = 1/kp

wherex is the opacity coficient, i.e. the fective cross section per unit mass. For fully ionized
matter, a minimum is given by the electron scattering cross section, whigh is 0.4 cn¥/g (see
Ch. 5). The average density in the Supis: 1.4 g/cm®, which gives a mean free path of the order
of £{ph ~ 1cm. In other words, stellar matter is very opaque to radiation. The tempedifi@rence
over a distancép, i.e. between emission and absorption, can be estimated as

dT T 107

AT = afph ~ chph T 104K
which is a tiny fraction (10'1) of the typical interior temperature of 1&. Using a similar estimate,

it can be shown that the mean free path for interactions between ionizeplagades (ions and
electrons) is several orders of magnitude smaller than Hence a small region can be defined
(a ‘point’ for all practical purposes) which is £pn but much smaller than the length scale over
which significant changes of thermodynamic quantities occur. This is daltedl thermodynamic
equilibrium(LTE). We can therefore assume a well-defined temperature distributiiole ithee star.
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Furthermore, the average time between particle interactions (the mean freestimeh shorter
than the timescale for changes of the macroscopic properties. Theseftate of LTE is secured
at all times in the stellar interior. The assumption of ET&nstitutes a great simplification. It
enables the calculation of all thermodynamic properties of the stellar gas ina@étheslocal values
of temperature, density and composition, as they change from the centeestartace.

3.2 The equation of state

The equation of state (EOS) describes the microscopic properties of stelltar, for given density
o, temperaturd and compositiorX;. It is usually expressed as the relation between the pressure and
these quantities:

P =P(p, T, X) (3.1)

Using the laws of thermodynamics, and a similar equation for the internalyebirg T, X;), we can
derive from the EOS the thermodynamic properties that are needed tibeebe structure of a star,
such as the specific heatg andcp, the adiabatic exponentyand the adiabatic temperature gradient
Vad.

An example is the ideal-gas equation of state, which in the previous chaptehawe tacitly
assumed to hold for stars like the Sun:

PonkT or P=— ..
pmy

In this chapter we will see whether this assumption was justified, and how tBe&®be extended to
cover all physical conditions that may prevail inside a star. The idedbagagertains to particles that
behave according to classical physics. However, both quantum-meahand special relativistic ef-
fects may be important under the extreme physical conditions in stellar intdni@ddition, photons
(which can be described as extremely relativistic particles) can be an impsotarce of pressure.

We can define an ideal grerfectgas as a mixture of free, non-interacting particles. Of course
the particles in such a gas do interact, so more precisely we require thainteedction energies
are small compared to their kinetic energies. In that case the internalyevfetige gas is just the
sum of all kinetic energies. From statistical mechanics we can derive dipemies of such a perfect
gas, both in the classical limit (recovering the ideal-gas law) and in the quamgchanical limit
(leading to electron degeneracy), and both in the non-relativistic and relétevistic limit (e.g. valid
for radiation). This is done in Sect. 3.3.

In addition, variousron-idealeffects may become important. The high temperaturelf K) in
stellar interiors ensure that the gas will be fully ionized, but at lower tenipes(in the outer layers)
partial ionization has to be considered, with importaiiées on the thermodynamic properties (see
Sect. 3.5). Furthermore, in an ionized gdsctrostatic interactiondetween the ions and electrons
may be important under certain circumstances (Sect. 3.6).

3.3 Equation of state for a gas of free particles

We shall derive the equation of state for a perfect gas from the prisaybatistical mechanics. This
provides a description of the ions, the electrons, as well as the photoresdedip stellar interior.

IN.B. note the dierence between (locafermodynamic equilibriuriTgadr) = Trad(r) = T(r)) and the earlier defined,
global property othermal equilibrium(E;,; = const, orL = Lyyc).
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Let n(p) be the distribution of momenta of the gas particles ri(e) dp represents the number of
particles per unit volume with momentae [p...p + dp]. If n(p) is known then the total number
density (number of particles per unit volume), the internal energy densisrifal energy per unit
volume) and the pressure can be obtained from the following integrals:

number density n:f n(p) dp (3.2)
0
internal energy density U :f epn(p) dp = N{ep) (3.3)
0
pressure P = %f pVpN(p) dp = 2n(pvp) (3.4)
0

Heree, is the kinetic energy of a particle with momentymandyy, is its velocity. Eq. (3.2) is trivial,
and eq. (3.3) follows from the perfect-gas assumption. The presdergaheq. (3.4) requires some
explanation.

Consider a gas af particles in a cubical box with sides of lendth= 1 cm. Each particle bounces
around in the box, and the pressure on one side of the box results feomaimentum imparted by
all the particles colliding with it. Consider a particle with momentprand corresponding velocity
coming in at an anglé with the normal to the surface, as depicted in Fig. 3.1. The time between two
collisions with the same side is

a2
~ vcosd  vcosd

The collisions are elastic, so the momentum transfer is twice the momentum corhperpamdicular
to the surface,

Ap = 2pcosh. (3.9)

The momentum transferred per particle per second and peisaimerefore

Ap
A = VP cos 6. (3.6)

The number of particles in the box with € [p...p+ dp] and 8 € [6...0 + df] is denoted as
n(o, p) do dp. The contribution to the pressure from these particles is then

dP = vp co & n(9, p) do dp. (3.7)

Figure 3.1. Gas particle in a cubical box with a volume of 1&nEach

)/ collision with the side of the box results in a transfer of nestum; the
pressure inside the box is the result of the collective mdamernransfers of
L =1cm all n particles in the box.
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Since the momenta are distributed isotropically over all directions within a solitk érg and
the solid angle @ subtended by those particles withe [6...0 + d9g] equals 2z sinddd, we have
n(6, p) do = n(p) sinkdd and

dP = vpn(p) cog singdadp. (3.8)
The total pressure is obtained by integrating over all anglesq n/2) and momenta. This results
in eq. (3.4) sinC(f,fo’r/2 cog @sinfdg = fol cog 6dcosd = 3.
3.3.1 Relation between pressure and internal energy

In general, the particle energies and velocities are related to their momeatdiagdo special rela-
tivity:

e =p’P+mict, g=e-mc (3.9)
and
_Oe pc
Vp = T (3.10)

We can obtain generally valid relations between the pressure and the irteengy of a perfect gas
in the non-relativistic (NR) limit and the extremely relativistic (ER) limit:

NR limit: in this case the momenfa< mg, so thate, = € - me = %pz/m andv = p/m. Therefore
(pV) = (p?/m) = 2(ep) SO that eq. (3.4) yields

P=2U (3.11)

winy

ER limit: in this casgp > mc so thate, = pcandv = c. Thereforg(pv) = (pc) = (ep), and eq. (3.4)
yields

P=1U (3.12)

wl=

These relations are generally true, oty particle(electrons, ions and photons). We will apply
this in the coming sections. As we saw in the previous Chapter, the cham\gé ln)% in the relation
has important consequences for the virial theorem, and for the stabilitsrsf s

3.3.2 The classical ideal gas

Using the tools of statistical mechanics, we can address the origin of thegdgddw. The mo-
mentum distributiom(p) for classical, non-relativistic particles of massin LTE is given by the
Maxwell-Boltzmanmlistribution:

n(p) dp = e P2k 4202 d . (3.13)

n
(2rmkT)?/2

Here the exponential factoe¢/KT) represents the equilibrium distribution of kinetic energies, the
factor 4rp?dp is the volume in momentum spacpy( Py, Pz) for p € [p... p + dp], and the factor
n/(2rmkT)%? comes from the normalization of the total number densityposed by eq. (3.2). (You
can verify this by starting from the standard integfﬁ e dx = % vr/a, and dfferentiating once

with respect ta to obtain the integrafo()0 gk y2 dx.)
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The pressure is calculated by uswg p/mfor the velocity in eq. (3.4):

n PP
P = 3 iy fo o &2 4 dp, (3.14)

By performing the integration (for this you need tcﬁd'rentiateff e~¢x2 dx once more with respect
to a) you can verify that this indeed yields the ideal gas law

. (3.15)

(N.B. This derivation is for a gas afon-relativisticclassical particles, but it can be shown that the
same relatior® = nkT is also valid forrelativistic classical particles.)

