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Preface

These lecture notes are intended for an advanced astrophysics course on Stellar Structure and Evolu-
tion given at Utrecht University (NS-AP434M). Their goal is to providean overview of the physics
of stellar interiors and its application to the theory of stellar structure and evolution, at a level appro-
priate for a third-year Bachelor student or beginning Master student in astronomy. To a large extent
these notes draw on the classical textbook by Kippenhahn & Weigert (1990; see below), but leaving
out unnecessary detail while incorporating recent astrophysical insights and up-to-date results. At
the same time I have aimed to concentrate on physical insight rather than rigorous derivations, and
to present the material in a logical order, following in part the very lucid butsomewhat more basic
textbook by Prialnik (2000). Finally, I have borrowed some ideas from thetextbooks by Hansen,
Kawaler & Trimble (2004), Salaris & Cassissi (2005) and the recent book by Maeder (2009).

These lecture notes are evolving and I try to keep them up to date. If you find any errors or incon-
sistencies, I would be grateful if you could notify me by email (O.R.Pols@uu.nl).

Onno Pols
Utrecht, September 2011
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Physical and astronomical constants

Table 1. Physical constants in cgs units (CODATA 2006).

gravitational constant G 6.674 3× 10−8 cm3 g−1 s−2

speed of light in vacuum c 2.997 924 58× 1010 cm s−1

Planck constant h 6.626 069× 10−27 erg s
radiation density constant a 7.565 78× 10−15 erg cm−3 K−4

Stefan-Boltzmann constantσ = 1
4ac 5.670 40× 10−5 erg cm−2 s−1 K−4

Boltzmann constant k 1.380 650× 10−16 erg K−1

Avogadro’s number NA = 1/mu 6.022 142× 1023 g−1

gas constant R = kNA 8.314 47× 107 erg g−1 K−1

electron volt eV 1.602 176 5× 10−12 erg
electron charge e 4.803 26× 10−10 esu

e2 1.440 00× 10−7 eV cm
electron mass me 9.109 382× 10−28 g
atomic mass unit mu 1.660 538 8× 10−24 g
proton mass mp 1.672 621 6× 10−24 g
neutron mass mn 1.674 927 2× 10−24 g
α-particle mass mα 6.644 656 2× 10−24 g

Table 2. Astronomical constants, mostly from the Astronomical Almanac (2008).

Solar mass M⊙ 1.988 4× 1033 g
GM⊙ 1.327 124 42× 1026 cm3 s−2

Solar radius R⊙ 6.957× 1010 cm
Solar luminosity L⊙ 3.842× 1033 erg s−1

year yr 3.155 76× 107 s
astronomical unit AU 1.495 978 71× 1013 cm
parsec pc 3.085 678× 1018 cm
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Chapter 1

Introduction

This introductory chapter sets the stage for the course, and briefly repeats some concepts from earlier
courses on stellar astrophysics (e.g. the Utrecht first-year courseIntroduction to stellar structure and
evolutionby F. Verbunt).

Thegoalof this course on stellar evolution can be formulated as follows:

to understand the structure and evolution of stars, and their observational properties,
using known laws of physics

This involves applying and combining ‘familiar’ physics from many different areas (e.g. thermody-
namics, nuclear physics) under extreme circumstances (high temperature,high density), which is part
of what makes studying stellar evolution so fascinating.

What exactly do we mean by a ‘star’? A useful definition for the purpose of this course is as follows:
a star is an object that (1) radiates energy from an internal source and(2) is bound by its own gravity.
This definition excludes objects like planets and comets, because they do notcomply with the first
criterion. In the strictest sense it also excludes brown dwarfs, which are not hot enough for nuclear
fusion, although we will briefly discuss these objects. (The second criterion excludes trivial objects
that radiate, e.g. glowing coals).

An important implication of this definition is that stars mustevolve(why?). A star is born out of an
interstellar (molecular) gas cloud, lives for a certain amount of time on its internal energy supply, and
eventually dies when this supply is exhausted. As we shall see, a second implication of the definition
is that stars can have only a limited range of masses, between∼0.1 and∼100 times the mass of the
Sun. Thelife and deathof stars forms the subject matter of this course. We will only briefly touch on
the topic ofstar formation, a complex and much less understood process in which the problems to be
solved are mostly very different than in the study of stellar evolution.

1.1 Observational constraints

Fundamental properties of a star include themass M(usually expressed in units of the solar mass,
M⊙ = 1.99× 1033 g), theradius R(often expressed inR⊙ = 6.96× 1010 cm) and theluminosity L,
the rate at which the star radiates energy into space (often expressed inL⊙ = 3.84× 1033 erg/s). The
effective temperature Teff is defined as the temperature of a black body with the same energy flux
at the surface of the star, and is a good measure for the temperature of thephotosphere. From the
definition of effective temperature it follows that

L = 4πR2σT4
eff . (1.1)
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In addition, we would like to know thechemical compositionof a star. Stellar compositions are
usually expressed as mass fractionsXi , wherei denotes a certain element. This is often simplified
to specifying the mass fractionsX (of hydrogen),Y (of helium) andZ (of all heavier elements or
‘metals’), which add up to unity. Another fundamental property is therotation rateof a star, expressed
either in terms of the rotation periodProt or the equatorial rotation velocityυeq.

Astronomical observations can yield information about these fundamental stellar quantities:

• Photometric measurementsyield the apparent brightness of a star, i.e. the energy flux received
on Earth, in different wavelength bands. These are usually expressed as magnitudes,e.g. B,
V, I , etc. Flux ratios or colour indices (B − V, V − I , etc.) give a measure of the effective
temperature, using theoretical stellar atmosphere models and/or empirical relations. Applying
a bolometric correction (which also depends onTeff) yields the apparent bolometric flux,fbol

(in erg s−1 cm−2).

• In some cases thedistance dto a star can be measured, e.g. from the parallax. The Hipparcos
satellite has measured parallaxes with 1 milliarcsec accuracy of more than 105 stars. The lumi-
nosity then follows fromL = 4πd2 fbol, and the radius from eq. (1.1) if we have a measure of
Teff.

• An independent measure of the effective temperature can be obtained frominterferometry. This
technique yields the angular diameter of a star if it is sufficiently extended on the sky, i.e. the
ratio θ = R/d. Together with a measurement offbol this can be seen from eq. (1.1) to yield
σT4

eff = fbol/θ
2. This technique is applied to red giants and supergiants. If the distance is also

known, a direct measurement of the radius is possible.

• Spectroscopyat sufficiently high resolution yields detailed information about the physical con-
ditions in the atmosphere. With detailed spectral-line analysis using stellar atmosphere models
one can determine the photospheric properties of a star: the effective temperature and surface
gravity (g = GM/R2, usually expressed as logg), surface abundances of various elements (usu-
ally in terms of number density relative to hydrogen) and a measure of the rotation velocity
(υeqsini, wherei is the unknown inclination angle of the equatorial plane). In addition, for
some stars the properties of thestellar wind can be determined (wind velocities, mass loss
rates). All this is treated in more detail in the Master course onStellar Atmospheres.

• The most important fundamental property, the mass, cannot be measured directly for a single
star. To measure stellar masses one needsbinary starsshowing radial velocity variations (spec-
troscopic binaries). Radial velocities alone can only yield masses up to a factor sini, wherei is
the inclination angle of the binary orbit. To determine absolute mass values one needs informa-
tion on i, either from a visual orbit (visual binaries) or from the presence of eclipses (eclipsing
binaries). In particular for so called double-lined eclipsing binaries, in which the spectral lines
of both stars vary, it is possible to accurately measure both the masses and radii (with 1–2 % ac-
curacy in some cases) by fitting the radial-velocity curves and the eclipse lightcurve. Together
with a photometric or, better, spectroscopic determination ofTeff also the luminosity of such
binaries can be measured with high accuracy, independent of the distance. For more details see
the Master course onBinary Stars.

All observed properties mentioned above are surface properties. Therefore we need atheory of
stellar structureto derive the internal properties of a star. However, some direct windows on the
interior of a star exist:
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Figure 1.1. H-R diagram of solar neighbourhood. Source: Hipparcos, stars with d measured to< 10 %
accuracy.

• neutrinos, which escape from the interior without interaction. So far, the Sun is the only (non-
exploding) star from which neutrinos have been detected.

• oscillations, i.e. stellar seismology. Many stars oscillate, and their frequency spectrumcontains
information about the speed of sound waves inside the star, and therefore about the interior
density and temperature profiles. This technique has provided accurate constraints on detailed
structure models for the Sun, and is now also being applied to other stars.

The timespan of any observations is much smaller than a stellar lifetime: observations are like
snapshots in the life of a star. The observed properties of an individualstar contain no (direct) infor-
mation about its evolution. The diversity of stellar properties (radii, luminosities, surface abundances)
does, however, depend on how stars evolve, as well as on intrinsic properties (mass, initial composi-
tion). Properties that are common to a large number of stars must correspondto long-lived evolution
phases, and vice versa. By studying samples of stars statistically we can infer the (relative) lifetimes
of certain phases, which provides another important constraint on the theory of stellar evolution.

Furthermore, observations of samples of stars reveal certain correlations between stellar properties
that the theory of stellar evolution must explain. Most important are relations between luminosity and
effective temperature, as revealed by theHertzsprung-Russell diagram, and relations between mass,
luminosity and radius.

1.1.1 The Hertzsprung-Russell diagram

The Hertzsprung-Russell diagram (HRD) is an important tool to test the theory of stellar evolution.
Fig. 1.1 shows the colour-magnitude diagram (CMD) of stars in the vicinity of the Sun, for which the
Hipparcos satellite has measured accurate distances. This is an example of avolume-limitedsample
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Figure 1.2. Colour-magnitude diagrams of a young open cluster, M45 (thePleiades, left panel), and a globular
cluster, M3 (right panel).

of stars. In this observers’ HRD, the absolute visual magnitudeMV is used as a measure of the
luminosity and a colour index (B− V or V − I ) as a measure for the effective temperature. It is left
as an exercise to identify various types of stars and evolution phases in thisHRD, such as the main
sequence, red giants, the horizontal branch, white dwarfs, etc.

Star clusters provide an even cleaner test of stellar evolution. The stars ina cluster were formed
within a short period of time (a few Myr) out of the same molecular cloud and therefore share the same
age and (initial) chemical composition.1 Therefore, to first-order approximation only the mass varies
from star to star. A few examples of cluster CMDs are given in Fig. 1.2, fora young open cluster (the
Pleiades) and an old globular cluster (M3). As the cluster age increases,the most luminous main-
sequence stars disappear and a prominent red giant branch and horizontal branch appear. To explain
the morphology of cluster HRDs at different ages is one of the goals of studying stellar evolution.

1.1.2 The mass-luminosity and mass-radius relations

For stars with measured masses, radii and luminosities (i.e. binary stars) we can plot these quantities
against each other. This is done in Fig. 1.3 for the components of double-lined eclipsing binaries for
which M, R andL are all measured with∼< 2 % accuracy. These quantities are clearly correlated, and
especially the relation between mass and luminosity is very tight. Most of the starsin Fig. 1.3 are
long-lived main-sequence stars; the spread in radii for masses between1 and 2M⊙ results from the
fact that several more evolved stars in this mass range also satisfy the 2 % accuracy criterion. The
observed relations can be approximated reasonably well by power laws:

L ∝ M3.8 and R∝ M0.7. (1.2)

Again, the theory of stellar evolution must explain the existence and slopes ofthese relations.

1The stars in a cluster thus consitute a so-calledsimple stellar population. Recently, this simple picture has changed
somewhat after the discovery of multiple populations in many star clusters.
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Figure 1.3. Mass-luminosity (left) and mass-radius (right) relationsfor components of double-lined eclipsing
binaries with accurately measuredM, RandL.

1.2 Stellar populations

Stars in the Galaxy are divided into different populations:

• Population I: stars in the galactic disk, in spiral arms and in (relatively young) open clusters.
These stars have ages∼< 109 yr and are relatively metal-rich (Z ∼ 0.5− 1Z⊙)

• Population II: stars in the galactic halo and in globular clusters, with ages∼ 1010 yr. These stars
are observed to be metal-poor (Z ∼ 0.01− 0.1Z⊙).

An intermediate population (with intermediate ages and metallicities) is also seen in the disk of the
Galaxy. Together they provide evidence for thechemical evolutionof the Galaxy: the abundance
of heavy elements (Z) apparently increases with time. This is the result of chemical enrichment by
subsequent stellar generations.

The study of chemical evolution has led to the hypothesis of a ‘Population III’ consisting of the
first generation of stars formed after the Big Bang, containing only hydrogen and helium and no
heavier elements (‘metal-free’,Z = 0). No metal-free stars have ever been observed, probably due to
the fact that they were massive and had short lifetimes and quickly enriched the Universe with metals.
However, a quest for finding their remnants has turned up many very metal-poor stars in the halo,
with the current record-holder having an iron abundanceXFe = 4× 10−6XFe,⊙.

1.3 Basic assumptions

We wish to build a theory of stellar evolution to explain the observational constraints highlighted
above. In order to do so we must make some basic assumptions:

• stars are considered to beisolatedin space, so that their structure and evolution depend only on
intrinsic properties (mass and composition). For most single stars in the Galaxy this condition
is satisfied to a high degree (compare for instance the radius of the Sun with the distance to its
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nearest neighbour Proxima Centauri, see exercise 1.2). However, for stars in dense clusters, or
in binary systems, the evolution can be influenced by interaction with neighbouring stars. In
this course we will mostly ignore these complicating effects (many of which are treated in the
Master course onBinary Stars).

• stars are formed with ahomogeneous composition, a reasonable assumption since the molecular
clouds out of which they form are well-mixed. We will often assume a so-called ‘quasi-solar’
composition (X = 0.70, Y = 0.28 andZ = 0.02), even though recent determinations of solar
abundances have revised the solar metallicity down toZ = 0.014. In practice there is relatively
little variation in composition from star to star, so that the initial mass is the most important
parameter that determines the evolution of a star. The composition, in particularthe metallicity
Z, is of secondary influence but can have important effects especially in very metal-poor stars
(see§ 1.2).

• spherical symmetry, which is promoted by self-gravity and is a good approximation for most
stars. Deviations from spherical symmetry can arise if non-central forces become important
relative to gravity, in particular rotation and magnetic fields. Although many stars are observed
to have magnetic fields, the field strength (even in highly magnetized neutron stars) is always
negligible compared to gravity. Rotation can be more important, and therotation ratecan be
considered an additional parameter (besides mass and composition) determining the structure
and evolution of a star. For the majority of stars (e.g. the Sun) the forces involved are small
compared to gravity. However, some rapidly rotating stars are seen (by means of interferome-
try) to be substantially flattened.

1.4 Aims and overview of the course

In the remainder of this course we will:

• understand the global properties of stars: energetics and timescales

• study the micro-physics relevant for stars: the equation of state, nuclearreactions, energy trans-
port and opacity

• derive the equations necessary to model the internal structure of stars

• examine (quantitatively) the properties of simplified stellar models

• survey (mostly qualitatively) how stars of different masses evolve, and the endpoints of stellar
evolution (white dwarfs, neutron stars)

• discuss a few ongoing research areas in stellar evolution

Suggestions for further reading

The contents of this introductory chapter are also largely covered by Chapter 1 of Prialnik, which
provides nice reading.
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Exercises

1.1 Evolutionary stages

In this course we use many concepts introduced in the introductory astronomy classes. In this exercise
we recapitulate the names of evolutionary phases. During the lectures you are assumed to be familiar
with these terms, in the sense that you are able to explain them in general terms.

We encourage you to use Carroll & Ostlie, Introduction to Modern Astrophysics, or the book of the
first year course (Verbunt, Het leven van sterren) to make a list of the concepts printed initalic with a
brief explanation in your own words.

(a) Figure 1.1 shows the location of stars in the solar neighborhood in the Hertzsprung-Russel dia-
gram. Indicate in Figure 1.1 where you would find:

main-sequence stars, neutron stars,
the Sun, black holes,
red giants, binary stars,
horizontal branch stars, planets,
asymptotic giant branch (AGB) stars, pre-main sequence stars,
centrals star of planetary nebulae, hydrogen burning stars,
white dwarfs, helium burning stars.

(b) Through which stages listed above will the Sun evolve? Put them in chronological order. Through
which stages will a massive star evolve?

(c) Describe the following concepts briefly in your own words. You will need the concepts indicated
with * in the coming lectures.

ideal gas*, Jeans mass,
black body, Schwarzschild criterion,
virial theorem*, energy transport by radiation,
first law of thermodynamics*, energy transport by convection,
equation of state, pp-chain,
binary stars, CNO cycle,
star cluster, nuclear timescale*,
interstellar medium, thermal or Kelvin-Helmholtz timescale*,
giant molecular clouds, dynamical timescale*

1.2 Basic assumptions

Let us examine the three basic assumptions made in the theoryof stellar evolution:

(a) Stars are assumed to be isolated in space.The star closest to the sun, Proxima Centauri, is 4.3
light-years away. How many solar radii is that? By what factors are the gravitational field and
the radiation flux diminished? Many stars are formed in clusters and binaries. How could that
influence the life of a star?

(b) Stars are assumed to form with a uniform composition.What elements is the Sun made of? Just
after the Big Bang the Universe consisted almost purely of hydrogen and helium. Where do all
the heavier elements come from?

(c) Stars are assumed to be spherically symmetric.Why are stars spherically symmetric to a good
approximation? How would rotation affect the structure and evolution of a star? The Sun rotates
around its axis every 27 days. Calculate the ratio of is the centrifugal accelerationa over the
gravitational accelerationg for a mass element on the surface of the Sun. Does rotation influence
the structure of the Sun?

1.3 Mass-luminosity and mass-radius relation

(a) The masses of stars are approximately in the range 0.08M⊙ . M . 100M⊙. Why is there an
upper limit? Why is there a lower limit?
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(b) Can you think of methods to measure (1) the mass, (2) the radius, and (3) the luminosity of a
star? Can your methods be applied for any star or do they require special conditions. Discuss your
methods with your fellow students.

(c) Figure 1.3 shows the luminosity versus the mass (left) and the radius versus the mass (right) for
observed main sequence stars. We can approximate a mass-luminosity and mass-radius relation
by fitting functions of the form

L
L⊙
=

(

M
M⊙

)x

,
R
L⊙
=

(

M
M⊙

)y

(1.3)

Estimatex andy from Figure 1.3.

(d) Which stars live longer, high mass stars (which have more fuel) or low mass stars? Derive an
expression for the lifetime of a star as a function of its mass. (!)

[Hints: Stars spend almost all their life on the main sequence burning hydrogen until they run
out of fuel. First try to estimate the life time as function ofthe mass (amount of fuel) and the
luminosity (rate at which the fuel is burned).]

1.4 The ages of star clusters

Figure 1.4. H-R diagrams of three star clusters (from Prialnik).

The stars in a star cluster are formed more or less simultaneously by fragmentation of a large molecular
gas cloud.

(a) In Fig. 1.4 the H-R diagrams are plotted of the stars in three different clusters. Which cluster is
the youngest?

(b) Think of a method to estimate the age of the clusters, discuss with your fellow students. Estimate
the ages and compare with the results of your fellow students.

(c) (*) Can you give an error range on your age estimates?
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Chapter 2

Mechanical and thermal equilibrium

In this chapter we apply the physical principles of mass conservation and momentum conservation to
derive two of the fundamental stellar structure equations. We shall see that stars are generally in a
state of almost completemechanical equilibrium, which allows us to derive and apply the important
virial theorem. We consider the basic stellar timescales and see that most (but not all) starsare also
in a state of energy balance calledthermal equilibrium.

2.1 Coordinate systems and the mass distribution

The assumption of spherical symmetry implies that all interior physical quantities(such as densityρ,
pressureP, temperatureT, etc) depend only on one radial coordinate. The obvious coordinate to use
in a Eulerian coordinate system is the radius of a spherical shell,r (∈ 0 . . .R). In an evolving star,
all quantities also depend on timet. When constructing the differential equations for stellar structure
one should thus generally consider partial derivatives of physical quantities with respect to radius and
time,∂/∂r and∂/∂t, taken at constantt andr, respectively.

The principle of mass conservation applied to the mass dm of a spherical shell of thickness dr at
radiusr (see Fig. 2.1) gives

dm(r, t) = 4πr2 ρ dr − 4πr2 ρ υdt, (2.1)

whereυ is the radial velocity of the mass shell. Therefore one has

∂m
∂r
= 4πr2 ρ and

∂m
∂t
= −4πr2 ρ υ. (2.2)

The first of these partial differential equations relates the radial mass distribution in the star to the
local density: it constitutes the first fundamental equation of stellar structure. Note thatρ = ρ(r, t)
is not known a priori, and must follow from other conditions and equations. The second equation of
(2.2) represents the change of mass inside a sphere of radiusr due to the motion of matter through
its surface; at the stellar surface this gives the mass-loss rate (if there is astellar wind withυ > 0) or
mass-accretion rate (if there is inflow withυ < 0). In a static situation, where the velocity is zero, the
first equation of (2.2) becomes an ordinary differential equation,

dm
dr
= 4πr2 ρ. (2.3)

This is almost always a good approximation for stellar interiors, as we shall see. Integration yields
the massm(r) inside a spherical shell of radiusr:

m(r) =
∫ r

0
4πr ′2ρ dr ′.
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Figure 2.1. Mass shell inside a spherically symmetric
star, at radiusr and with thickness dr. The mass of the
shell is dm = 4πr2ρdr. The pressure and the gravita-
tional force acting on a cylindrical mass element are
also indicated.

Sincem(r) increases monotonically outward, we can also usem(r) as our radial coordinate, instead
of r. Thismass coordinate, often denoted asmr or simplym, is a Lagrangian coordinate that moves
with the mass shells:

m := mr =

∫ r

0
4πr ′2ρ dr ′ (m ∈ 0 . . .M). (2.4)

It is often more convenient to use a Lagrangian coordinate instead of a Eulerian coordinate. The mass
coordinate is defined on a fixed interval,m ∈ 0 . . .M, as long as the star does not lose mass. On the
other handr depends on the time-varying stellar radiusR. Furthermore the mass coordinate follows
the mass elements in the star, which simplifies many of the time derivatives that appear in the stellar
evolution equations (e.g. equations for the composition). We can thus write allquantities as functions
of m, i.e. r = r(m), ρ = ρ(m), P = P(m), etc.

Using the coordinate transformationr → m, i.e.

∂

∂m
=
∂

∂r
· ∂r
∂m

, (2.5)

the first equation of stellar structure becomes in terms of the coordinatem:

∂r
∂m
=

1
4πr2ρ

(2.6)

which again becomes an ordinary differential equation in a static situation.

2.1.1 The gravitational field

Recall that a star is a self-gravitating body of gas, which implies that gravity isthe driving force
behind stellar evolution. In the general, non-spherical case, the gravitational accelerationg can be
written as the gradient of the gravitational potential,g = −∇Φ, whereΦ is the solution of the Poisson
equation

∇2Φ = 4πGρ.

Inside a spherically symmetric body, this reduces tog := |g| = dΦ/dr. The gravitational acceleration
at radiusr and equivalent mass coordinatem is then given by

g =
Gm

r2
. (2.7)
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Spherical shells outsider apply no net force, so thatg only depends on the mass distribution inside
the shell at radiusr. Note thatg is the magnitude of the vectorg which points inward (toward smaller
r or m).

2.2 The equation of motion and hydrostatic equilibrium

We next consider conservation of momentum inside a star, i.e. Newton’s second law of mechanics.
The net acceleration on a gas element is determined by the sum of all forcesacting on it. In addition to
the gravitational force considered above, forces result from the pressure exerted by the gas surround-
ing the element. Due to spherical symmetry, the pressure forces acting horizontally (perpendicular to
the radial direction) balance each other and only the pressure forces acting along the radial direction
need to be considered. By assumption we ignore other forces that might act inside a star (Sect. 1.3).

Hence the net acceleration ¨r = ∂2r/∂t2 of a (cylindrical) gas element with mass

dm= ρ dr dS (2.8)

(where dr is its radial extent and dS is its horizontal surface area, see Fig. 2.1) is given by

r̈ dm= −gdm+ P(r) dS − P(r + dr) dS. (2.9)

We can writeP(r + dr) = P(r) + (∂P/∂r) · dr, hence after substituting eqs. (2.7) and (2.8) we obtain
theequation of motionfor a gas element inside the star:

∂2r

∂t2
= −Gm

r2
− 1
ρ

∂P
∂r
. (2.10)

This is a simplified from of the Navier-Stokes equation of hydrodynamics, applied to spherical sym-
metry (see Maeder). Writing the pressure gradient∂P/∂r in terms of the mass coordinatem by
substituting eq. (2.6), the equation of motion is

∂2r

∂t2
= −Gm

r2
− 4πr2 ∂P

∂m
. (2.11)

Hydrostatic equilibrium The great majority of stars are obviously in such long-lived phases of
evolution that no change can be observed over human lifetimes. This means there is no noticeable
acceleration, and all forces acting on a gas element inside the star almost exactly balance each other.
Thus most stars are in a state of mechanical equilibrium which is more commonly called hydrostatic
equilibrium(HE).

The state of hydrostatic equilibrium, setting ¨r = 0 in eq. (2.10), yields the second differential
equation of stellar structure:

dP
dr
= −Gm

r2
ρ, (2.12)

or with eq. (2.6)

dP
dm
= − Gm

4πr4
(2.13)

A direct consequence is that inside a star in hydrostatic equilibrium, the pressure always decreases
outwards.

Eqs. (2.6) and (2.13) together determine themechanical structureof a star in HE. These are
two equations for three unknown functions ofm (r, P andρ), so they cannot be solved without a
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third condition. This condition is usually a relation betweenP andρ called theequation of state
(see Chapter 3). In general the equation of state depends on the temperature T as well, so that the
mechanical structure depends also on the temperature distribution inside the star, i.e. on its thermal
structure. In special cases the equation of state is independent ofT, and can be written asP =
P(ρ). In such cases (known as barotropes or polytropes) the mechanicalstructure of a star becomes
independent of its thermal structure. This is the case for white dwarfs, aswe shall see later.

Estimates of the central pressure A rough order-of-magnitude estimate of the central pressure can
be obtained from eq. (2.13) by setting

dP
dm
∼ Psurf − Pc

M
≈ −Pc

M
, m∼ 1

2M, r ∼ 1
2R

which yields

Pc ∼
2
π

GM2

R4
(2.14)

For the Sun we obtain from this estimatePc ∼ 7× 1015 dyn/cm2 = 7× 109 atm.
A lower limit on the central pressure may be derived by writing eq. (2.13) as

dP
dr
= − Gm

4πr4

dm
dr
= − d

dr

(

Gm2

8πr4

)

− Gm2

2πr5
,

and thus

d
dr

(

P+
Gm2

8πr4

)

= −Gm2

2πr5
< 0. (2.15)

The quantityΨ(r) = P+Gm2/(8πr4) is therefore a decreasing function ofr. At the centre, the second
term vanishes becausem ∝ r3 for small r, and henceΨ(0) = Pc. At the surface, the pressure is
essentially zero. From the fact thatΨmust decrease withr it thus follows that

Pc >
1
8π

GM2

R4
. (2.16)

In contrast to eq. (2.14), this is a strict mathematical result, valid for any starin hydrostatic equilibrium
regardless of its other properties (in particular, regardless of its densitydistribution). For the Sun we
obtainPc > 4.4 × 1014 dyn/cm2. Both estimates indicate that an extremely high central pressure is
required to keep the Sun in hydrostatic equilibrium. Realistic solar models show the central density
to be 2.4× 1017 dyn/cm2.