3.3.3 Mixture of ideal gases, and the mean molecular weight

The ideal gas relation was derived for identical particles of nmas$t should be obvious that for

a mixture of free particles of fferent species, it holds for the partial pressures of each of the con-
stituents of the gas separately. In particular, it holds for both the ions anel¢ltrons, as long as
guantum-mechanicalffects can be ignored. The total gas pressure is then just the sum of partial
pressures

Pgas= Pion + Pe = i Pi + Pe = (i Ni + Ne)kT = nkT

wheren; is the number density of ions of elementith massm, = Aim, and charg&;e. Thenn; is
related to the density and the mass fractigof this element as

 Xip o Xip _1op
n = m and Nion = Z =, (3.16)

We have used here the universal gas consRaatk/m, = 8.31447x 10’ erg g1 K~1. The number
density of electrons is given by

ZXip _1p
Ne = Zn — _ = _, 3.18

© Z " Z‘ A My pemy (3.18)
which defines thenean molecular weight per free electrog As long as the electrons behave like
classical particles, the electron pressure is thus given by

1
R (3.19)
He My He

When the gas is fully ionized, we have for hydrogédn= A; = 1 while for helium and the most
abundant heavier elemeni/A; ~ % In terms of the hydrogen mass fractigrwe then get

2
T1+ X
which for the SunX = 0.7) amounts tq, ~ 1.18, and for hydrogen-depleted gas giygs- 2.
The total gas pressure is then given by
Pgas= Pion + Pe = (i + i)R/OT = 8/OT (3.21)
Mion  Me M

e (3.20)
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where themean molecular weight is given by

1 1 1 Z + 1)X

_:_+_:ZM_ (3.22)

M HMion HMe i A

It is left as an exercise to show that for a fully ionized gasan be expressed in terms of the mass
fractionsX, Y andZ as

1

N— (3.23)
3 1
2X + zY + EZ

Jii

if we assume that for elements heavier than helidmy 27 ~ 2(Z; + 1).

3.3.4 Quantum-mechanical description of the gas

According to quantum mechanics, the accuracy with which a particle’s locatidrmomentum can
be known simultaneously is limited by Heisenberg’s uncertainty principleAkap > h. In three
dimensions, this means that if a particle is located within a volume elemétihen its localization
within three-dimensional momentum spat¥p is constrained by

AV A%p > hd, (3.24)

The quantityh® defines the volume in six-dimensional phase space of one quantum cetiufiier
of quantum statem a spatial volumé/ and with momenta € [p... p + dp] is therefore given by
Vo, o2
9(p) dp = gs 5 47p"dp. (3.25)
wheregs is the number of intrinsic quantum states of the particle, e.g. spin or polarization
The relative occupation of the available quantum states for particles in tdgnamic equilib-
rium depends on the type of particle:

o fermions(e.g. electrons or nucleons) obey the Pauli exclusion principle, whistulapes that
no two such particles can occupy the same quantum state. The fractiotesfigith energy,
that will be occupied at temperatufeis given by

1

feolen) = T (3.26)

which is always< 1.

e bosonge.g. photons) have no restriction on the number of particles per quatatenand the
fraction of states with energy, that is occupied is

1

fBE(Gp) = m, (327)

which can be> 1.

The actual distribution of momenta for particles in LTE is given by the prodfithe occupation
fraction f(ep) and the number of quantum states, given by eq. (3.25). The quardippearing in
egs. (3.26) and (3.27) is the so-callgtemical potentiallt can be seen as a normalization constant,
determined by the total number of particles in the volume considered (i.e., bghlsaaint imposed
by eg. 3.2).

26



8. L L L O S B B A B 8. L L L O By B S B
10+45 . . Ne = 610°7 cnm3 il 10+45 . T=o0K |
6.~ | — 6. — -
[ max ] i ]
= . =
c | < L PF
2.~ —
- 610°7 1.210°8 -
. cm3 cm 3
0 \ ! \ Lo ! \ !

0.0 0.2 0.4 0.6 0.8 1.0
10

Figure 3.2. Left: Electron momentum distributiong p) for an electron density af, = 6 x 10?” cm2 (corre-
sponding tqp = 2 x 10* g/lcm3 if ue = 2), and for three dierent temperature§: = 2 x 10’ K (black lines),

2 x 10°K (red lines) and 2 10°K (blue lines). The actual distributions, governed by quamimechanics,
are shown as solid lines while the Maxwell-Boltzmann digttions for the sama. andT values are shown
as dashed lines. The dotted lingax is the maximum possible number distribution if all quantuates with
momentump are occupied.Right: Distributions in the limitT = 0, when all lowest available momenta are

fully occupied. The blue line is for the same density as inléfiepanel, while the red line is for a density two
times as high.

3.3.5 Electron degeneracy

Electrons are fermions with two spin states, ge.= 2. According to eq. (3.25), the maximum
number density of electrons with momentyrallowed by quantum mechanics is therefore

8r

Nmax(P) dp = G Arp?dp = = p? dp. (3.28)

h3
This is shown as the dotted line in Fig. 3.2. The actual momentum distribution afaieoc(p) is
given by the product of eq. (3.28) and eq. (3.26). In the non-redétiimit we haveep = p?/2Mme,
giving
2 1 )
Ne(P)dp = 15 T 4rp?dp, (3.29)

where we have replaced the chemical potential byddgeneracy parameter = u/kT. The value of
¥ is determined by the constraint thﬁf’ ne(p) dp = ne (eq. 3.2).

The limitation imposed by the Pauli exclusion principle means that electrons eaneeitigher
pressure than predicted by classical physics (eq. 3.19). To illustratértiiigy. 3.2 the momentum
distribution eq. (3.29) is compared to the Maxwell-Boltzmann distribution forttedas, eq. (3.13),

N (p) dp = e P /2T 472 dp. (3.30)

Ne
(27mekT)3/2

The situation shown is for an electron dengity = 6 x 10?”cm™3, which corresponds to a mass
density of 2x 10* g/cm3 (assuming a hydrogen-depleted gas wigh= 2). At high temperatures,
T = 2 x 10’ K, the momentum distribution (solid line) nearly coincides with the M-B distribution
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(dashed line): none of the quantum states are fully occupi€g)(< nmax(p) for all values ofp) and

the electrons behave like classical particles. As the temperature is d=hreas afl = 2 x 10°K

(red lines), the peak in the M-B distribution shifts to smalpeand is higher (since the integral over
the distribution must equal.). The number of electrons with small valuespéxpected from clas-
sical physicsnugs(p), then exceeds the maximum allowed by the Pauli exclusion princiglg(p).
These electrons are forced to assume quantum states with Ipigtiner peak in the distributiong(p)
occurs at highep. Due to the higher momenta and velocities of these electrons, the electron gas
exerts a higher pressure than inferred from classical physics. Toalésldegeneracy pressurdf

the temperature is decreased even more, e§.at2 x 10°K (blue lines), the lowest momentum
states become nearly all filled anglp) follows nmax(p) until it drops sharply. In this state of strong
degeneracy, further decreaseTohardly changes the momentum distribution, so that the electron
pressure becomes neaigependent of temperature

Complete electron degeneracy

In the limit thatT — 0, all available momentum states are occupied up to a maximum value, while
all higher states are empty, as illustrated in the right panel of Fig. 3.2. Thisoisrkascomplete
degeneracyand the maximum momentum is called #ermi momentumg Then we have

8rp?

Ne(p) = B for p < pr, (3.31)

ne(p) = 0 for p > pg. (3.32)

The Fermi momentum is determined by the electron density through eq. (S%Ffpim(p) dp = ne,

which yields

3 \1/3
ne)

Pr = h(gr

The pressure of a completely degenerate electron gas is now easy totearsiog the pressure
integral eq. (3.4). It depends on whether the electrons are relativrstioto In thenon-relativistic
limit we havev = p/mand hence

(3.33)

PF Grp? 8n h2 (3\*°
=1 PV odp= —22 5 = ° 5/3
Pe 3j(; e dp T5ime PF 20m: (n) ne™’”. (3.34)
Using eq. (3.18) fong this can be written as
o 5/3 2 3\23
Pe = KnR (—) with KNR = 53 (—) = 1.0036x 1013 [CgS]. (335)
He 20me my~ \ 7

As more electrons are squeezed into the same volume, they have to ocdepysth larger mo-
menta, as illustrated in Fig. 3.2. Therefore the electron pressure insnedbalensity, as expressed
by eq. (3.35).