2.2.1 The dynamical timescale

We can ask what happens if the state of hydrostatic equilibrium is violated: how fast do changes
to the structure of a star occur? The answer is provided by the equation ofmotion, eq. (2.10). For
example, suppose that the pressure gradient that supports the star against gravity suddenly drops. All
mass shells are then accelerated inwards by gravity: the star starts to collapse in “free fall”. We can
approximate the resulting (inward) acceleration by

|r̈ | ≈ R

τff2
⇒ τff ≈

√

R
|r̈ |
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whereτff is the free-fall timescale that we want to determine. Since−r̈ = g ≈ GM/R2 for the entire
star, we obtain

τff ≈

√

R
g
≈

√

R3

GM
. (2.17)

Of course each mass shell is accelerated at a different rate, so this estimate should be seen as an
average value for the star to collapse over a distanceR. This provides one possible estimate for the
dynamical timescaleof the star. Another estimate can be obtained in a similar way by assuming that
gravity suddenly disappears: this gives the timescale for the outward pressure gradient to explode the
star, which is similar to the time it takes for a sound wave to travel from the centreto the surface of
the star. If the star is close to HE, all these timescales have about the same value given by eq. (2.17).
Since the average density ¯ρ = 3M/(4πR3), we can also write this (hydro)dynamical timescale as

τdyn ≈
√

R3

GM
≈ 1

2 (Gρ̄)−1/2. (2.18)

For the Sun we obtain a very small value ofτdyn ≈ 1600 sec or about half an hour (0.02 days). This
is very much smaller than the age of the Sun, which is 4.6 Gyr or∼ 1.5 × 1017 sec, by 14 orders of
magnitude. This result has several important consequences for the Sunand other stars:

• Any significant departure from hydrostatic equilibrium should very quickly lead to observable
phenomena: either contraction or expansion on the dynamical timescale. If the star cannot
recover from this disequilibrium by restoring HE, it should lead to a collapseor an explosion.

• Normally hydrostatic equilibrium can be restored after a disturbance (we willconsider this
dynamical stabilityof stars later). However a perturbation of HE may lead to small-scale oscil-
lations on the dynamical timescale. These are indeed observed in the Sun andmany other stars,
with a period of minutes in the case of the Sun. Eq. (2.18) tells us that the pulsation period is a
(rough) measure of the average density of the star.

• Apart from possible oscillations, stars are extremely close to hydrostatic equilibrium, since
any disturbance is immediately quenched. We can therefore be confident that eq. (2.13) holds
throughout most of their lifetimes. Stars do evolve and are therefore not completely static, but
changes occur very slowly compared to their dynamical timescale. Stars canbe said to evolve
quasi-statically, i.e. through a series of near-perfect HE states.

2.3 The virial theorem

An important consequence of hydrostatic equilibrium is thevirial theorem, which is of vital impor-
tance for the understanding of stars. It connects two important energy reservoirs of a star and allows
predictions and interpretations of important phases in the evolution of stars.

To derive the virial theorem we start with the equation for hydrostatic equilibrium eq. (2.13). We
multiply both sides by the enclosed volumeV = 4

3πr3 and integrate overm:
∫ M

0

4
3πr3 dP

dm
dm= −1

3

∫ M

0

Gm
r

dm (2.19)

The integral on the right-hand side has a straightforward physical interpretation: it is thegravitational
potential energyof the star. To see this, consider the work done by the gravitational forceF to bring
a mass elementδm from infinity to radiusr:

δW =
∫ r

∞
F · dr =

∫ r

∞

Gmδm

r2
dr = −GM

r
δm.
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The gravitational potential energy of the star is the work performed by the gravitational force to bring
all mass elements from infinity to their current radius, i.e.

Egr = −
∫ M

0

Gm
r

dm (2.20)

The left-hand side of eq. (2.19) can be integrated by parts:
∫ Ps

Pc

V dP = [V · P]s
c −

∫ Vs

0
PdV (2.21)

wherec ands denote central and surface values. Combining the above expressions ineq. (2.19) we
obtain

4
3πR3 P(R) −

∫ Vs

0
PdV = 1

3Egr, (2.22)

with P(R) the pressure at the surface of the volume. This expression is useful when the pressure from
the surrounding layers is substantial, e.g. when we consider only the coreof a star. If we consider
the star as a whole, however, the first term vanishes because the pressure at the stellar surface is
negligible. In that case

−3
∫ Vs

0
PdV = Egr, (2.23)

or, since dV = dm/ρ,

−3
∫ M

0

P
ρ

dm= Egr. (2.24)

This is the general form of the virial theorem, which will prove valuable later. It tells us that that the
average pressure needed to support a star in HE is equal to−1

3Egr/V. In particular it tells us that a
star that contracts quasi-statically (that is, slowly enough to remain in HE) must increase its internal
pressure, since|Egr| increases while its volume decreases.

The virial theorem for an ideal gas The pressure of a gas is related to its internal energy. We will
show this in Ch. 3, but for the particular case of an ideal monatomic gas it is easy to see. The pressure
of an ideal gas is given by

P = nkT =
ρ

µmu
kT, (2.25)

wheren = N/V is the number of particles per unit volume, andµ is mass of a gas particle in atomic
mass units. The kinetic energy per particle isǫk =

3
2kT, and the internal energy of an ideal monatomic

gas is equal to the kinetic energy of its particles. The internal energy per unit mass is then

u =
3
2

kT
µmu

=
3
2

P
ρ
. (2.26)

We can now interpret the left-hand side of the virial theorem (eq. 2.24) as
∫

(P/ρ) dm= 2
3

∫

udm=
2
3Eint, whereEint is the total internal energy of the star. The virial theorem for an ideal gasis therefore

Eint = −1
2Egr (2.27)

This important relation establishes a link between the gravitational potential energy and the internal
energy of a star in hydrostatic equilibrium that consists of an ideal gas. (We shall see later that the
ideal gas law indeed holds for most stars, at least on the main sequence.) The virial theorem tells
us that a more tightly bound star must have a higher internal energy, i.e. it mustbehotter. In other
words, a star that contracts quasi-statically must get hotter in the process.The full implications of this
result will become clear when we consider the total energy of a star in a short while.
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Estimate of the central temperature Using the virial theorem we can obtain an estimate of the
average temperature inside a star composed of ideal gas. The gravitational energy of the star is found
from eq. (2.20) and can be written as

Egr = −α
GM2

R
, (2.28)

whereα is a constant of order unity (determined by the distribution of matter in the star, i.e. by
the density profile). Using eq. (2.26), the internal energy of the star isEint =

3
2k/(µmu)

∫

Tdm =
3
2k/(µmu)T̄ M, whereT̄ is the temperature averaged over all mass shells. By the virial theorem we
then obtain

T̄ =
α

3
µmu

k
GM
R

. (2.29)

Takingα ≈ 1 andµ = 0.5 for ionized hydrogen, we obtain for the Sun̄T ∼ 4 × 106 K. This is the
average temperature required to provide the pressure that is needed to keep the Sun in hydrostatic
equilibrium. Since the temperature in a star normally decreases outwards, it is also an approximate
lower limit on the central temperature of the Sun. At these temperatures, hydrogen and helium are
indeed completely ionized. We shall see thatTc ≈ 107 K is high enough for hydrogen fusion to take
place in the central regions of the Sun.

The virial theorem for a general equation of state Also for equations of state other than an ideal
gas a relation between pressure and internal energy exists, which we can write generally as

u = φ
P
ρ
. (2.30)

We have seen above thatφ = 3
2 for an ideal gas, but it will turn out (see Ch. 3) that this is valid not

only for an ideal gas, but for all non-relativistic particles. On the other hand, if we consider a gas of
relativistic particles, in particular photons (i.e. radiation pressure),φ = 3. If φ is constant throughout
the star we can integrate the left-hand side of eq. (2.23) to obtain a more general form of the virial
theorem:

Eint = −1
3φEgr (2.31)

2.3.1 The total energy of a star

The total energy of a star is the sum of its gravitational potential energy, its internal energy and its
kinetic energyEkin (due to bulk motions of gas inside the star, not the thermal motions of the gas
particles):

Etot = Egr + Eint + Ekin. (2.32)

The star is bound as long as its total energy is negative.
For a star in hydrostatic equilibrium we can setEkin = 0. Furthermore for a star in HE the virial

theorem holds, so thatEgr andEint are tightly related by eq. (2.31). Combining eqs. (2.31) and (2.32)
we obtain the following relations:

Etot = Eint + Egr =
φ − 3
φ

Eint = (1− 1
3φ)Egr (2.33)
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As long asφ < 3 the star is bound. This is true in particular for the important case of a star consisting
of an ideal gas (eq. 2.27), for which we obtain

Etot = Eint + Egr = − Eint =
1
2Egr < 0 (2.34)

In other words, its total energy of such a star equals half of its gravitational potential energy.
From eq. (2.34) we can see that the virial theorem has the following important consequences:

• Gravitationally bound gas spheres must behot to maintain hydrostatic equilibrium: heat pro-
vides the pressure required to balance gravity. The more compact such asphere, the more
strongly bound, and therefore the hotter it must be.

• A hot sphere of gas radiates into surrounding space, therefore a starmust lose energy from its
surface. The rate at which energy is radiated from the surface is theluminosityof the star. In
the absence of an internal energy source, this energy loss must equalthe decrease of the total
energy of the star:L = −dEtot/dt > 0, sinceL is positive by convention.

• Taking the time derivative of eq. (2.34), we find that as a consequence of losing energy:

Ėgr = −2L < 0,

meaning that the starcontracts(becomes more strongly bound), and

Ėint = L > 0,

meaning that the stargets hotter– unlike familiar objects which cool when they lose energy.
Therefore a star can be said to have anegative heat capacity. Half the energy liberated by
contraction is used for heating the star, the other half is radiated away.

For the case of a star that is dominated by radiation pressure, we find thatEint = −Egr, and there-
fore the total energyEtot = 0. Therefore a star dominated by radiation pressure (or more generally,
by the pressure of relativistic particles) is only marginally bound. No energy is required to expand or
contract such a star, and a small perturbation would be enough to renderit unstable and to trigger its
collapse or complete dispersion.

2.3.2 Thermal equilibrium

If internal energy sources are present in a star due to nuclear reactions taking place in the interior, then
the energy loss from the surface can be compensated:L = Lnuc ≡ −dEnuc/dt. In that case the total
energy is conserved and eq. (2.34) tells us thatĖtot = Ėint = Ėgr = 0. The virial theorem therefore
states that bothEint andEgr are conserved as well: the star cannot, for example, contract and cool
while keeping its total energy constant.

In this state, known asthermal equilibrium(TE), the star is in a stationary state. Energy is radiated
away at the surface at the same rate at which it is produced by nuclear reactions in the interior. The
star neither expands nor contracts, and it maintains a constant interior temperature. We shall see
later that this temperature is regulated by the nuclear reactions themselves, which in combination
with the virial theorem act like a stellar thermostat. Main-sequence stars like theSun are in thermal
equilibrium, and a star can remain in this state as long as nuclear reactions can supply the necessary
energy.
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Note that the arguments given above imply that both hydrostatic equilibrium andthermal equilib-
rium arestableequilibria, an assumption that we have yet to prove (see Ch. 7). It is relatively easy to
understand why TE is stable, at least as long as the ideal-gas pressure dominates (φ < 3 in eq. 2.31).
Consider what happens when TE is disturbed, e.g. whenLnuc > L temporarily. The total energy then
increases, and the virial theorem states that as a consequence the star must expand and cool. Since
the nuclear reaction rates typically increase strongly with temperature, the rate of nuclear burning and
thusLnuc will decrease as a result of this cooling, until TE is restored whenL = Lnuc.

2.4 The timescales of stellar evolution

Three important timescales are relevant for stellar evolution, associated withchanges to the mechani-
cal structure of a star (described by the equation of motion, eq. 2.11), changes to its thermal structure
(as follows from the virial theorem, see also Sect. 5.1) and changes in its composition, which will be
discussed in Ch. 6.

The first timescale was already treated in Sec. 2.2.1: it is thedynamical timescalegiven by
eq. (2.18),

τdyn ≈
√

R3

GM
≈ 0.02

(

R
R⊙

)3/2(
M⊙
M

)1/2

days (2.35)

The dynamical timescale is the timescale on which a star reacts to a perturbation ofhydrostatic equi-
librium. We saw that this timescale is typically of the order of hours or less, whichmeans that stars
are extremely close to hydrostatic equilibrium.