If the electron density is increased further, at some point the velocity ohtist energetic elec-
trons, pr/me, approaches the speed of light. We then have to replaeep/m by the relativistic
kinematics relation (3.10). In thextremely relativistidimit when the majority of electrons move at
relativistic speeds, we can take- c and

1/3
PF 8rc 8rc hc(3
Pe = % j; p3 dp= p4 a (_) ne4/3a (3.36)

h3 12 F T 8 i\n
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He 8mu/ Vs

In the ER limit the pressure still increases with density, but with a smaller emp@mstead of%).
The transition between the NR regime, eq. (3.35), and the ER regime, €6), (8.8mooth and can
be expressed as a functionxf pr/meC, see Mieber Sec. 7.7. Roughly, the transition occurs at a
densitypy given by the conditiorpe ~ meC, which can be expressed as
3
8r({meC
oo~ ey () (3.39)

3\ h

The relation betweeR, andp for a completely degenerate electron gas is shown in Fig. 3.3.

Partial degeneracy

Although the situation of complete degeneracy is only achievdd-at0, it is a very good approxi-
mation whenever the degeneracy is strong, i.e. when the temperatufiedestly low, as illustrated
by Fig. 3.2. It corresponds to the situation when the degeneracy paramete0 in eq. (3.29). In
that case egs. (3.35) and (3.37) can still be used to calculate the presgood approximation.

The transition between the classical ideal gas situation and a state of sagegedacy occurs
smoothly, and is known gsartial degeneracyTo calculate the pressure the full expression eq. (3.29)
has to be used in the pressure integral, which becomes rather compliclageidt&gral then depends
ony, and can be expressed as one of the so-c&éethi-Dirac integrals, see Meper Sec. 7.7 for
details (the other Fermi-Dirac integral relates to the internal energy dedyityThe situation of
partial degeneracy correspondsite- O.

Wheny < 0 the classical description is recovered, i.e. eq. (3.29) becomes theddwitzmann
distribution. In that case/{e(P*/2mekD-v 4 1) = g (P*/2mekD+v gnd therefore

3
2w e yoln—"e
RC T (2rmekT)32 2(2mekT)372
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This only holds fory < 0, but more generally it can be shown thiat= y(ne/T%3). We have to
consider (partial) degeneracyyif= 0, i.e. if

3/2
o 22mmekT)¥2

e 5 (3.39)

The limit of strong (almost complete) degeneracy is reached wherroughly a factor 10 higher.

Importance of electron degeneracy in stars

As a star, or its core, contracts the density may become so high that the mddmbaome degenerate
and exert a (much) higher pressure than they would if they behavegiceltyg Since in the limit of
strong degeneracy the pressure no longer depends on the tempdhasudegeneracy pressure can
hold the star up against gravity, regardless of the temperature. Treeefiegenerate star does not
have to be hot to be in hydrostatic equilibrium, and it can remain in this statecfoesen when it
cools down. This is the situation imhite dwarfs

The importance of relativity is that, when a degenerate star becomes moraat@ng the density
increases further, the pressure increases less steeply with densgynaBhimportant consequences
for massive white dwarfs, and we shall see that it implies that there is a maximass for which
white dwarfs can exist (the Chandrasekhar mass).

We note that although electron degeneracy can be (very) importantsnatgeneracy of thens
is not. Since the ions have mas&e8000 larger than electrons, their momerpia=( v2me) are much
larger at energy equipartition, and the condition (3.39) above (withreplaced bymg,) implies
that much higher densities are required at a particular temperature. dticpréhis never occurs:
before such densities are reached the protons in the atomic nuclei wilfredpte electrons, and
the composition becomes one of (mostly) neutrons. Degenerawyutfonsdoes become important
when we consider neutron stars.

3.3.6 Radiation pressure

Photons can be treated as quantum-mechanical particles that carry monaentuherefore exert
pressure when they interact with matter. In particular photons@senswith gs = 2 (two polarization
states), so they can be described by the Bose-Einstein statistics, ed}. (i@ humber of photons is
not conserved, they can be destroyed and created until thermodynguniibreum is achieved. This
means that = 0 in eq. (3.27) and hence

2

Photons are completely relativistic with = pc = hv, so in terms of frequencytheir distribution in
LTE becomes th@lanck functiorfor blackbody radiation:

8t V2dv
3 kT 1

Applying egs. (3.2) and (3.3) one can show that the photon number dansithe energy density of
radiation are

n(v) dv = (3.41)

Mph = f n(p)dp=b T3 (3.42)
0
Una= [ penpidp=aT* (3.43)
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whereb = 20.3 cni3 K3 anda is the radiation constant

8rok4
a= 1;—3(:3 — 7.56x 10" B ergcm K4,
Since photons are always extremely relativisBcs %U by eq. (3.12) and theadiation pressurds
given by

Prag = 3aT* (3.44)

Pressure of a mixture of gas and radiation

The pressure inside a star is the sum of the gas pressure and radiasarpy
P = Prag + Pgas= Prad + Pion + Pe.

whereP;yqis given by eq. (3.44) anBjo, by eq. (3.17). In generdde must be calculated as described
in Sect. 3.3.5. In the classical limit it is given by eq. (3.19), and in the limits ofnedativistic and
extremely relativistic degeneracy by egs. (3.35) and (3.37), respBctilf the electrons are non-
degenerate then the pressure can be written as

p=laT*+ gpm (3.45)

If the electrons are strongly degenerate their pressure dominates awef the (classical) ions, so in
that casePjg,, can be neglected in the total pressure.
The fraction of the pressure contributed by the gas is customarily exgrass, i.e.

Pgas= P and Prada= (1-B)P. (3.46)

3.3.7 Equation of state regimes

The different sources of pressure we have discussed so far dominate #tmeaqi state at dierent
temperatures and densities. In Fig. 3.4 the boundaries between thesesragimotted schematically
in the logT, logp plane.

e The boundary between regions where radiation and ideal-gas praksuinate is defined by
Prad = Pgas giving T/p/® = 3.2 x 10’u~Y/3 whenT andp are expressed in cgs units. (Verify
this by comparing egs. 3.21 and 3.44.) This is a line with s%)i:rethe logT vs logp plane.

¢ Similarly, the boundary between the regions dominated by ideal-gas presgiinon-relativistic
degenerate electron pressure can be defind@yteal = Penr @s given by eq. (3.35), giving
T/p?® = 1.21x 10°% 43> (again withT andp in cgs units). This is a line with slopgin the
log T-logp plane.

e The approximate boundary between non-relativistic and relativistic @egey is given by
eq. (3.38)p = 9.7 x 1Pue g/cm®.

¢ At high densities the boundary between ideal gas pressure and extrefaéiystic degeneracy
is found by equating egs. (3.21) and (3.37), giviig'/® = 1.50x 107 uig ¥ (with T andp in
Cgs units), again a line with slop%

As shown in Fig. 3.4, detailed models of zero-age (that is, homogeneousseguence stars with
masses between 0.1 and 1@ cover the region where ideal-gas pressure dominates the equation
of state. This justifies the assumptions made in Ch. 2 when discussing the \@daéth and its
consequences for stars, and when estimating temperatures in the steliar. inter
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Figure 3.4. Left: The equation of state for a gas of free particles in thellplggp plane. The dashed lines are
approximate boundaries between regions where radiatesspre, ideal gas pressure, non-relativistic electron
degeneracy and extremely relativistic electron degegataminate, for a compositiok = 0.7 andZ = 0.02.
Right: Detailed structure models for homogeneous main-sequéaicseds 01...100M, have been added (solid
lines). The IM; model is well within the ideal-gas region of the equationtats. In the 0., star electron
degeneracy pressure is important, except in the outerddgielowp andT). In stars more massive than IR,
radiation pressure becomes important, and it dominatdwisurface layers of the 100, model.

3.4 Adiabatic processes

It is often important to consider processes that occur on such a slgrhidrodynamical) timescale
that there is no heat exchange with the environment; such processadiapatic To derive the
properties of stellar interiors under adiabatic conditions we need selieralodynamic derivatives.
We therefore start from the laws of thermodynamics.

Thefirst law of thermodynamics states that the amount of heat absorbed by a sy€¥¢m the
sum of the change in its internal energiyJ) and the work done on the systedW = P&V). The
second lawof thermodynamics states that, for a reversible process, the changedpyeatjuals the
change in the heat content divided by the temperature. Entropy is a stakleaunlike the heat
content. For a unit mass (1 gram) of matter the combination of these laws capressed as

dg=Tds=du+ Pdv:du—Ezdp. (3.47)
P

Here dj is the change in heat conteny & the change in internal energy € U/p is the specific
internal energy, i.e. per gramgjs the specific entropy (i.e. the entropy per unit mass)aadl/p is
the volume of a unit mass. Note that dnd & are exact dferentials, whereasyds not.