2.4.1 The thermal timescale

The second timescale describes how fast changes in the thermal structureof a star can occur. It is
therefore also the timescale on which a star in thermal equilibrium reacts when itsTE is perturbed.
To obtain an estimate, we turn to the virial theorem: we saw in Sec. 2.3.1 that a starwithout a nuclear
energy source contracts by radiating away its internal energy content:L = Ėint ≈ −2Ėgr, where the
last equality applies strictly only for an ideal gas. We can thus define thethermalor Kelvin-Helmholtz
timescaleas the timescale on which this gravitational contraction would occur:

τKH =
Eint

L
≈
|Egr|
2L
≈ GM2

2RL
≈ 1.5× 107

(

M
M⊙

)2
R⊙
R

L⊙
L

yr (2.36)

Here we have used eq. (2.28) forEgr with α ≈ 1.
The thermal timescale for the Sun is about 1.5 × 107 years, which is many orders of magnitude

larger than the dynamical timescale. There is therefore no direct observational evidence that any
star is in thermal equilibrium. In the late 19th century gravitational contraction was proposed as the
energy source of the Sun by Lord Kelvin and, independently, by Hermann von Helmholtz. This led to
an age of the Sun and an upper limit to the age the Earth that was in conflict with emerging geological
evidence, which required the Earth to be much older. Nuclear reactions have since turned out to be
a much more powerful energy source than gravitational contraction, allowing stars to be in thermal
equilibrium for most (> 99 %) of their lifetimes. However, several phases of stellar evolution, during
which the nuclear power source is absent or inefficient, do occur on the thermal timescale.
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2.4.2 The nuclear timescale

A star can remain in thermal equilibrium for as long as its nuclear fuel supply lasts. The associated
timescale is called thenuclear timescale, and since nuclear fuel (say hydrogen) is burned into ‘ash’
(say helium), it is also the timescale on which composition changes in the stellar interior occur.

The energy source of nuclear fusion is the direct conversion of a smallfractionφ of the rest mass
of the reacting nuclei into energy. For hydrogen fusion,φ ≈ 0.007; for fusion of helium and heavier
elementsφ is smaller by a factor 10 or more. The total nuclear energy supply can therefore be written
asEnuc = φMnucc2 = φ fnucMc2, where fnuc is that fraction of the mass of the star which may serve as
nuclear fuel. In thermal equilibriumL = Lnuc = Ėnuc, so we can estimate the nuclear timescale as

τnuc =
Enuc

L
= φ fnuc

Mc2

L
≈ 1010 M

M⊙

L⊙
L

yr. (2.37)

The last approximate equality holds for hydrogen fusion in a star like the Sun,with has 70 % of its
initial mass in hydrogen and fusion occurring only in the inner≈ 10 % of its mass (the latter result
comes from detailed stellar models). This long timescale is consistent with the geological evidence
for the age of the Earth.

We see that, despite only a small fraction of the mass being available for fusion, the nuclear
timescale is indeed two to three orders of magnitude larger than the thermal timescale. Therefore the
assumption that stars can reach a state of thermal equilibrium is justified. To summarize, we have
found:

τnuc≫ τKH ≫ τdyn.

As a consequence, the rates of nuclear reactions determine the pace of stellar evolution, and stars may
be assumed to be in hydrostatic and thermal equilibrium throughout most of their lives.

Suggestions for further reading

The contents of this chapter are covered more extensively by Chapter 1 of Maeder and by Chapters 1
to 4 of Kippenhahn & Weigert.

Exercises

2.1 Density profile

In a star with massM, assume that the density decreases from the center to the surface as a function of
radial distancer, according to

ρ = ρc

[

1−
( r
R

)2
]

, (2.38)

whereρc is a given constant andR is the radius of the star.

(a) Findm(r).

(b) Derive the relation betweenM andR.

(c) Show that the average density of the star is 0.4ρc.
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2.2 Hydrostatic equilibrium

(a) Consider an infinitesimal mass element dm inside a star, see Fig. 2.1. What forces act on this mass
element?

(b) Newton’s second law of mechanics, or the equation of motion, states that the net force acting on
a body is equal to its acceleration times it mass. Write down the equation of motion for the gas
element.

(c) In hydrostatic equilibrium the net force is zero and the gas element is not accelerated. Find an
expression of the pressure gradient in hydrostatic equilibrium.

(d) Find an expression for the central pressurePc by integrating the pressure gradient. Use this to
derive the lower limit on the central pressure of a star in hydrostatic equilibrium, eq. (2.16).

(e) Verify the validity of this lower limit for the case of a star with the density profile of eq. (2.38).

2.3 The virial theorem

An important consequence of hydrostatic equilibrium is that it links the gravitational potential energy
Egr and the internal thermal energyEint.

(a) Estimate the gravitational energyEgr for a star with massM and radiusR, assuming (1) a constant
density distribution and (2) the density distribution of eq. (2.38).

(b) Assume that a star is made of an ideal gas. What is the kinetic internal energy per particle for an
ideal gas? Show that the total internal energy,Eint is given by:

Eint =

∫ R

0

(

3
2

k
µmu

ρ(r)T(r)

)

4πr2 dr. (2.39)

(c) Estimate the internal energy of the Sun by assuming constant density andT(r) ≈ 〈T〉 ≈ 1
2Tc ≈

5× 106K and compare your answer to your answer for a). What is the totalenergy of the Sun? Is
the Sun bound according to your estimates?

It is no coincidence that the order of magnitude forEgr and Eint are the same1. This follows from
hydrostatic equilibrium and the relation is known as the virial theorem. In the next steps we will derive
the virial theorem starting from the pressure gradient in the form of eq. (2.12).

(d) Multiply by both sides of eq. (2.12) by 4πr3 and integrate over the whole star. Use integration by
parts to show that

∫ R

0
3P 4πr2 dr =

∫ R

0

Gm(r)
r

ρ4πr2 dr. (2.40)

(e) Now derive a relation betweenEgr andEint, the virial theorem for an ideal gas.

(f) (*) Also show that for the average pressure of the star

〈P〉 = 1
V

∫ R∗

0
P 4πr2 dr = −1

3

Egr

V
, (2.41)

where V is the volume of the star.

As the Sun evolved towards the main sequence, it contracted under gravity while remaining close to
hydrostatic equilibrium. Its internal temperature changed from about 30 000 K to about 6× 106K.

(g) Find the total energy radiated during away this contraction. Assume that the luminosity during
this contraction is comparable toL⊙ and estimate the time taken to reach the main sequence.

2.4 Conceptual questions

1In reality Egr is larger than estimated above because the mass distribution is more concentrated to the centre.
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(a) Use the virial theorem to explain why stars are hot, i.e. have a high internal temperature and
therefore radiate energy.

(b) What are the consequences of energy loss for the star, especially for its temperature?

(c) Most stars are in thermal equilibrium. What is compensating for the energy loss?

(d) What happens to a star in thermal equilibrium (and in hydrostatic equilibrium) if the energy pro-
duction by nuclear reactions in a star drops (slowly enough to maintain hydrostatic equilibrium)?

(e) Why does this have a stabilizing effect? On what time scale does the change take place?

(f) What happens if hydrostatic equilibrium is violated, e.g. by a sudden increase of the pressure.

(g) On which timescale does the change take place? Can you give examples of processes in stars that
take place on this timescale.

2.5 Three important timescales in stellar evolution

(a) The nuclear timescaleτnuc.

i. Calculate the total mass of hydrogen available for fusionover the lifetime of the Sun, if 70%
of its mass was hydrogen when the Sun was formed, and only 13% of all hydrogen is in the
layers where the temperature is high enough for fusion.

ii. Calculate the fractional amount of mass converted into energy by hydrogen fusion. (Refer to
Table 1 for the mass of a proton and of a helium nucleus.)

iii. Derive an expression for the nuclear timescale in solarunits, i.e. expressed in terms ofR/R⊙,
M/M⊙ andL/L⊙.

iv. Use the mass-radius and mass-luminosity relations for main-sequence stars to express the
nuclear timescale of main-sequence stars as a function of the mass of the star only.

v. Describe in your own words the meaning of the nuclear timescale.

(b) The thermal timescaleτKH .

i-iii. Answer question (a) iii, iv and v for the thermal timescale and calculate the age of the Sun
according to Kelvin.

iv. Why are most stars observed to be main-sequence stars and why is the Hertzsprung-gap
called a gap?

(c) The dynamical timescaleτdyn.

i-iii. Answer question (a) iii, iv and v for the dynamical timescale.
iv. In stellar evolution models one often assumes that starsevolvequasi-statically, i.e. that the

star remains in hydrostatic equilibrium throughout. Why canwe make this assumption?
v. Rapid changes that are sometimes observed in stars may indicate that dynamical processes are

taking place. From the timescales of such changes - usually oscillations with a characteristic
period - we may roughly estimate the average density of the Star. The sun has been observed
to oscillate with a period of minutes, white dwarfs with periods of a few tens of seconds.
Estimate the average density for the Sun and for white dwarfs.

(d) Comparison.

i. Summarize your results for the questions above by computing the nuclear, thermal and dy-
namical timescales for a 1, 10 and 25M⊙ main-sequence star. Put your answers in tabular
form.

ii. For each of the following evolutionary stages indicate on which timescale they occur:pre-
main sequence contraction, supernova explosion, core hydrogen burning, core helium burn-
ing.

iii. When the Sun becomes a red giant (RG), its radius will increase to 200R⊙ and its luminosity
to 3000L⊙. Estimateτdyn andτKH for such a RG.

iv. How large would such a RG have to become forτdyn > τKH? Assume both R and L increase
at constant effective temperature.
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Chapter 3

Equation of state of stellar interiors

3.1 Local thermodynamic equilibrium

Empirical evidence shows that in a part of space isolated from the rest ofthe Universe, matter and
radiation tend towards a state ofthermodynamic equilibrium. This equilibrium state is achieved when
sufficient interactions take place between the material particles (‘collisions’) andbetween the pho-
tons and mass particles (scatterings and absorptions). In such a state of thermodynamic equilibrium
the radiation field becomes isotropic and the photon energy distribution is described by the Planck
function (blackbody radiation). The statistical distribution functions of boththe mass particles and
the photons are then characterized by a single temperatureT.

We know that stars are not isolated systems, because they emit radiation andgenerate (nuclear)
energy in their interiors. Indeed, the surface temperature of the Sun is about 6000 K, while we have
estimated from the virial theorem (Sec. 2.3) that the interior temperature must of the order of 107 K.
Therefore stars arenot in global thermodynamic equilibrium. However, it turns out that locally within
a star, a state of thermodynamic equilibriumisachieved. This means that within a region much smaller
than the dimensions of a star (≪ R∗), but larger than the average distance between interactions of the
particles (both gas particles and photons), i.e. larger than the mean free path, there is a well-defined
local temperaturethat describes the particle statistical distributions.

We can make this plausible by considering the mean free path for photons:

ℓph = 1/κρ

whereκ is the opacity coefficient, i.e. the effective cross section per unit mass. For fully ionized
matter, a minimum is given by the electron scattering cross section, which isκes = 0.4 cm2/g (see
Ch. 5). The average density in the Sun is ¯ρ = 1.4 g/cm3, which gives a mean free path of the order
of ℓph ∼ 1 cm. In other words, stellar matter is very opaque to radiation. The temperature difference
over a distanceℓph, i.e. between emission and absorption, can be estimated as

∆T ≈ dT
dr
ℓph ≈

Tc

R
ℓph ≈

107

1011
≈ 10−4 K

which is a tiny fraction (10−11) of the typical interior temperature of 107 K. Using a similar estimate,
it can be shown that the mean free path for interactions between ionized gasparticles (ions and
electrons) is several orders of magnitude smaller thanℓph. Hence a small region can be defined
(a ‘point’ for all practical purposes) which is> ℓph but much smaller than the length scale over
which significant changes of thermodynamic quantities occur. This is calledlocal thermodynamic
equilibrium(LTE). We can therefore assume a well-defined temperature distribution inside the star.
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Furthermore, the average time between particle interactions (the mean free time)is much shorter
than the timescale for changes of the macroscopic properties. Thereforea state of LTE is secured
at all times in the stellar interior. The assumption of LTE1 constitutes a great simplification. It
enables the calculation of all thermodynamic properties of the stellar gas in termsof the local values
of temperature, density and composition, as they change from the centre to the surface.

3.2 The equation of state

The equation of state (EOS) describes the microscopic properties of stellarmatter, for given density
ρ, temperatureT and compositionXi . It is usually expressed as the relation between the pressure and
these quantities:

P = P(ρ,T,Xi) (3.1)

Using the laws of thermodynamics, and a similar equation for the internal energy U(ρ,T,Xi), we can
derive from the EOS the thermodynamic properties that are needed to describe the structure of a star,
such as the specific heatscV andcP, the adiabatic exponentγad and the adiabatic temperature gradient
∇ad.

An example is the ideal-gas equation of state, which in the previous chapters we have tacitly
assumed to hold for stars like the Sun:

P = nkT or P =
k
µmu

ρT.

In this chapter we will see whether this assumption was justified, and how the EOS can be extended to
cover all physical conditions that may prevail inside a star. The ideal-gaslaw pertains to particles that
behave according to classical physics. However, both quantum-mechanical and special relativistic ef-
fects may be important under the extreme physical conditions in stellar interiors. In addition, photons
(which can be described as extremely relativistic particles) can be an important source of pressure.

We can define an ideal orperfectgas as a mixture of free, non-interacting particles. Of course
the particles in such a gas do interact, so more precisely we require that theirinteraction energies
are small compared to their kinetic energies. In that case the internal energy of the gas is just the
sum of all kinetic energies. From statistical mechanics we can derive the properties of such a perfect
gas, both in the classical limit (recovering the ideal-gas law) and in the quantum-mechanical limit
(leading to electron degeneracy), and both in the non-relativistic and in therelativistic limit (e.g. valid
for radiation). This is done in Sect. 3.3.

In addition, variousnon-idealeffects may become important. The high temperatures (> 106 K) in
stellar interiors ensure that the gas will be fully ionized, but at lower temperatures (in the outer layers)
partial ionization has to be considered, with important effects on the thermodynamic properties (see
Sect. 3.5). Furthermore, in an ionized gaselectrostatic interactionsbetween the ions and electrons
may be important under certain circumstances (Sect. 3.6).