Differential form of the equation of state To compute general expressions for thermodynamic
derivatives such as the specific heats and the adiabatic derivativeséfid to write the equation of
state in dfferential form, i.e.

P dT &

p AT +Xp?a (3.48)
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whereyt andy, are defined as

dlogP T (0P
= ==_ = — (= 3.49
AT (a IogT)p’Xi P (6T )p,xf (3:49)
dlog P) 0 (GP)
—[==_ =Z(=] . 3.50
o (alogp Tx  P\dp/rx (320

The subscrip; means that the composition is held constant as well. In a general equatitteof s
xT andy, can depend ol andp themselves, but if they are (approximately) constant then we can
write the equation of state in power-law form:

P = Popte TAT.

For example, for an ideal gas without radiation we have= y, = 1, while for a radiation-dominated
gasyT =4 andy, = 0.

3.4.1 Specific heats

The specific heats at constant volumeand at constant pressueg for a unit mass of gas follow
from eq. (3.47):

dg ou P(adp
o= (gt), = (57), - 2(a%), 25
where a partial derivative taken at constaig the same as one taken at constarfor an ideal gas,
with u = U/p = 2P/p, we obtain from eq. (3.21) the familiar reself = 3R/u. For a radiation-
dominated gas, eq. (3.43) yields = 4aT3/p. Using thermodynamic transformations and some
algebraic manipulation (see Appendix 3.A), it follows quite generally thatdbeific heats are related
by
2
Cp—Cy = ——. (353)
eT xp
For an ideal gas this amountsde — cy = R/u, and thereforep = %’R/,u. For a radiation-dominated
gasy, = 0 and hencep — co: indeed, sincd;q Only depends oif, a change in temperature cannot
be performed at constant pressure.
The ratio of specific heats is denotedyas

c P 2

= , 3.54
Cv pPTO Xp (3:59

Y

so thaty = 2 for an ideal gas.

Expressions for dy Itis often useful to have expressions for the change in heat corqéatid3.47)
in terms of variations off andp or T andP. Making use of the specific heats one can derive (see
Appendix 3.A)

xT dP

dg = Tds = cydT —)(TEde = cpdlT —=— —. (3.55)
Y Xo P
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3.4.2 Adiabatic derivatives

The thermodynamic response of a system to adiabatic changes is meastivedd-callecdiabatic
derivatives Two of these have special importance for stellar structure:

 Theadiabatic exponeRty.q measures the response of the pressure to adiabatic compression or
expansion, i.e. to a change in the density. It is defined as

dlog P) (3.56)
ad

yad:(@logp

where the subscript 'ad’ means that the change is performed adiabatibatlys, at constant
entropy. Ifyaq is constant the® « p”ad for adiabatic changes. As we shall see lajgg,is
related to thelynamical stabilityof stars.

e Theadiabatic temperature gradieid defined as

_(0logT
Vad = (3 log P)ad (3.57)

It is in fact another exponent that describes the behaviour of the tatopemunder adiabatic
compression or expansioil (c« PVad if Vqis constant), which turns out to be important for
stability againstonvection

The adiabatic exponent For an adiabatic process] = 0 in eq. (3.47) and therefore
du = Ez do. (3.58)
P

We have seen in Sect. 3.3.1 that for a perfect gas of free particles theainémergy density is
proportional toP, in both the NR and ER limits. For such a simple system we can therefore write, as
we did in Sect. 2.3,

u=4¢ P (3.59)
P

with ¢ a constant (betweegl and 3). If we diferentiate this and substitute into eq. (3.58) we obtain
for an adiabatic change

dP ¢+ 1do
i =+ 3.60
P ¢ p (3.60)
Therefore, according to the definition afy (eq. 3.56),
1 .
Yad = % (for a simple, perfect gas) (3.61)

2In many textbooks one finds instead the adiabatic expordants,, andI'; introduced by Chandrasekhar. They are
defined, and related tg,g andV,q, as follows:

i (et w2 (gt

_(alogP

1=

6|ng)ad:yad7 Io-1 - Vi 3=

Vad
They obey the relation

rn I
-1 I,-1
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¢ for non-relativisticparticles (e.g. a classical ideal gas, NR degenerate elecmﬁsg and
thereforeyaq = 2

o for extremely relativistigarticles (e.g. photons, ER degenerate electrgns)3 and therefore
Yad = %
o for a mixture of gas and radiation @ 8 < 1) andor moderately relativistic degenerate elec-
trons,3 < yad < 3
For a general equation of state, described by eq. (3.48), one daa (ke Appendix 3.A)
P 2
oToy XT .
Thereforey,qis related to the ratio of specific heats (eq. 3.94y,= v x,. They’s are equal ify, = 1
(as in the case of an ideal gas).

Yad = Xp t+ (3.62)

The adiabatic temperature gradient By writing eq. (3.56) as B/P = yaqdo/p for an adiabatic
change, and eliminatindo with the help of eq. (3.48), we obtain a general relation between the
adiabatic temperature gradiéndy and the adiabatic exponepiy:

Vad = s (3.63)
YadX'T

This gives the following limiting cases:

o for an ideal gas without radiatios (= 1) we haveyt = x, = 1, which together withyaq = g

givesVaq = £ = 04.

o for a radiation-dominated gag € 0) yt = 4 andy, = 0 so thatV,q = %1 = 0.25.

For a general equation of state one has to consider the general saprés v,q (€q. 3.62) in
eqg. (3.63). From the expression af ih terms of @ and dP (3.55) it follows that

P xT
Vad= — —. 3.64
ad pTCp X ( )
This means that for a generanadiabatic process we can write eq. (3.55) as
T
dg=cp (dT —Vad B dP), (3.65)

which will prove to be a useful relation later on.

We give some important results without derivations, which can be foun&wKChapters 13.2
and 16.3 or in Hnsen Chapter 3.7:

o for a mixture of gas and radiation with9 8 < 1, V44 andyaq both depend o and take on
intermediate values, i.e.Zb < Vg < 0.4.

o for a non-relativistic degenerate gas, we have to consider that althteagjtoes dominate the
pressure, there is a (tiny) temperature dependence due to the ion gagwusitbe taken into
account in calculating and thereforév,q. After some manipulation it can be shown that in
this caséV,q = 0.4, as for the ideal classical gas.

o for an extremely relativistic degenerate gas one also has to considetiltative electrons are
relativistic, the ions are still non-relativistic. It turns out that in this liWig = 0.5.
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3.5 lonization

We have so far implicitly assumed complete ionization of the gas, i.e. that it coalstse atomic
nuclei and free electrons. This is a good approximation in hot stellar irgendrereT > 10°K
so that typical energigsT are much larger than the energy needed to ionize an atom, i.e. to knock
off a bound electron. In the cooler outer layers of a star, however, wetoesonsider theartial
ionizationof the elements. In this case quasi-static changes of the state varjabledT) will lead
to changes in the degree of ionization. This can have a ldfgeten the thermodynamic properties
of the gas, e.g. ofiyg andVg.

In LTE the number densities of ionized and neutral species are determjiried $aha equation

I']r+1n U 2(27TmekT)3/2
A T h3
wheren, andn;,; indicate the number densitiesrofndr + 1 times ionized nuclej; is the ionization
potential, i.e. the energy required to removettii bound electron, ang, andu, .1 are the partition
functions. The partition functions dependDibut can in most cases be approximated by the statistical
weights of the ground states of the bound species. (This equation cagrilbeddfrom statistical
mechanics, e.g. see K&W Chapter 14.1.)

g /KT (3.66)

3.5.1 lonization of hydrogen

As an example, we consider the simple case where the gas consists onlyroféry. Then there
are just three types of particle, electrons and neutral and ionized dslravithuy = Up = 2 and
U+ = Up = 1. We write their number densities as andng so that

Ene — —(27rmekT)3/2 @ XH/KT
No h3
whereyy = 136eV. The gas pressure is given Byas = (No + N, + ne) KT and the density is
o = (ng + ny) my. Thedegree of ionizatiots defined as

(3.67)

X = n0”++n+ (3.68)
so thatPgascan be written in terms of the degree of ionization
Pgas= (1+ X) RoT (3.69)
We can then rewrite Saha’s equation as
X @ KPR (3.70)

1-x2 Pgas
We see that the degree of ionization increases Wjths expected since more atoms are broken up by
the energetic photons. Howeveardecreases with gas pressure (or density) whénkept constant,
because this increases the probability of recombination which is propdritdna From eq. (3.69)
we see that the mean molecular weight 1/(1 + X) decreases as hydrogen becomes ionized (one
atomic mass is divided over two particles).