3.3 Equation of state for a gas of free particles

We shall derive the equation of state for a perfect gas from the principles of statistical mechanics. This
provides a description of the ions, the electrons, as well as the photons in the deep stellar interior.

1N.B. note the difference between (local)thermodynamic equilibrium(Tgas(r) = Trad(r) = T(r)) and the earlier defined,
global property ofthermal equilibrium(Etot = const, orL = Lnuc).
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Let n(p) be the distribution of momenta of the gas particles, i.e.n(p) dp represents the number of
particles per unit volume with momentap ∈ [p . . . p + dp]. If n(p) is known then the total number
density (number of particles per unit volume), the internal energy density (internal energy per unit
volume) and the pressure can be obtained from the following integrals:

number density n =
∫ ∞

0
n(p) dp (3.2)

internal energy density U =
∫ ∞

0
ǫpn(p) dp = n〈ǫp〉 (3.3)

pressure P = 1
3

∫ ∞

0
pvpn(p) dp = 1

3n〈pvp〉 (3.4)

Hereǫp is the kinetic energy of a particle with momentump, andvp is its velocity. Eq. (3.2) is trivial,
and eq. (3.3) follows from the perfect-gas assumption. The pressure integral eq. (3.4) requires some
explanation.

Consider a gas ofn particles in a cubical box with sides of lengthL = 1 cm. Each particle bounces
around in the box, and the pressure on one side of the box results from the momentum imparted by
all the particles colliding with it. Consider a particle with momentump and corresponding velocityv
coming in at an angleθ with the normal to the surface, as depicted in Fig. 3.1. The time between two
collisions with the same side is

∆t =
2L

vcosθ
=

2
vcosθ

.

The collisions are elastic, so the momentum transfer is twice the momentum component perpendicular
to the surface,

∆p = 2pcosθ. (3.5)

The momentum transferred per particle per second and per cm2 is therefore

∆p
∆t
= vp cos2 θ. (3.6)

The number of particles in the box withp ∈ [p . . . p + dp] and θ ∈ [θ . . . θ + dθ] is denoted as
n(θ, p) dθ dp. The contribution to the pressure from these particles is then

dP = vp cos2 θ n(θ, p) dθ dp. (3.7)

θ

= 1cmL

Figure 3.1. Gas particle in a cubical box with a volume of 1 cm3. Each
collision with the side of the box results in a transfer of momentum; the
pressure inside the box is the result of the collective momentum transfers of
all n particles in the box.
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Since the momenta are distributed isotropically over all directions within a solid angle 2π, and
the solid angle dω subtended by those particles withθ ∈ [θ . . . θ + dθ] equals 2π sinθ dθ, we have
n(θ, p) dθ = n(p) sinθ dθ and

dP = vp n(p) cos2 θ sinθ dθ dp. (3.8)

The total pressure is obtained by integrating over all angles (0≤ θ ≤ π/2) and momenta. This results

in eq. (3.4) since
∫ π/2
0

cos2 θ sinθ dθ =
∫ 1
0

cos2 θ d cosθ = 1
3.

3.3.1 Relation between pressure and internal energy

In general, the particle energies and velocities are related to their momenta according to special rela-
tivity:

ǫ2 = p2c2 +m2c4, ǫp = ǫ −mc2 (3.9)

and

vp =
∂ǫ

∂p
=

pc2

ǫ
. (3.10)

We can obtain generally valid relations between the pressure and the internal energy of a perfect gas
in the non-relativistic (NR) limit and the extremely relativistic (ER) limit:

NR limit: in this case the momentap≪ mc, so thatǫp = ǫ −mc2 = 1
2 p2/m andv = p/m. Therefore

〈pv〉 = 〈p2/m〉 = 2〈ǫp〉 so that eq. (3.4) yields

P = 2
3U (3.11)

ER limit: in this casep≫ mc, so thatǫp = pcandv = c. Therefore〈pv〉 = 〈pc〉 = 〈ǫp〉, and eq. (3.4)
yields

P = 1
3U (3.12)

These relations are generally true, forany particle(electrons, ions and photons). We will apply
this in the coming sections. As we saw in the previous Chapter, the change from 2

3 to 1
3 in the relation

has important consequences for the virial theorem, and for the stability of stars.

3.3.2 The classical ideal gas

Using the tools of statistical mechanics, we can address the origin of the ideal-gas law. The mo-
mentum distributionn(p) for classical, non-relativistic particles of massm in LTE is given by the
Maxwell-Boltzmanndistribution:

n(p) dp =
n

(2πmkT)3/2
e−p2/2mkT 4πp2 dp. (3.13)

Here the exponential factor (e−ǫp/kT) represents the equilibrium distribution of kinetic energies, the
factor 4πp2 dp is the volume in momentum space (px, py, pz) for p ∈ [p . . . p + dp], and the factor
n/(2πmkT)3/2 comes from the normalization of the total number densityn imposed by eq. (3.2). (You
can verify this by starting from the standard integral

∫ ∞
0

e−ax2
dx = 1

2

√
π/a, and differentiating once

with respect toa to obtain the integral
∫ ∞
0

e−ax2
x2 dx.)
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The pressure is calculated by usingv = p/m for the velocity in eq. (3.4):

P = 1
3

n

(2πmkT)3/2

∫ ∞

0

p2

m
e−p2/2mkT 4πp2 dp. (3.14)

By performing the integration (for this you need to differentiate
∫ ∞
0

e−ax2
x2 dx once more with respect

to a) you can verify that this indeed yields the ideal gas law

P = nkT . (3.15)

(N.B. This derivation is for a gas ofnon-relativisticclassical particles, but it can be shown that the
same relationP = nkT is also valid forrelativisticclassical particles.)

3.3.3 Mixture of ideal gases, and the mean molecular weight

The ideal gas relation was derived for identical particles of massm. It should be obvious that for
a mixture of free particles of different species, it holds for the partial pressures of each of the con-
stituents of the gas separately. In particular, it holds for both the ions and the electrons, as long as
quantum-mechanical effects can be ignored. The total gas pressure is then just the sum of partial
pressures

Pgas= Pion + Pe =
∑

i Pi + Pe = (
∑

i ni + ne)kT = nkT

whereni is the number density of ions of elementi, with massmi = Aimu and chargeZie. Thenni is
related to the density and the mass fractionXi of this element as

ni =
Xi ρ

Ai mu
and nion =

∑

i

Xi

Ai

ρ

mu
≡ 1
µion

ρ

mu
, (3.16)

which defines the mean atomic mass per ionµion. The partial pressure due to all ions is then

Pion =
1
µion

ρ

mu
kT =

R
µion

ρT. (3.17)

We have used here the universal gas constantR = k/mu = 8.31447× 107 erg g−1 K−1. The number
density of electrons is given by

ne =
∑

i

Zini =
∑

i

ZiXi

Ai

ρ

mu
≡ 1
µe

ρ

mu
, (3.18)

which defines themean molecular weight per free electronµe. As long as the electrons behave like
classical particles, the electron pressure is thus given by

Pe =
1
µe

ρ

mu
kT =

R
µe
ρT. (3.19)

When the gas is fully ionized, we have for hydrogenZi = Ai = 1 while for helium and the most
abundant heavier elements,Zi/Ai ≈ 1

2. In terms of the hydrogen mass fractionX we then get

µe ≈
2

1+ X
, (3.20)

which for the Sun (X = 0.7) amounts toµe ≈ 1.18, and for hydrogen-depleted gas givesµe ≈ 2.
The total gas pressure is then given by

Pgas= Pion + Pe =
( 1
µion
+

1
µe

)

RρT =
R
µ
ρT (3.21)
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where themean molecular weightµ is given by

1
µ
=

1
µion
+

1
µe
=

∑

i

(Zi + 1)Xi

Ai
. (3.22)

It is left as an exercise to show that for a fully ionized gas,µ can be expressed in terms of the mass
fractionsX, Y andZ as

µ ≈ 1

2X + 3
4Y+ 1

2Z
(3.23)

if we assume that for elements heavier than helium,Ai ≈ 2Zi ≈ 2(Zi + 1).

3.3.4 Quantum-mechanical description of the gas

According to quantum mechanics, the accuracy with which a particle’s locationand momentum can
be known simultaneously is limited by Heisenberg’s uncertainty principle, i.e.∆x∆p ≥ h. In three
dimensions, this means that if a particle is located within a volume element∆V then its localization
within three-dimensional momentum space∆3p is constrained by

∆V∆3p ≥ h3. (3.24)

The quantityh3 defines the volume in six-dimensional phase space of one quantum cell. Thenumber
of quantum statesin a spatial volumeV and with momentap ∈ [p . . . p+ dp] is therefore given by

g(p) dp = gs
V

h3
4πp2 dp, (3.25)

wheregs is the number of intrinsic quantum states of the particle, e.g. spin or polarization.
The relative occupation of the available quantum states for particles in thermodynamic equilib-

rium depends on the type of particle:

• fermions(e.g. electrons or nucleons) obey the Pauli exclusion principle, which postulates that
no two such particles can occupy the same quantum state. The fraction of states with energyǫp

that will be occupied at temperatureT is given by

fFD(ǫp) =
1

e(ǫp−µ)/kT + 1
, (3.26)

which is always≤ 1.

• bosons(e.g. photons) have no restriction on the number of particles per quantum state, and the
fraction of states with energyǫp that is occupied is

fBE(ǫp) =
1

e(ǫp−µ)/kT − 1
, (3.27)

which can be> 1.

The actual distribution of momenta for particles in LTE is given by the productof the occupation
fraction f (ǫp) and the number of quantum states, given by eq. (3.25). The quantityµ appearing in
eqs. (3.26) and (3.27) is the so-calledchemical potential. It can be seen as a normalization constant,
determined by the total number of particles in the volume considered (i.e., by the constraint imposed
by eq. 3.2).
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Figure 3.2. Left: Electron momentum distributionsn(p) for an electron density ofne = 6× 1027 cm−3 (corre-
sponding toρ = 2 × 104 g/cm−3 if µe = 2), and for three different temperatures:T = 2 × 107 K (black lines),
2 × 106 K (red lines) and 2× 105 K (blue lines). The actual distributions, governed by quantum mechanics,
are shown as solid lines while the Maxwell-Boltzmann distributions for the samene andT values are shown
as dashed lines. The dotted linenmax is the maximum possible number distribution if all quantum states with
momentump are occupied.Right: Distributions in the limitT = 0, when all lowest available momenta are
fully occupied. The blue line is for the same density as in theleft panel, while the red line is for a density two
times as high.

3.3.5 Electron degeneracy

Electrons are fermions with two spin states, i.e.ge = 2. According to eq. (3.25), the maximum
number density of electrons with momentump allowed by quantum mechanics is therefore

nmax(p) dp =
ge

h3
4πp2 dp =

8π
h3

p2 dp. (3.28)

This is shown as the dotted line in Fig. 3.2. The actual momentum distribution of electronsne(p) is
given by the product of eq. (3.28) and eq. (3.26). In the non-relativistic limit we haveǫp = p2/2me,
giving

ne(p) dp =
2
h3

1

e(p2/2mekT)−ψ + 1
4πp2 dp, (3.29)

where we have replaced the chemical potential by thedegeneracy parameterψ = µ/kT. The value of
ψ is determined by the constraint that

∫ ∞
0

ne(p) dp = ne (eq. 3.2).
The limitation imposed by the Pauli exclusion principle means that electrons can exert a higher

pressure than predicted by classical physics (eq. 3.19). To illustrate this, in Fig. 3.2 the momentum
distribution eq. (3.29) is compared to the Maxwell-Boltzmann distribution for electrons, eq. (3.13),

nMB(p) dp =
ne

(2πmekT)3/2
e−p2/2mekT 4πp2 dp. (3.30)

The situation shown is for an electron densityne = 6 × 1027 cm−3, which corresponds to a mass
density of 2× 104 g/cm−3 (assuming a hydrogen-depleted gas withµe = 2). At high temperatures,
T = 2 × 107 K, the momentum distribution (solid line) nearly coincides with the M-B distribution
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(dashed line): none of the quantum states are fully occupied (ne(p) < nmax(p) for all values ofp) and
the electrons behave like classical particles. As the temperature is decreased, e.g. atT = 2 × 106 K
(red lines), the peak in the M-B distribution shifts to smallerp and is higher (since the integral over
the distribution must equalne). The number of electrons with small values ofp expected from clas-
sical physics,nMB(p), then exceeds the maximum allowed by the Pauli exclusion principle,nmax(p).
These electrons are forced to assume quantum states with higherp: the peak in the distributionne(p)
occurs at higherp. Due to the higher momenta and velocities of these electrons, the electron gas
exerts a higher pressure than inferred from classical physics. This iscalleddegeneracy pressure. If
the temperature is decreased even more, e.g. atT = 2 × 105 K (blue lines), the lowest momentum
states become nearly all filled andne(p) follows nmax(p) until it drops sharply. In this state of strong
degeneracy, further decrease ofT hardly changes the momentum distribution, so that the electron
pressure becomes nearlyindependent of temperature.

Complete electron degeneracy

In the limit thatT → 0, all available momentum states are occupied up to a maximum value, while
all higher states are empty, as illustrated in the right panel of Fig. 3.2. This is known ascomplete
degeneracy, and the maximum momentum is called theFermi momentum pF. Then we have

ne(p) =
8πp2

h3
for p ≤ pF, (3.31)

ne(p) = 0 for p > pF. (3.32)

The Fermi momentum is determined by the electron density through eq. (3.2), i.e.
∫ pF

0
ne(p) dp = ne,

which yields

pF = h
( 3
8π

ne

)1/3
. (3.33)

The pressure of a completely degenerate electron gas is now easy to compute using the pressure
integral eq. (3.4). It depends on whether the electrons are relativistic or not. In thenon-relativistic
limit we havev = p/mand hence

Pe =
1
3

∫ pF

0

8πp4

h3me
dp =

8π
15h3me

pF
5 =

h2

20me

(

3
π

)2/3

ne
5/3. (3.34)

Using eq. (3.18) forne this can be written as

Pe = KNR

(

ρ

µe

)5/3

with KNR =
h2

20me m5/3
u

(

3
π

)2/3

= 1.0036× 1013 [cgs]. (3.35)

As more electrons are squeezed into the same volume, they have to occupy states with larger mo-
menta, as illustrated in Fig. 3.2. Therefore the electron pressure increases with density, as expressed
by eq. (3.35).

If the electron density is increased further, at some point the velocity of themost energetic elec-
trons, pF/me, approaches the speed of light. We then have to replacev = p/m by the relativistic
kinematics relation (3.10). In theextremely relativisticlimit when the majority of electrons move at
relativistic speeds, we can takev = c and

Pe =
1
3

∫ pF

0

8πcp3

h3
dp =

8πc

12h3
p4

F =
hc
8

(

3
π

)1/3

ne
4/3, (3.36)
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Figure 3.3. The equation of state for completely
degenerate electrons. The slope of the logP-logρ
relation changes from 5/3 at relatively low densi-
ties, where the electrons are non-relativistic, to 4/3
at high density when the electrons are extremely
relativistic. The transition is smooth, but takes
place at densities aroundρtr ≈ 106µe g cm−3.

which gives

Pe = KER

(

ρ

µe

)4/3

with KER =
hc

8m4/3
u

(

3
π

)1/3

= 1.2435× 1015 [cgs]. (3.37)

In the ER limit the pressure still increases with density, but with a smaller exponent (4
3 instead of53).

The transition between the NR regime, eq. (3.35), and the ER regime, eq. (3.37), is smooth and can
be expressed as a function ofx = pF/mec, see Maeder Sec. 7.7. Roughly, the transition occurs at a
densityρtr given by the conditionpF ≈ mec, which can be expressed as

ρtr ≈ µe mu
8π
3

(

mec
h

)3

. (3.38)

The relation betweenPe andρ for a completely degenerate electron gas is shown in Fig. 3.3.

Partial degeneracy

Although the situation of complete degeneracy is only achieved atT = 0, it is a very good approxi-
mation whenever the degeneracy is strong, i.e. when the temperature is sufficiently low, as illustrated
by Fig. 3.2. It corresponds to the situation when the degeneracy parameter ψ ≫ 0 in eq. (3.29). In
that case eqs. (3.35) and (3.37) can still be used to calculate the pressure to good approximation.

The transition between the classical ideal gas situation and a state of strong degeneracy occurs
smoothly, and is known aspartial degeneracy. To calculate the pressure the full expression eq. (3.29)
has to be used in the pressure integral, which becomes rather complicated. The integral then depends
on ψ, and can be expressed as one of the so-calledFermi-Dirac integrals, see Maeder Sec. 7.7 for
details (the other Fermi-Dirac integral relates to the internal energy densityU). The situation of
partial degeneracy corresponds toψ ∼ 0.

Whenψ ≪ 0 the classical description is recovered, i.e. eq. (3.29) becomes the Maxwell-Boltzmann
distribution. In that case 1/(e(p2/2mekT)−ψ + 1) = e−(p2/2mekT)+ψ and therefore

2
h3

eψ =
ne

(2πmekT)3/2
or ψ = ln

h3ne

2(2πmekT)3/2
.
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This only holds forψ ≪ 0, but more generally it can be shown thatψ = ψ(ne/T2/3). We have to
consider (partial) degeneracy ifψ ∼> 0, i.e. if

ne ∼>
2(2πmekT)3/2

h3
. (3.39)

The limit of strong (almost complete) degeneracy is reached whenne is roughly a factor 10 higher.

Importance of electron degeneracy in stars

As a star, or its core, contracts the density may become so high that the electrons become degenerate
and exert a (much) higher pressure than they would if they behaved classically. Since in the limit of
strong degeneracy the pressure no longer depends on the temperature, this degeneracy pressure can
hold the star up against gravity, regardless of the temperature. Therefore a degenerate star does not
have to be hot to be in hydrostatic equilibrium, and it can remain in this state forever even when it
cools down. This is the situation inwhite dwarfs.

The importance of relativity is that, when a degenerate star becomes more compact and the density
increases further, the pressure increases less steeply with density. This has important consequences
for massive white dwarfs, and we shall see that it implies that there is a maximummass for which
white dwarfs can exist (the Chandrasekhar mass).

We note that although electron degeneracy can be (very) important in stars, degeneracy of theions
is not. Since the ions have masses∼> 2000 larger than electrons, their momenta (p =

√
2mǫ) are much

larger at energy equipartition, and the condition (3.39) above (withme replaced bymion) implies
that much higher densities are required at a particular temperature. In practice this never occurs:
before such densities are reached the protons in the atomic nuclei will capture free electrons, and
the composition becomes one of (mostly) neutrons. Degeneracy ofneutronsdoes become important
when we consider neutron stars.

3.3.6 Radiation pressure

Photons can be treated as quantum-mechanical particles that carry momentumand therefore exert
pressure when they interact with matter. In particular photons arebosonswith gs = 2 (two polarization
states), so they can be described by the Bose-Einstein statistics, eq. (3.27). The number of photons is
not conserved, they can be destroyed and created until thermodynamic equilibrium is achieved. This
means thatµ = 0 in eq. (3.27) and hence

n(p) dp =
2
h3

1

eǫp/kT − 1
4πp2 dp (3.40)

Photons are completely relativistic withǫp = pc= hν, so in terms of frequencyν their distribution in
LTE becomes thePlanck functionfor blackbody radiation:

n(ν) dν =
8π
c3

ν2 dν

ehν/kT − 1
(3.41)

Applying eqs. (3.2) and (3.3) one can show that the photon number densityand the energy density of
radiation are

nph =

∫ ∞

0
n(p) dp = b T3 (3.42)

Urad =

∫ ∞

0
pc n(p) dp = a T4 (3.43)
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whereb = 20.3 cm−3 K−3 anda is the radiation constant

a =
8π5k4

15h3c3
= 7.56× 10−15 erg cm−3 K−4.

Since photons are always extremely relativistic,P = 1
3U by eq. (3.12) and theradiation pressureis

given by

Prad =
1
3aT4 (3.44)

Pressure of a mixture of gas and radiation

The pressure inside a star is the sum of the gas pressure and radiation pressure,

P = Prad+ Pgas= Prad+ Pion + Pe.

wherePrad is given by eq. (3.44) andPion by eq. (3.17). In generalPe must be calculated as described
in Sect. 3.3.5. In the classical limit it is given by eq. (3.19), and in the limits of non-relativistic and
extremely relativistic degeneracy by eqs. (3.35) and (3.37), respectively. If the electrons are non-
degenerate then the pressure can be written as

P = 1
3aT4 +

R
µ
ρT. (3.45)

If the electrons are strongly degenerate their pressure dominates over that of the (classical) ions, so in
that casePion can be neglected in the total pressure.

The fraction of the pressure contributed by the gas is customarily expressed asβ, i.e.

Pgas= βP and Prad = (1− β) P. (3.46)

3.3.7 Equation of state regimes

The different sources of pressure we have discussed so far dominate the equation of state at different
temperatures and densities. In Fig. 3.4 the boundaries between these regimes are plotted schematically
in the logT, logρ plane.

• The boundary between regions where radiation and ideal-gas pressure dominate is defined by
Prad = Pgas, giving T/ρ1/3 = 3.2× 107µ−1/3 whenT andρ are expressed in cgs units. (Verify
this by comparing eqs. 3.21 and 3.44.) This is a line with slope1

3 in the logT vs logρ plane.

• Similarly, the boundary between the regions dominated by ideal-gas pressure and non-relativistic
degenerate electron pressure can be defined byPgas,ideal = Pe,NR as given by eq. (3.35), giving
T/ρ2/3 = 1.21× 105µ µ

−5/3
e (again withT andρ in cgs units). This is a line with slope23 in the

logT-logρ plane.

• The approximate boundary between non-relativistic and relativistic degeneracy is given by
eq. (3.38),ρ = 9.7× 105µe g/cm3.

• At high densities the boundary between ideal gas pressure and extremelyrelativistic degeneracy
is found by equating eqs. (3.21) and (3.37), givingT/ρ1/3 = 1.50× 107µ µ

−4/3
e (with T andρ in

cgs units), again a line with slope13.

As shown in Fig. 3.4, detailed models of zero-age (that is, homogeneous) main-sequence stars with
masses between 0.1 and 100M⊙ cover the region where ideal-gas pressure dominates the equation
of state. This justifies the assumptions made in Ch. 2 when discussing the virial theorem and its
consequences for stars, and when estimating temperatures in the stellar interior.
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Figure 3.4. Left: The equation of state for a gas of free particles in the logT, logρ plane. The dashed lines are
approximate boundaries between regions where radiation pressure, ideal gas pressure, non-relativistic electron
degeneracy and extremely relativistic electron degeneracy dominate, for a compositionX = 0.7 andZ = 0.02.
Right: Detailed structure models for homogeneous main-sequence stars of 0.1...100M⊙ have been added (solid
lines). The 1M⊙ model is well within the ideal-gas region of the equation of state. In the 0.1M⊙ star electron
degeneracy pressure is important, except in the outer layers (at lowρ andT). In stars more massive than 10M⊙,
radiation pressure becomes important, and it dominates in the surface layers of the 100M⊙ model.

3.4 Adiabatic processes

It is often important to consider processes that occur on such a short (e.g. hydrodynamical) timescale
that there is no heat exchange with the environment; such processes areadiabatic. To derive the
properties of stellar interiors under adiabatic conditions we need severalthermodynamic derivatives.
We therefore start from the laws of thermodynamics.

Thefirst law of thermodynamics states that the amount of heat absorbed by a system (δQ) is the
sum of the change in its internal energy (δU) and the work done on the system (δW = PδV). The
second lawof thermodynamics states that, for a reversible process, the change in entropy equals the
change in the heat content divided by the temperature. Entropy is a state variable, unlike the heat
content. For a unit mass (1 gram) of matter the combination of these laws can be expressed as

dq = T ds= du+ Pdv = du− P

ρ2
dρ. (3.47)

Here dq is the change in heat content, du is the change in internal energy (u = U/ρ is thespecific
internal energy, i.e. per gram),s is the specific entropy (i.e. the entropy per unit mass) andv = 1/ρ is
the volume of a unit mass. Note that du and dsare exact differentials, whereas dq is not.

Differential form of the equation of state To compute general expressions for thermodynamic
derivatives such as the specific heats and the adiabatic derivatives it isuseful to write the equation of
state in differential form, i.e.

dP
P
= χT

dT
T
+ χρ

dρ
ρ
, (3.48)
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whereχT andχρ are defined as

χT =

(

∂ logP
∂ logT

)

ρ,Xi

=
T
P

(

∂P
∂T

)

ρ,Xi

, (3.49)

χρ =

(

∂ logP
∂ logρ

)

T,Xi

=
ρ

P

(

∂P
∂ρ

)

T,Xi

. (3.50)

The subscriptXi means that the composition is held constant as well. In a general equation of state
χT andχρ can depend onT andρ themselves, but if they are (approximately) constant then we can
write the equation of state in power-law form:

P = P0 ρ
χρ TχT .

For example, for an ideal gas without radiation we haveχT = χρ = 1, while for a radiation-dominated
gasχT = 4 andχρ = 0.

3.4.1 Specific heats

The specific heats at constant volumecV and at constant pressurecP for a unit mass of gas follow
from eq. (3.47):

cV =

(

dq
dT

)

v
=

(

∂u
∂T

)

v
, (3.51)

cP =

(

dq
dT

)

P
=

(

∂u
∂T

)

P
− P

ρ2

(

∂ρ

∂T

)

P
, (3.52)

where a partial derivative taken at constantv is the same as one taken at constantρ. For an ideal gas,
with u = U/ρ = 3

2P/ρ, we obtain from eq. (3.21) the familiar resultcV =
3
2R/µ. For a radiation-

dominated gas, eq. (3.43) yieldscV = 4aT3/ρ. Using thermodynamic transformations and some
algebraic manipulation (see Appendix 3.A), it follows quite generally that the specific heats are related
by

cP − cV =
P
ρT

χT
2

χρ
. (3.53)

For an ideal gas this amounts tocP − cV = R/µ, and thereforecP =
5
2R/µ. For a radiation-dominated

gasχρ = 0 and hencecP→ ∞: indeed, sincePrad only depends onT, a change in temperature cannot
be performed at constant pressure.

The ratio of specific heats is denoted asγ:

γ =
cP

cV
= 1+

P
ρTcV

χT
2

χρ
, (3.54)

so thatγ = 5
3 for an ideal gas.

Expressions for dq It is often useful to have expressions for the change in heat content dq (eq. 3.47)
in terms of variations ofT andρ or T andP. Making use of the specific heats one can derive (see
Appendix 3.A)

dq = T ds = cV dT − χT
P

ρ2
dρ = cP dT − χT

χρ

dP
ρ
. (3.55)
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3.4.2 Adiabatic derivatives

The thermodynamic response of a system to adiabatic changes is measured by the so-calledadiabatic
derivatives. Two of these have special importance for stellar structure:

• Theadiabatic exponent2 γad measures the response of the pressure to adiabatic compression or
expansion, i.e. to a change in the density. It is defined as

γad =

(

∂ logP
∂ logρ

)

ad
(3.56)

where the subscript ’ad’ means that the change is performed adiabatically, that is, at constant
entropy. Ifγad is constant thenP ∝ ργad for adiabatic changes. As we shall see later,γad is
related to thedynamical stabilityof stars.