To estimate theféect on the thermodynamic properties of the gas, we note that in the case of pa
tial ionization the internal energy has a contribution from the available pokeng#agy of recombina-
tion. Per unit volume this contribution is equaktpyy, SO per unit mass it equats yn/o = Xyn/My.

Thus
o= 3P,

XH 3 XH
> XR = §(1+ X)RT'FXE. (371)
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Figure 3.5. The adiabatic temperature gradiénjy plotted against temperature. The left panel shows the
effect of partial ionization for the simple case of a pure hyerogas, for three values of the density 14,0
107 and 108 g/cm®). When hydrogen is partially ionize®,q is decreased below its ideal-gas value of 0.4.
The circles indicate the points where the degree of ioromati= 0.5, close to the minimum oV,4. As the
density increases, a higher temperature is needed to readaine ionization degree. The right panel shows
how V4 varies with temperature in a detailed stellar model Mgl between the surface (&t~ 6000 K) and

the centre (af ~ 1.5 x 10’ K). Apart from the hydrogen ionization zone around k() a second depression
of V.q around 18K is seen which is due to the firéHe ionization zone. The second He ionization zone is
merged with H ionization because it occurs at similar terappges and densities. Note that the region where
T < 10°K comprises only the outer 1% of the mass of the Sun. (The diditie shows howV 4 would vary
with T in this model if the composition were pure hydrogen, as waaragd in the left panel.)

A small increase in temperature increases the degree of ionization, whidtsre a large amount of
energy being absorbed by the gas. In other wordsspleeific heabf a partially ionized gas will be
much larger than for an unionized gas, or for a completely ionized gas (lattkecasex = 1 so that
the second term in eq. (3.71) becomes a constant and therefore intgleva

Now consider what happens if the gas is adiabatically compressed. Sfastimgeutral hydro-
gen, for whichV,q = 0.4, the temperature initially increasessc P4, Further compression (work
done on the gas) increasgsbut when partial ionization sets in most of this energy goes into raising
the degree of ionization (second term of eq. 3.71) and only little into raisingethperature (first
term). In other wordsT increases less strongly with with, and thereforé&v,g < 0.4. A detailed
calculation (e.g. see K&W Chapter 14.3) shows that under typical condligireaches a minimum
value of~ 0.1 whenx ~ 0.5. As the gas becomes almost fully ioniz8tq rises back to 0.4. The
variation of V44 with temperature for a pure hydrogen gas is shown in the left panel oBEdgor
different values of the density.

The decrease Of 54 in partial ionization zones can inducenvectionn the outer layers of stars,
as we shall see in Ch. 5. Similarly it can be shown thgtdecreases in partial ionization zones, from
% toyad # 1.2 whenx ~ 0.5. This has consequences for the stability of stars, as we shall also see.

37



______________________________ Figure 3.6. Schematic depiction of

the electrostatic potential of an iso-
lated ion (left) and the superposi-
tion of the potentials of neighbour-
ing ions (right). Figure reproduced
from KipPENHANHN & W EIGERT.

3.5.2 lonization of a mixture of gases

In a mixture of gases the situation becomes more complicated because mépyjppared species
have to be considered, the densities of which all depend on each aker.¢s K&W Chapter 14.4-
14.5). However the basic physics remains the same as considered abtwe $imple case of pure
hydrogen. The fect on the thermodynamic properties is that &g.can show additional deviations
below 0.4 at diferent temperatures, especially where helium (the second-most abehet@ent in
stars) is partially ionized. This is illustrated in Fig. 3.5b which shows the variaifoviyq with
temperature in a homogeneous model for the initial Sun.

3.5.3 Pressure ionization

As p increases indefinitely, the Saha equation gives 0, i.e. ionized gas recombines to form atoms.
This is obviously nonsense at very high density, and becomes incernect the average distande
between ions becomes less than an atomic radius. In this situation the ionizatign srsuppressed
(there are fewer bound excited states; see Fig. 3.6), a situation knqweszsire ionization

Consider the case of hydrogen: the volume per H atoming $o thatd = (%”nH)‘m. Pressure
ionization sets in whed < ag = 5x 10-2 c¢m (the Bohr radius). This implies

NH 2
Fa0®
orp=nymy =39 cnt3. Other elements are pressure-ionized at similar values of the density, within
an order of magnitude. At densitigs10 g cnt?, therefore, we can again assume complete ionization.
Fig. 3.7 shows the approximate boundary in the density-temperature dibgtasen neutral and
ionized hydrogen according the Saha equatiopferl g cnT3, and as a result of pressure ionization

at higher densities.

3.6 Other dfects on the equation of state

3.6.1 Coulomb interactions and crystallization

We have so far ignored thetect of electrostatic or Coulomb interactions between the ions and elec-
trons in the gas. Is this a reasonable approximation, i.e. are the interacéagiesnindeed small
compared to the kinetic energies, as we have assumed in Sect. 3.3?

The average distance between gas particles (with rAas$ is d ~ (%’Tn)‘l/3 wheren is the
number densityn = p/(Am,). The typical Coulomb energy per particle (with cha®@ is ec ~
Z%€?/d, while the average kinetic energy dgn = ng. The ratio of Coulomb energy to kinetic
energy is usually called the Coulomb paramé&igrdefined as

7% 7% 4mp
~ dkT kT \3Am,

1/3

2 1/3
2275 10° Z_ P
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Figure 3.7. The equation of state in the
p, T plane for a pure hydrogen gas. The
dotted lines are the borders, also shown
in Fig. 3.4, between regions where ra-
diation, ideal gas and degenerate elec-
trons dominate the pressure. The solid
line shows where the ionization fraction
of hydrogen is 0.5 according to the Saha
equation, and where hydrogen becomes
pressure-ionized at high density. The
dashed lines show where the Coulomb
interaction parametdrc equals 1, above
which Coulomb interactions become im-
portant, and wherd'c = 170, above
which the ions form a crystralline lat-
tice. Above the dash-dotted line' e
pairs play an important role in stellar in-
teriors.

where in the last equality the numerical factor is in cgs units. We see that iBbuftteractions
increase in importance at high densities or low temperatures. Roughly,rGloimteractions start to
become important in stellar interiors whEg = 1.
To estimate the typical value &% in stellar interiors we approximaje ~ p = M/(%”F\ﬁ), and
we approximatd by the average temperature estimated from the virial theofem]T ~ 5 R
(eq. 2.29). Ignoring factors of order unity, we get

-2/3

Z2 (M

1AM GM

(3.73)

The ratioZ?/A*?3 depends on the composition, and represents an average over the eatstitl
the gas. In stars mostly composed of hydrogeny 1 andZ ~ 1, and we find that in the Sun the
Coulomb energy contributes of the order of 1 % to the particle energiehérd has a similaffect

on the pressure). We are therefore justified in ignoring Coulomb interacitiogtars similar to or
more massive than the Sun. However, eq. (3.73) shows that in low-mas£stalomb interactions
can start to contribute significantly. This can also be seen by comparing.Bignd Fig. 3.7, where
the location of the conditiofic = 1 is indicated in the-T diagram. Detailed models of low-mass
stars need to take thisfect into account. FoM < 10°3 M, the Coulomb energies dominate. Such
objects are not stars but planets (Jupiter's mass is abodtMg). Calculations of the structure of
planets requires a much more complicated equation of state than for stars.

Crystallization

If Tc > 1 the thermal motions of the ions are overwhelmed by the Coulomb interactionbis|In
situation the ions will tend to settle down into a conglomerate with a lower energyhén words
they will form a crystalline lattice. Detailed estimates indicate that this transition telkes at a
critical value ofl’'c ~ 170. This condition is also indicated in Fig. 3.4 for a pure hydrogen gas. In
reality, this situation will never occur in hydrogen-rich stellar interiors,ittein take place in cooling
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white dwarfs (in which the temperature gradually decreases with time while tigtgl@eemains
constant). White dwarfs are usually composed of carbon and oxygen, this case we have to
take into account the composition which raises the temperature at which thgioramccurs (the
‘melting’ temperature) by a factat?/AY3 according to eq. (3.72).