• Theadiabatic temperature gradientis defined as

∇ad =

(

∂ logT
∂ logP

)

ad
(3.57)

It is in fact another exponent that describes the behaviour of the temperature under adiabatic
compression or expansion (T ∝ P∇ad if ∇ad is constant), which turns out to be important for
stability againstconvection.

The adiabatic exponent For an adiabatic processdq= 0 in eq. (3.47) and therefore

du =
P

ρ2
dρ. (3.58)

We have seen in Sect. 3.3.1 that for a perfect gas of free particles the internal energy densityU is
proportional toP, in both the NR and ER limits. For such a simple system we can therefore write, as
we did in Sect. 2.3,

u = φ
P
ρ

(3.59)

with φ a constant (between32 and 3). If we differentiate this and substitute into eq. (3.58) we obtain
for an adiabatic change

dP
P
=
φ + 1
φ

dρ
ρ
. (3.60)

Therefore, according to the definition ofγad (eq. 3.56),

γad =
φ + 1
φ

(for a simple, perfect gas). (3.61)

2In many textbooks one finds instead the adiabatic exponentsΓ1, Γ2, andΓ3 introduced by Chandrasekhar. They are
defined, and related toγad and∇ad, as follows:

Γ1 =

(

∂ logP
∂ logρ

)

ad
= γad,

Γ2

Γ2 − 1
=

(

∂ logP
∂ logT

)

ad
=

1
∇ad

, Γ3 =

(

∂ logT
∂ logρ

)

ad
+ 1.

They obey the relation

Γ1

Γ3 − 1
=
Γ2

Γ2 − 1
.
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• for non-relativisticparticles (e.g. a classical ideal gas, NR degenerate electrons)φ = 3
2 and

thereforeγad =
5
3

• for extremely relativisticparticles (e.g. photons, ER degenerate electrons)φ = 3 and therefore
γad =

4
3

• for a mixture of gas and radiation (0≤ β ≤ 1) and/or moderately relativistic degenerate elec-
trons,4

3 ≤ γad ≤ 5
3

For a general equation of state, described by eq. (3.48), one can derive (see Appendix 3.A)

γad = χρ +
P

ρTcV
χT

2. (3.62)

Thereforeγad is related to the ratio of specific heats (eq. 3.54),γad = γ χρ. Theγ’s are equal ifχρ = 1
(as in the case of an ideal gas).

The adiabatic temperature gradient By writing eq. (3.56) as dP/P = γaddρ/ρ for an adiabatic
change, and eliminatingdρ with the help of eq. (3.48), we obtain a general relation between the
adiabatic temperature gradient∇ad and the adiabatic exponentγad:

∇ad =
γad− χρ
γadχT

, (3.63)

This gives the following limiting cases:

• for an ideal gas without radiation (β = 1) we haveχT = χρ = 1, which together withγad =
5
3

gives∇ad =
2
5 = 0.4.

• for a radiation-dominated gas (β = 0) χT = 4 andχρ = 0 so that∇ad =
1
4 = 0.25.

For a general equation of state one has to consider the general expression for γad (eq. 3.62) in
eq. (3.63). From the expression of dq in terms of dT and dP (3.55) it follows that

∇ad =
P

ρTcP

χT

χρ
. (3.64)

This means that for a generalnon-adiabatic process we can write eq. (3.55) as

dq = cP

(

dT − ∇ad
T
P

dP

)

, (3.65)

which will prove to be a useful relation later on.

We give some important results without derivations, which can be found in K&W Chapters 13.2
and 16.3 or in Hansen Chapter 3.7:

• for a mixture of gas and radiation with 0< β < 1, ∇ad andγad both depend onβ and take on
intermediate values, i.e. 0.25< ∇ad < 0.4.

• for a non-relativistic degenerate gas, we have to consider that although electrons dominate the
pressure, there is a (tiny) temperature dependence due to the ion gas which must be taken into
account in calculatingχT and therefore∇ad. After some manipulation it can be shown that in
this case∇ad = 0.4, as for the ideal classical gas.

• for an extremely relativistic degenerate gas one also has to consider that while the electrons are
relativistic, the ions are still non-relativistic. It turns out that in this limit∇ad = 0.5.
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3.5 Ionization

We have so far implicitly assumed complete ionization of the gas, i.e. that it consistsof bare atomic
nuclei and free electrons. This is a good approximation in hot stellar interiors, whereT > 106 K
so that typical energieskT are much larger than the energy needed to ionize an atom, i.e. to knock
off a bound electron. In the cooler outer layers of a star, however, we need to consider thepartial
ionizationof the elements. In this case quasi-static changes of the state variables (ρ andT) will lead
to changes in the degree of ionization. This can have a large effect on the thermodynamic properties
of the gas, e.g. onγad and∇ad.

In LTE the number densities of ionized and neutral species are determined by theSaha equation

nr+1

nr
ne =

ur+1

ur

2(2πmekT)3/2

h3
e−χr/kT (3.66)

wherenr andnr+1 indicate the number densities ofr andr+1 times ionized nuclei,χr is the ionization
potential, i.e. the energy required to remove ther-th bound electron, andur andur+1 are the partition
functions. The partition functions depend onT but can in most cases be approximated by the statistical
weights of the ground states of the bound species. (This equation can be derived from statistical
mechanics, e.g. see K&W Chapter 14.1.)

3.5.1 Ionization of hydrogen

As an example, we consider the simple case where the gas consists only of hydrogen. Then there
are just three types of particle, electrons and neutral and ionized hydrogen, withuH = u0 = 2 and
uH+ = u1 = 1. We write their number densities asn+ andn0 so that

n+
n0

ne =
(2πmekT)3/2

h3
e−χH/kT (3.67)

whereχH = 13.6 eV. The gas pressure is given byPgas = (n0 + n+ + ne) kT and the density is
ρ = (n0 + n+) mu. Thedegree of ionizationis defined as

x =
n+

n0 + n+
(3.68)

so thatPgascan be written in terms of the degree of ionization

Pgas= (1+ x)RρT (3.69)

We can then rewrite Saha’s equation as

x2

1− x2
=

(2πme)3/2

h3

(kT)5/2

Pgas
e−χH/kT (3.70)

We see that the degree of ionization increases withT, as expected since more atoms are broken up by
the energetic photons. However,x decreases with gas pressure (or density) whenT is kept constant,
because this increases the probability of recombination which is proportional to ne. From eq. (3.69)
we see that the mean molecular weightµ = 1/(1 + x) decreases as hydrogen becomes ionized (one
atomic mass is divided over two particles).

To estimate the effect on the thermodynamic properties of the gas, we note that in the case of par-
tial ionization the internal energy has a contribution from the available potential energy of recombina-
tion. Per unit volume this contribution is equal ton+ χH, so per unit mass it equalsn+ χH/ρ = xχH/mu.
Thus

u =
3
2

Pgas

ρ
+ x

χH

mu
= 3

2(1+ x)RT + x
χH

mu
. (3.71)
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Figure 3.5. The adiabatic temperature gradient∇ad plotted against temperature. The left panel shows the
effect of partial ionization for the simple case of a pure hydrogen gas, for three values of the density (10−4,
10−6 and 10−8 g/cm3). When hydrogen is partially ionized,∇ad is decreased below its ideal-gas value of 0.4.
The circles indicate the points where the degree of ionization x = 0.5, close to the minimum of∇ad. As the
density increases, a higher temperature is needed to reach the same ionization degree. The right panel shows
how∇ad varies with temperature in a detailed stellar model of 1M⊙, between the surface (atT ≈ 6000 K) and
the centre (atT ≈ 1.5 × 107 K). Apart from the hydrogen ionization zone around 104 K, a second depression
of ∇ad around 105 K is seen which is due to the first4He ionization zone. The second He ionization zone is
merged with H ionization because it occurs at similar temperatures and densities. Note that the region where
T < 106 K comprises only the outer 1 % of the mass of the Sun. (The dotted line shows how∇ad would vary
with T in this model if the composition were pure hydrogen, as was assumed in the left panel.)

A small increase in temperature increases the degree of ionization, which results in a large amount of
energy being absorbed by the gas. In other words, thespecific heatof a partially ionized gas will be
much larger than for an unionized gas, or for a completely ionized gas (in thelatter casex = 1 so that
the second term in eq. (3.71) becomes a constant and therefore irrelevant).

Now consider what happens if the gas is adiabatically compressed. Startingfrom neutral hydro-
gen, for which∇ad = 0.4, the temperature initially increases asT ∝ P0.4. Further compression (work
done on the gas) increasesu, but when partial ionization sets in most of this energy goes into raising
the degree of ionization (second term of eq. 3.71) and only little into raising thetemperature (first
term). In other words,T increases less strongly with withP, and therefore∇ad < 0.4. A detailed
calculation (e.g. see K&W Chapter 14.3) shows that under typical conditions∇ad reaches a minimum
value of≈ 0.1 whenx ≈ 0.5. As the gas becomes almost fully ionized,∇ad rises back to 0.4. The
variation of∇ad with temperature for a pure hydrogen gas is shown in the left panel of Fig.3.5 for
different values of the density.

The decrease of∇ad in partial ionization zones can induceconvectionin the outer layers of stars,
as we shall see in Ch. 5. Similarly it can be shown thatγad decreases in partial ionization zones, from
5
3 to γad ≈ 1.2 whenx ≈ 0.5. This has consequences for the stability of stars, as we shall also see.
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Figure 3.6. Schematic depiction of
the electrostatic potential of an iso-
lated ion (left) and the superposi-
tion of the potentials of neighbour-
ing ions (right). Figure reproduced
from Kippenhanhn & Weigert.

3.5.2 Ionization of a mixture of gases

In a mixture of gases the situation becomes more complicated because many, partly ionized species
have to be considered, the densities of which all depend on each other (see e.g. K&W Chapter 14.4-
14.5). However the basic physics remains the same as considered above for the simple case of pure
hydrogen. The effect on the thermodynamic properties is that e.g.∇ad can show additional deviations
below 0.4 at different temperatures, especially where helium (the second-most abundant element in
stars) is partially ionized. This is illustrated in Fig. 3.5b which shows the variationof ∇ad with
temperature in a homogeneous model for the initial Sun.

3.5.3 Pressure ionization

As ρ increases indefinitely, the Saha equation givesx→ 0, i.e. ionized gas recombines to form atoms.
This is obviously nonsense at very high density, and becomes incorrectwhen the average distanced
between ions becomes less than an atomic radius. In this situation the ionization energy is suppressed
(there are fewer bound excited states; see Fig. 3.6), a situation known aspressure ionization.

Consider the case of hydrogen: the volume per H atom is 1/nH so thatd = (4π
3 nH)−1/3. Pressure

ionization sets in whend ∼< a0 = 5× 10−9 cm (the Bohr radius). This implies

nH ∼>
1

4π
3 a0

3

or ρ = nHmH ∼> 3 g cm−3. Other elements are pressure-ionized at similar values of the density, within
an order of magnitude. At densities∼> 10 g cm−3, therefore, we can again assume complete ionization.

Fig. 3.7 shows the approximate boundary in the density-temperature diagrambetween neutral and
ionized hydrogen according the Saha equation forρ < 1 g cm−3, and as a result of pressure ionization
at higher densities.

3.6 Other effects on the equation of state

3.6.1 Coulomb interactions and crystallization

We have so far ignored the effect of electrostatic or Coulomb interactions between the ions and elec-
trons in the gas. Is this a reasonable approximation, i.e. are the interaction energies indeed small
compared to the kinetic energies, as we have assumed in Sect. 3.3?

The average distance between gas particles (with massAmu) is d ≈ (4π
3 n)−1/3 wheren is the

number density,n = ρ/(Amu). The typical Coulomb energy per particle (with chargeZe) is ǫC ≈
Z2e2/d, while the average kinetic energy isǫkin =

3
2kT. The ratio of Coulomb energy to kinetic

energy is usually called the Coulomb parameterΓC, defined as

ΓC =
Z2e2

d kT
=

Z2e2

kT

(

4πρ
3Amu

)1/3

= 2.275× 105 Z2

A1/3

ρ1/3

T
, (3.72)
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Figure 3.7. The equation of state in the
ρ, T plane for a pure hydrogen gas. The
dotted lines are the borders, also shown
in Fig. 3.4, between regions where ra-
diation, ideal gas and degenerate elec-
trons dominate the pressure. The solid
line shows where the ionization fraction
of hydrogen is 0.5 according to the Saha
equation, and where hydrogen becomes
pressure-ionized at high density. The
dashed lines show where the Coulomb
interaction parameterΓC equals 1, above
which Coulomb interactions become im-
portant, and whereΓC = 170, above
which the ions form a crystralline lat-
tice. Above the dash-dotted line e+e−

pairs play an important role in stellar in-
teriors.

where in the last equality the numerical factor is in cgs units. We see that Coulomb interactions
increase in importance at high densities or low temperatures. Roughly, Coulomb interactions start to
become important in stellar interiors whenΓC ∼> 1.