Finally we note that crystallization only occurs in the region where the electom strongly
degenerate. You may verify that the Coulomb interaction energy betwesrosle and ionsZ€?/d)
is always smaller than the typical electron energ&/eme). The electrons therefore behave as a free
degenerate gas, even if the ions form a crystalline structure.

3.6.2 Pair production

A very different process can take place at very high temperatures and relatwetielwsities. A
photon may turn into an electron-positron pair if its enénggxceeds the rest-mass energy of the pair,
hv > 2mec?. This must take place during the interaction with a nucleus, since otherwisemhame
and energy cannot both be conserved. Pair production takes platgpical temperaturkT ~ hy =
2mec?, or T ~ 1.2 x 10'19K. However, even al ~ 10°K the number of energetic photons in the tail
of the Planck distribution (eg. 3.41) is large enough to produce a large erumile' e~ pairs. The
newly created positrons tend to be annihilated quickly by the inverse redetione™ — 2y), as a
result of which the number of positrons reaches equilibrium. At a few tim&& 1@epending on the
electron density, the number of positrons is a significant fraction of the auoflelectrons.

Pair production is similar to an ionization process: an increase in temperaddeettean increase
in the number of particles at the expense of the photon energy (andiggkesEherefore pair produc-
tion gives rise to a decrease of the adiabatic gradigrand ofV,q, similar to partial ionization. This
is the main importance of pair production for stellar evolutionfliéets the stability of very massive
stars in advanced stages of evolution (when their temperature may rdaeb iraexcess of fK)
and can trigger their collapse.

Suggestions for further reading

The contents of this chapter are also covered by Chapter 7sefid and by Chapters 13 to 16 of
KrpenaauN & WEIGERT. HOwever, a more elegant derivation of the equation of state, which is also
more consistent with the way it is derived in these lecture notes, is givenapt&h3 of Hnsen,
KawaLer & TriMmBLE. EXplicit expressions for many of the results that are only mentioned herbe
found in this book.

Exercises

3.1 Conceptual questions
These questions are intended to test your understandirfgedécttures. Try to answer them without
referring to the lecture notes.

(&) What do we mean blpcal thermodynamic equilibriunLTE)? Why is this a good assumption
for stellar interiors? What is the fierence between LTE artermal equilibrium(as treated in
Ch. 2)?

(b) In what type of stars does degeneracy become importanttiportant in main-sequence stars?
Is it more important in high mass or low mass MS stars?
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(c) Explain qualitatively why for degenerate matter, thegsure increases with the density.

(d) Why do electrons become relativistic when they are cosga® into a smaller volume? Why does
the pressure increase less steeply with the density inalsis?

(e) In the central region of a star we find free electrons amd.ioWhy do the electrons become
degenerate first? Why do the ions never become degenerataciicpf?
3.2 Mean molecular weight

Derive a general expression for the mean molecular weigahabnized gas, as a function of composi-
tion X, Y, Z. Assume that, for elements heavier than H, nuclei are coaethbosequal number of protons
and neutrons, so that the nuclear chatgis half of the mass numbe.

3.3 Thep - T plane

Consider a gas of ionized hydrogen. In theT plane compute the approximate boundary lines between
the regions where:

(a) radiation pressure dominates,
(b) the electrons behave like a classical ideal gas,

(c) the electrons behave like a degenerate gas,
(d) the electrons are relativistically degenerate.

3.4 The pressure of a gas of free particles
In this exercise you will derive some important relatioranfirthis chapter for yourself.
(a) Suppose that the particles in a gas have momenta distlitasn(p) dp. Show that the pressure
can be expressed by eq. (3.4).

(b) For classical particles in LTE, the momentum distribatis given by the Maxwell-Boltzmann
distribution, eq. (3.13). Calculate the pressure usind®4). Does the result look familiar?

(c) Show that for a gas of free, non-relativistic partickes: %U (eq. 3.11), wherdJ is the internal
energy density. Show that in the extremely relativistictifh= %U (eq. 3.12).

(d) Electrons are fermions with 2 spin states. Explain wtey iaximum number of electrons per
volume with momentunp can be written as eq. (3.28).

(e) In the extreme case of complete degener@cy» 0, the electrons fill up all available quantum
states up to a maximum, the Fermi momentum. Show that

1
3ne\3
=h[=
Pr ( B )
(f) Show that the pressure as function of the density for anaetativistic degenerate electron gas can
be written as

X
e
He

and derive an expression fgr andx.

(g) Show that the pressure as function of the density for amrmely relativistic degenerate electron
gas can be written as

y
—
He
and derive an expression figg andy.
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(h) Photons are bosons, and the distribution of their moanisrgiven by the Planck function (eq. 3.27).
Show that in this case

Uo T4
(Hint: to derive an expression for the proportionality caméa, you might want to use Mathe-
matica or a list of standard integrals.)
(i) Now use (c) to show that the radiation pressure is giveRQy= %aT“.

3.5 Adiabatic derivatives

(a) Use the first law of thermodynamics to show that, for aalidas in an adiabatic process,
P o prad (3.74)

and give a value for the adiabatic exponggt
(b) Use the ideal gas law in combination with eq. (3.74) tosshmat

dinT
2= (d In P)adid =04

(c) The quantityV,q is referred to as thadiabatic temperature gradientNormally you would use
the term ‘gradient of a quantiti)’ for dA/dr, or if you use mass coordinates instead of radius
coordinates, d/dm. Do you understand why,q can be referred to as a temperature ‘gradient’?

(d) (*) Show that for a mixture of an ideal gas plus radiatitthre adiabatic exponent is given by
_ 32-24p - 3p2
Yad = —24_ 218 >
wheres = Pgad/P.
(Hints: write down the equation of state for the mixture iffeliential form as in eq. (3.48), and

expressyt andy, in terms ofg. Then apply the first law of therrmodynamics for an adiabatic
process.)

(e) (*) Whatis the value of,qin the limit where radiation dominates and where pressunailates?
Does this look familiar?

3.6 lonization dfects

(a) The particles in an ionized gas are charged and therafatergo electrostatic (Coulomb) inter-
actions. Why can can we nevertheless make the ideal-gas pssnnm most stars (i.e. that the
internal energy of the gas is just the sum of the kinetic @eergf the particles)? For which stars
do Coulomb interactions have a significafieet?

(b) Why does the gas in the interior of a star become pressaieed at high densities?

(c) Explain qualitatively why partial ionization leads Y4 < Vadidear = 0.4, in other words: why
does adiabatic compression lead to a smaller temperatneaise when the gas is partly ionized,
compared to a completely ionized (or unionized) gas?
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3.A Appendix: Themodynamic relations

In this Appendix we derive some of the thermodynamic refeithat were given without proof in Chapter 3.

The first law of thermodynamics states that the heat addethtsa element of gas is the sum of the change
in its internal energy and the work done by the mass elemeking the element to be of unit mass, we can
wite this as

dg=du+ Pdv=du- Ez do, (3.75)
P

because the volume of a unit massis 1/p. We can write the change in the internal energy of a unit mass i
terms of the changes in the state variablesidp) as

ou ou

The change in the entropy per unit mass=ddq/T, is therefore
dg 1(ou 1({du P

Becausesis a function of stated?s/dpdT = 8%s/dT dp, which means that

dp. (3.77)

i [ e [ 7
T aTop o7 |T P21 [ (3.78)

1 6u & 1[au] P
6pT

where the)/dT on the right-hand side should be taken at congialiYorking out the right-hand side allows us
to eliminate the second derivative wfgiving

1 (au) P 1 (ap)
T2 01 ~ o212 et laT |
T2\ 0p Lop T2  p?T\0T ,
With the definition ofyt (eq. 3.49) we can write)P/dT), = y1 P/T, and thus

ou

P
%) -a-mf o7

Specific heats

The definitions of the specfic heats at constant volume anoinestant pressure are
dq ou
(d—.l_] = [6—1_) ) (3.80)
v P

dq) [au) P (ap]

= == -=|=Z1. (3.81)
(dT o aT ), P2\ 0T o

To work out an expression fap, we need du/dT)p and Qp/dT)p. To start with the latter, we use theffdir-
ential form of the equation of state (3.48). At constant pues d® = 0 this gives

do dT dp O XT
=t — = = =24 .82
X o XTT [GTJP T xp (3.82)

Cy

Cp

To obtain an expression fof§/oT)p we use eq. (3.76), which we can write as
du_(au) () &
dr = |oT - \dp)p dT
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and therefore

au] (8u) [6u] [ap] [au] xT P

= == +|5]| |= + (r - (3.83)
[(‘)T o oT A 9p ) 9T |, Xp oT

To obtain the last equality we used egs. (3.79) and (3.8®mFhe definitions (3.80) and (3.81) we thus arrive
at the following relation betweetp andcy:

Cp—Cy=—— (384)

which is eq. (3.53).

Expressions for dq

It is useful to be able to write the change in heat content afikmass in terms of the changes in the state
variables. Eqg. (3.77) already shows hogvisl written in terms ofT andp, i.e.

dg=Tds=cydT — y7 32 do, (3.85)
P

making use of (3.79) and (3.80). It is often useful to expdess terms of T andP, rather tharp. To do this
we write ¢ with the help of eq. (3.48),

dpP dT
do = X_p =) —XT ?) (3.86)
so that
P(dpP T 2P 1
dq:chT—)ﬂ—(d——XTd )_(cv+)i—)dT—)ﬂ—dP. (3.87)
Xp P\ P T Xp PT Xp P
The terms with parentheses in the last equality are simplaccording to (3.84), and therefore
P
dq = Tds=cpar - AT 9P (3.88)
Xp P
Adiabatic derivatives
Eq. (3.88) makes it easy to derive an expression for the atiatemperature gradient (3.57),
dinT
Vad = [d ™ P]ad. (3.89)

An adiabatic change i and P means the changes take place at constant with dy = 0. Hence (3.88)
shows that

This means
P xr
Vad = ﬁ);_p : (3.91)
which is eq. (3.64). With the help of this expression we cao alrite (3.88) as
dg=cp [dT —Vad ; dP). (3.92)
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To derive an expression for the adiabatic exponent (3.56),

dinP
Yad = (d in ) ) (3.93)
p ad
we use (3.85) and (3.88) and set4d 0 in both expressions. This gives
P 1
dT=——xrdo and d=—"Tdp
pCy PCP Xp

Eliminating dI' from both expressions gives

P _ce o R (dInP) o

cm\,x"; dlnpsza/\/p'
This means
Cp
Yad= —Xp =Y Xp |- (3.94)
Cv

wherey = cp/cy is the ratio of specific heats. Using eq. (3.84) this can aéswilitten as
P

pToy

which is eq. (3.62).

xt%, (3.95)

Yad = Xp T
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Chapter 4

Polytropic stellar models

As mentioned in Sec. 2.2, the equation of hydrostatic equilibrium can be sibltleel pressure is
a known function of the densityy = P(p). In this situation the mechanical structure of the star is
completely determined. A special case of such a relation betReenlp is thepolytropic relation

P=Kp” (4.1)

whereK andy are both constants. The resulting stellar models are knoynolgsopic stellar models
or simply polytropes. Polytropic models have played an important role in theibetdevelopment
of stellar structure theory. Although nowadays their practical use hatyrbegn superseded by more
realistic stellar models, due to their simplicity polytropic models still give useful irisigo several
important properties of stars. Moreover, in some cases the polytropiiorelsa good approximation
to the real equation of state. We have encountered a few examples obpay#quations of state
in Chapter 3, e.g. the pressure of degenerate electrons, and thelesepressure and density are
related adiabatically.

In this brief chapter — and the accompanying computer practicum —we wiiledie analytic the-
ory of polytropes and construct polytropic models, and study to which ddrstiars they correspond,
at least approximately.

4.1 Polytropes and the Lane-Emden equation

If the equation of state can be written in polytropic form, the equations for oagmuity (dn/dr,
eg. 2.3) and for hydrostatic equilibriumPRddr, eq. 2.12) can be combined with eq. (4.1) to give a
second-order dierential equation for the density:

1 d 2 y-2 dp 47TG
_ == 4.2
pr2dr (r dr Ky (4.2)
The exponeny is often replaced by the so-called polytropic inagxvhich is defined by
1 1
n—m or ’y—l+ﬁ (43)

In order to construct a polytropic stellar model we have to solve eq. tégdther with two boundary
conditions which are set in the centres O:

dr

wherep. is a parameter to be chosen, or determined from other constraints.

p(0)=p; and (d—p) =0, (4.4)
r=0
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Table 4.1. Numerical values for polytropic models with indax

n %y On pelp Nn Wh

0 2.44949 4.89898 1.00000 ... 0.119366

1 3.14159 3.14159 3.28987 0.63662 0.392699
15 3.65375 2.71406 5.99071 0.42422 0.770140
2 4.35287 2.41105 11.40254 0.36475 1.638183
3 6.89685 2.01824 54,1825 0.36394 11.05068
4 14.97155 1.79723 622.408 0.47720 247.559
4.5 31.8365 1.73780 6189.47 0.65798 4921.84

5 00 1.73205 00 00 00

In order to simplify eq. (4.2), we define two new dimensionless variablgslated to the density)
andz (related to the radius) by writing

pP= pC\Nn7 (45)

1/2

. 1 _

r=az with «a = nLKpé/” o (4.6)
4nG

This choice ofe ensures that the constam{sand 4G are eliminated after substitutirrgandp into
eqg. (4.2). The resulting second-ordefféiential equation is called theane-Emden equation

1d dw

A polytropic stellar model can be constructed by integrating this equation algvii@m the centre.
The boundary conditions (4.4) imply that in the centze=(0) we havew = 1 and dv/dz = 0. For
n < 5 the solutionnv(2) is found to decrease monotonically and to reach zero at finitez,, which
corresponds to the surface of the model.

No general analytical solution of the Lane-Emden equation exists. Theerogptions are = 0,
1 and 5, for which the solutions are:

n=0: W(Z):1—§ 7= V6, (4.8)

n=1: w(2) = LQZ Z1 =m, (4.9)
-1/2

n=5: w(®@-= (1 + §) Z5 = oo. (4.10)

The casa = 0 (y = o) corresponds to a homogeneous gas sphere with constant gengitjowing
eqg. (4.5). The solution fan = 5 is peculiar in that it has infinite radius; this is the case fonall 5,
while for n < 5 z, grows monotonically witm. For values of other than 0, 1 or 5 the solution must
be found by numerical integration (this is quite straightforward, see thengzanying computer
practicum). Table 4.1 lists the value mffor different values of, as well as several other properties
of the solution that will be discussed below.
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4.1.1 Physical properties of the solutions

Once the solutiorw(2) of the Lane-Emden equation is found, eq. (4.5) fixes the relative density
distribution of the model, which is thus uniquely determined by the polytropic imde®iven the
solution for a certaim, the physical properties of a polytropic stellar model, such as its mass and
radius, are then determined by the paramdteandp., as follows.

The radius of a polytropic model follows from eq. (4.6):

(n + 1)K T/z (1-n)/2n
-~ | Pc

R=am=1""75

Zn. (4.11)

The mass$n(2) interior toz can be obtained from integrating eq. (2.3), using egs. (4.5), (4.6Yand (

aZ 5 3 dW
m(z) = Arrcpdr = —4napc 77 —. (4.12)
0 dz
Hence the total mass of a polytropic model is
DK (5
M = drap. 0 = 4n| DT DK T g (4.13)
AnG
where we have define@l,, as
dw
O = (— 22—) . (4.14)
dz/),_,
By eliminatingo. from egs. (4.11) and (4.13) we can find a relation betwdeR andK,
1
K = Ny GMMDMRE-M/ with N, = (@7 @/ An-3)n, (4.15)

n+1

Numerical values oB, and N, are given in Table 4.1. From the expressions above we see that
n = 1 andn = 3 are special cases. For= 1 the radius is independent of the mass, and is uniquely
determined by the value df. Conversely, fom = 3 the mass is independent of the radius and
is uniquely determined b¥. For a givenK there is only one value o1 for which hydrostatic
equilibrium can be satisfied if = 3.

The average density = M/(%nl‘«ﬁ) of a polytropic star is related to the central density by
egs. (4.11) and (4.13) as

_ 3dw 30,
zdz

_(o3awy 36 (4.16)
P )Z:an Z P

Hence the ratigpc/p, i.e. the degree of central concentration of a polytrope, only depemdseo
polytropic indexn. This dependence is also tabulated in Table 4.1. One may invert this relation to
find the central density of a polytropic star of a given mass and radius.

The central pressure of a polytropic star follows from eq. (4.1), wharhbe written as

P. = Kp((:n+1)/n.
In combination with (4.15) and (4.16) this gives

GM? z

Pe = Wh——  with Wy=—>" 4.17
e "7 4n(n + 1)®2 (4.17)

R
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Note that in our simple scaling estimate, eq. (2.14), we found the same progdit§ié®. « GM?/R?,
where the proportionality constaw, is now determined by the polytropic index(see Table 4.1).
We can eliminatér in favour ofp. to obtain the very useful relation

_ (4m)13 0-2/3

Pc=CaGM¥3p¥3  with  C, ——©n

: (4.18)

where you may verify that the consta®y is only weakly dependent am unlike W, in (4.17).
We give without derivation an expression for the gravitational potentiatgy of a polytrope of
indexn:
3 GMm?
Eqp=—— ——. 4.19
=57 R (4.19)

(The derivation can be found in K&W Sec. 19.9 anddder Sec. 24.5.1.)

4.2 Application to stars

Eq. (4.15) expresses a relation between the congtaint eq. (4.1) and the mass and radius of a
polytropic model. This relation can be interpreted in two veiffedent ways:

e The constanK may be given in terms of physical constants. This is the case, for exampée, f
star dominated by the pressure of degenerate electrons, in either thelatristic limit or the
extremely relativistic limit. In that case eq. (4.15) defines a unique relationelegtthe mass
and radius of a star.

¢ In other cases the constakit merely expresses proportionality in eq. (4.1), Keis a free
parameter that is constant in a particular star, but may vary from star tdrsthis case there
are many dterent possible values &l andR. For a star with a given mass and radius, the
corresponding value df for this star can be determined from eq. (4.15).

In this section we briefly discuss examples for each of these two interpretatio

4.2.1 White dwarfs and the Chandrasekhar mass

Stars that are so compact and dense that their interior pressure is daehlipategenerate electrons
are known observationally aghite dwarfs They are the remnants of stellar cores in which hydrogen
has been completely converted into helium and, in most cases, also heliln@dmeftised into carbon
and oxygen. Since the pressure of a completely degenerate electrisragasction of density only
(Sec. 3.3.5), the mechanical structure if a white dwarf is fixed and is imdiepé of temperature. We
can thus understand some of the structural properties of white dwanfigags of polytropic models.
We start by considering the equation of state for a degenerate, noiséaelectron gas. From
eg. (3.35) this can be described by a polytropic relation with 1.5. Since the corresponding
is determined by physical constants, eq. (4.15) shows that such a pelyboibpys a mass-radius
relation of the from

Roc M7/3, (4.20)

More massive white dwarfs are thus more compact, and therefore hagaer density. Above a

certain density the electrons will become relativistic as they are pushed ightr Imomenta by the

Pauli exclusion principle. The degree of relativity increases with deraitytherefore with the mass
of the white dwarf, until at a certain mass all the electrons become extrentadiyistic, i.e., their
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speedve — c. In this limit the equation of state has changed from eq. (3.35) to eq. (3W8igh
is also a polytropic relation but with = 3. We have already seen above thanaa 3 polytrope is
special in the sense that it has a unique mass, which is determinkdabd is independent of the
radius:

K 3/2
M = 4703 (—) . (4.21)
nG
This value corresponds to an upper limit to the mass of a gas sphere irstatdrequilibrium that
can be supported by degenerate electrons, and thus to the maximum possiblor a white dwarf.
Its existence was first found by Chandrasekhar in 1931, after whizntinthiting mass was named.
Substituting the proper numerical values into eq. (4.21), Witorresponding to eq. (3.37), we obtain
the Chandrasekhar mass

Mch = 5.836152 Mo (4.22)

White dwarfs are typically formed of helium, carbon or oxygen, for whigh= 2 and therefore
Mch = 1.46 Mg. Indeed no white dwarf with a mass exceeding this limit is known to exist.

4.2.2 Eddington’s standard model

As an example of a situation wheke is not fixed by physical constants but is essentially a free
parameter, we consider a star in which the pressure is given by a mixtideabfgas pressure and
radiation pressure, eq. (3.45). In particular we make the assumption¢hatit3 of gas pressure to
total pressure is constant, i.e. has the same value in each layer of theirstarPgs = P we can
write

1
P=—- ng, (4.23)
B u
while also
_ Prad _ aT4
1-8= b = 3p- (4.24)

Thus the assumption of constghimeans thaff* o« P throughout the star. If we substitute the
complete expression far* into eq. (4.24) we obtain

1/3

4
P= (2% 1/3—43 ) o3, (4.25)
which is a polytropic relation witim = 3 for constang. Since we are free to choogdetween 0 and
1, the constarK is indeed a free parameter dependengon

The relation (4.25) was derived by Arthur Eddington in the 1920s fordmsolus ‘standard model’.
He found that in regions with a high opacity(see Ch. 5) the ratio of local luminosity to mass coor-
dinatel/mis usually small, and vice versa. Making the assumptionghat is constant throughout
the star is equivalent to assuming tigats constant (again, see Ch. 5). Indeed, for stars in which
radiation is the main energy transport mechanism this turns out to be apptelyitnae, even though
it is a very rough approximation to the real situation. Nevertheless, thegteunf stars on the main
sequence wittM > Mg, is reasonably well approximated by that oha= 3 polytrope. Since the
mass of an = 3 polytrope is given by eq. (4.21), we see from eq. (4.25) that theranggme relation
between the madd of a star ang. The relative contribution of radiation pressure increases with the
mass of a star. This was also noted by Eddington, who pointed out that the Iimraiitgd of known
stellar masses corresponds to valueg thfat are significantly dierent from O or 1.
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Suggestions for further reading

Polytropic stellar models are briefly covered in Chapter 24.5 efd¥k and treated more extensively
in Chapter 19 of Kepenuanrn & WeIGerT and Chapter 7.2 of kksen.

Exercises

4.1 The Lane-Emden equation

(a) Derive eq. (4.2) from the stellar structure equationsiass continuity and hydrostatic equilib-
rium. (Hint: multiply the hydrostatic equation by/p and take the derivative with respect to

r).

(b) What determines the second boundary condition of eq),(#e4, why does the density gradient
have to vanish at the center?

(c) By making the substitutions (4.3), (4.5) and (4.6), ekethe Lane-Emden equation (4.7).
(d) Solve the Lane-Emden equation analytically for the sase 0 andn = 1.

4.2 Polytropic models
(a) DeriveK andy for the equation of state of an ideal gas at a fixed temperatuga non-relativistic

degenerate gas and of a relativistic degenerate gas.

(b) Using the Lane-Emden equation, show that the masshilisivh in a polytropic star is given by
eg. (4.12), and show that this yields eq. (4.13) for the totass of a polytrope.

(c) Derive the expressions for the central dengityand the central pressuRg as function of mass
and radius, egs. (4.16) and (4.17).

(d) Derive eq. (4.18) and compute the constanfor several values af.

4.3 White dwarfs
To understand some of the properties of white dwarfs (WDs) tat by considering the equation of
state for a degenerate, non-relativistic electron gas.
(&) What is the value oK for such a star? Remember to consider an appropriate valine ahean
molecular weight per free electroan.

(b) Derive how the central density depends on the mass of a non-relativistic WD. Using this with
the result of Exercise 4.2(b), derive a radius-mass rel&®ie R(M). Interpret this physically.

(c) Use the result of (b) to estimate for which WD masses thagivistic efects would become im-
portant.

(d) Show that the derivation of R = R(M) relation for the extreme relativistic case leads to a uaiqu
mass, the so-calle@handrasekhar mas€alculate its value, i.e. derive eq. (4.22).

4.4 Eddington’s standard model

(a) Show that for constagtthe virial theorem leads to

Etot = /_;Egr = —Z'f;ﬁEint, (4.26)

for a classical, non-relativistic gas. What happens in tnédi3 — 1 and3 — 0?
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(b) Verify eq. (4.25), and show that the corresponding amd€ depends o and the mean molec-
ular weightu as

2.67x 10 (1-p\"°
K= ZE B :
(c) Use the results from above and the fact that the massmfaB polytrope is uniquely determined

by K, to derive the relatioM = M(B, u). This is useful for numerically solving the amount of
radiation pressure for a star with a given mass.

(4.27)
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