To estimate the typical value ofΓC in stellar interiors we approximateρ ≈ ρ̄ = M/(4π
3 R3), and

we approximateT by the average temperature estimated from the virial theorem,T ≈ T̄ ≈ 1
3

Amu
k

GM
R

(eq. 2.29). Ignoring factors of order unity, we get

ΓC ≈ 0.01
Z2

A4/3

(

M
M⊙

)−2/3

. (3.73)

The ratioZ2/A4/3 depends on the composition, and represents an average over the constituents of
the gas. In stars mostly composed of hydrogen,A ≈ 1 andZ ≈ 1, and we find that in the Sun the
Coulomb energy contributes of the order of 1 % to the particle energies (andhence has a similar effect
on the pressure). We are therefore justified in ignoring Coulomb interactions in stars similar to or
more massive than the Sun. However, eq. (3.73) shows that in low-mass stars Coulomb interactions
can start to contribute significantly. This can also be seen by comparing Fig.3.4 and Fig. 3.7, where
the location of the conditionΓC = 1 is indicated in theρ-T diagram. Detailed models of low-mass
stars need to take this effect into account. ForM ∼< 10−3 M⊙ the Coulomb energies dominate. Such
objects are not stars but planets (Jupiter’s mass is about 10−3 M⊙). Calculations of the structure of
planets requires a much more complicated equation of state than for stars.

Crystallization

If ΓC ≫ 1 the thermal motions of the ions are overwhelmed by the Coulomb interactions. Inthis
situation the ions will tend to settle down into a conglomerate with a lower energy, in other words
they will form a crystalline lattice. Detailed estimates indicate that this transition takesplace at a
critical value ofΓC ≈ 170. This condition is also indicated in Fig. 3.4 for a pure hydrogen gas. In
reality, this situation will never occur in hydrogen-rich stellar interiors, butit can take place in cooling
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white dwarfs (in which the temperature gradually decreases with time while the density remains
constant). White dwarfs are usually composed of carbon and oxygen, so in this case we have to
take into account the composition which raises the temperature at which the transition occurs (the
‘melting’ temperature) by a factorZ2/A1/3 according to eq. (3.72).

Finally we note that crystallization only occurs in the region where the electrons are strongly
degenerate. You may verify that the Coulomb interaction energy between electrons and ions (Ze2/d)
is always smaller than the typical electron energy (p2

F/2me). The electrons therefore behave as a free
degenerate gas, even if the ions form a crystalline structure.

3.6.2 Pair production

A very different process can take place at very high temperatures and relatively low densities. A
photon may turn into an electron-positron pair if its energyhν exceeds the rest-mass energy of the pair,
hν > 2mec2. This must take place during the interaction with a nucleus, since otherwise momentum
and energy cannot both be conserved. Pair production takes place ata typical temperaturekT ≈ hν ≈
2mec2, or T ≈ 1.2× 1010 K. However, even atT ∼ 109 K the number of energetic photons in the tail
of the Planck distribution (eq. 3.41) is large enough to produce a large number of e+e− pairs. The
newly created positrons tend to be annihilated quickly by the inverse reaction(e+ + e− → 2γ), as a
result of which the number of positrons reaches equilibrium. At a few times 109 K, depending on the
electron density, the number of positrons is a significant fraction of the number of electrons.

Pair production is similar to an ionization process: an increase in temperature leads to an increase
in the number of particles at the expense of the photon energy (and pressure). Therefore pair produc-
tion gives rise to a decrease of the adiabatic gradientγad and of∇ad, similar to partial ionization. This
is the main importance of pair production for stellar evolution: it affects the stability of very massive
stars in advanced stages of evolution (when their temperature may reach values in excess of 109 K)
and can trigger their collapse.

Suggestions for further reading

The contents of this chapter are also covered by Chapter 7 of Maeder and by Chapters 13 to 16 of
Kippenhahn & Weigert. However, a more elegant derivation of the equation of state, which is also
more consistent with the way it is derived in these lecture notes, is given in Chapter 3 of Hansen,
Kawaler & Trimble. Explicit expressions for many of the results that are only mentioned here can be
found in this book.

Exercises

3.1 Conceptual questions

These questions are intended to test your understanding of the lectures. Try to answer them without
referring to the lecture notes.

(a) What do we mean bylocal thermodynamic equilibrium(LTE)? Why is this a good assumption
for stellar interiors? What is the difference between LTE andthermal equilibrium(as treated in
Ch. 2)?

(b) In what type of stars does degeneracy become important? Is it important in main-sequence stars?
Is it more important in high mass or low mass MS stars?
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(c) Explain qualitatively why for degenerate matter, the pressure increases with the density.

(d) Why do electrons become relativistic when they are compressed into a smaller volume? Why does
the pressure increase less steeply with the density in this case?

(e) In the central region of a star we find free electrons and ions. Why do the electrons become
degenerate first? Why do the ions never become degenerate in practice?

3.2 Mean molecular weight

Derive a general expression for the mean molecular weight ofan ionized gas, as a function of composi-
tion X, Y, Z. Assume that, for elements heavier than H, nuclei are composed of equal number of protons
and neutrons, so that the nuclear chargeZi is half of the mass numberAi .

3.3 Theρ − T plane

Consider a gas of ionized hydrogen. In theρ−T plane compute the approximate boundary lines between
the regions where:

(a) radiation pressure dominates,

(b) the electrons behave like a classical ideal gas,

(c) the electrons behave like a degenerate gas,

(d) the electrons are relativistically degenerate.

3.4 The pressure of a gas of free particles

In this exercise you will derive some important relations from this chapter for yourself.

(a) Suppose that the particles in a gas have momenta distributed asn(p) dp. Show that the pressure
can be expressed by eq. (3.4).

(b) For classical particles in LTE, the momentum distribution is given by the Maxwell-Boltzmann
distribution, eq. (3.13). Calculate the pressure using eq.(3.4). Does the result look familiar?

(c) Show that for a gas of free, non-relativistic particlesP = 2
3U (eq. 3.11), whereU is the internal

energy density. Show that in the extremely relativistic limit P = 1
3U (eq. 3.12).

(d) Electrons are fermions with 2 spin states. Explain why the maximum number of electrons per
volume with momentump can be written as eq. (3.28).

(e) In the extreme case of complete degeneracy,T → 0, the electrons fill up all available quantum
states up to a maximumpF, the Fermi momentum. Show that

pF = h

(

3ne

8π

)
1
3

(f) Show that the pressure as function of the density for a non-relativistic degenerate electron gas can
be written as

P = KNR

(

ρ

µe

)x

and derive an expression forKNR andx.

(g) Show that the pressure as function of the density for an extremely relativistic degenerate electron
gas can be written as

P = KER

(

ρ

µe

)y

and derive an expression forKER andy.
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(h) Photons are bosons, and the distribution of their momenta is given by the Planck function (eq. 3.27).
Show that in this case

U ∝ T4

(Hint: to derive an expression for the proportionality constant a, you might want to use Mathe-
matica or a list of standard integrals.)

(i) Now use (c) to show that the radiation pressure is given byPrad =
1
3aT4.

3.5 Adiabatic derivatives

(a) Use the first law of thermodynamics to show that, for an ideal gas in an adiabatic process,

P ∝ ργad (3.74)

and give a value for the adiabatic exponentγad.

(b) Use the ideal gas law in combination with eq. (3.74) to show that

∇ad =

(

d lnT
d lnP

)

ad,id

= 0.4.

(c) The quantity∇ad is referred to as theadiabatic temperature gradient. Normally you would use
the term ‘gradient of a quantityA’ for dA/dr, or if you use mass coordinates instead of radius
coordinates, dX/dm. Do you understand why∇ad can be referred to as a temperature ‘gradient’?

(d) (*) Show that for a mixture of an ideal gas plus radiation,the adiabatic exponent is given by

γad =
32− 24β − 3β2

24− 21β
,

whereβ = Pgas/P.

(Hints: write down the equation of state for the mixture in differential form as in eq. (3.48), and
expressχT andχρ in terms ofβ. Then apply the first law of therrmodynamics for an adiabatic
process.)

(e) (*) What is the value ofγad in the limit where radiation dominates and where pressure dominates?
Does this look familiar?

3.6 Ionization effects

(a) The particles in an ionized gas are charged and thereforeundergo electrostatic (Coulomb) inter-
actions. Why can can we nevertheless make the ideal-gas assumption in most stars (i.e. that the
internal energy of the gas is just the sum of the kinetic energies of the particles)? For which stars
do Coulomb interactions have a significant effect?

(b) Why does the gas in the interior of a star become pressure-ionized at high densities?

(c) Explain qualitatively why partial ionization leads to∇ad < ∇ad,ideal = 0.4, in other words: why
does adiabatic compression lead to a smaller temperature increase when the gas is partly ionized,
compared to a completely ionized (or unionized) gas?
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3.A Appendix: Themodynamic relations

In this Appendix we derive some of the thermodynamic relations that were given without proof in Chapter 3.
The first law of thermodynamics states that the heat added to amass element of gas is the sum of the change

in its internal energy and the work done by the mass element. Taking the element to be of unit mass, we can
wite this as

dq = du+ Pdv = du− P
ρ2

dρ, (3.75)

because the volume of a unit mass isv = 1/ρ. We can write the change in the internal energy of a unit mass in
terms of the changes in the state variables (T andρ) as

du =
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T

dρ. (3.76)

The change in the entropy per unit mass, ds= dq/T, is therefore

ds=
dq
T
=

1
T
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dρ. (3.77)

Becauses is a function of state,∂2s/∂ρ∂T = ∂2s/∂T∂ρ, which means that

1
T

∂2u
∂T∂ρ

=
∂
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, (3.78)

where the∂/∂T on the right-hand side should be taken at constantρ. Working out the right-hand side allows us
to eliminate the second derivative ofu, giving

1
T2
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.

With the definition ofχT (eq. 3.49) we can write (∂P/∂T)ρ = χT P/T, and thus
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P
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. (3.79)

Specific heats

The definitions of the specfic heats at constant volume and at constant pressure are

cV ≡

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, (3.80)

cP ≡

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To work out an expression forcP, we need (∂u/∂T)P and (∂ρ/∂T)P. To start with the latter, we use the differ-
ential form of the equation of state (3.48). At constant pressure dP = 0 this gives

χρ
dρ
ρ
= −χT

dT
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. (3.82)

To obtain an expression for (∂u/∂T)P we use eq. (3.76), which we can write as
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and therefore
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To obtain the last equality we used eqs. (3.79) and (3.82). From the definitions (3.80) and (3.81) we thus arrive
at the following relation betweencP andcV:

cP − cV =
χT

2

χρ

P
ρT

(3.84)

which is eq. (3.53).

Expressions for dq

It is useful to be able to write the change in heat content of a unit mass in terms of the changes in the state
variables. Eq. (3.77) already shows how dq is written in terms ofT andρ, i.e.

dq = T ds= cV dT − χT
P
ρ2

dρ, (3.85)

making use of (3.79) and (3.80). It is often useful to expressdq is terms ofT andP, rather thanρ. To do this
we write dρ with the help of eq. (3.48),
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so that

dq = cV dT − χT
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The terms with parentheses in the last equality are simplecP, according to (3.84), and therefore

dq = T ds= cP dT − χT

χρ

dP
ρ
. (3.88)

Adiabatic derivatives

Eq. (3.88) makes it easy to derive an expression for the adiabatic temperature gradient (3.57),
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An adiabatic change inT andP means the changes take place at constants, or with dq = 0. Hence (3.88)
shows that
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This means

∇ad =
P

ρTcP

χT

χρ
, (3.91)

which is eq. (3.64). With the help of this expression we can also write (3.88) as
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To derive an expression for the adiabatic exponent (3.56),

γad ≡

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, (3.93)

we use (3.85) and (3.88) and set dq = 0 in both expressions. This gives

dT =
P

ρ2cV
χT dρ and dT =

1
ρcP
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dP.

Eliminating dT from both expressions gives
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This means

γad =
cP

cV
χρ = γ χρ , (3.94)

whereγ = cP/cV is the ratio of specific heats. Using eq. (3.84) this can also be written as

γad = χρ +
P

ρTcV
χT

2, (3.95)

which is eq. (3.62).
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Chapter 4

Polytropic stellar models

As mentioned in Sec. 2.2, the equation of hydrostatic equilibrium can be solvedif the pressure is
a known function of the density,P = P(ρ). In this situation the mechanical structure of the star is
completely determined. A special case of such a relation betweenP andρ is thepolytropic relation,

P = Kργ (4.1)

whereK andγ are both constants. The resulting stellar models are known aspolytropic stellar models
or simply polytropes. Polytropic models have played an important role in the historical development
of stellar structure theory. Although nowadays their practical use has mostly been superseded by more
realistic stellar models, due to their simplicity polytropic models still give useful insight into several
important properties of stars. Moreover, in some cases the polytropic relation is a good approximation
to the real equation of state. We have encountered a few examples of polytropic equations of state
in Chapter 3, e.g. the pressure of degenerate electrons, and the case where pressure and density are
related adiabatically.

In this brief chapter – and the accompanying computer practicum – we will derive the analytic the-
ory of polytropes and construct polytropic models, and study to which kindof stars they correspond,
at least approximately.

4.1 Polytropes and the Lane-Emden equation

If the equation of state can be written in polytropic form, the equations for masscontinuity (dm/dr,
eq. 2.3) and for hydrostatic equilibrium (dP/dr, eq. 2.12) can be combined with eq. (4.1) to give a
second-order differential equation for the density:

1
ρr2

d
dr

(

r2ργ−2dρ
dr

)

= −4πG
Kγ

(4.2)

The exponentγ is often replaced by the so-called polytropic indexn, which is defined by

n =
1

γ − 1
or γ = 1+

1
n

(4.3)

In order to construct a polytropic stellar model we have to solve eq. (4.2),together with two boundary
conditions which are set in the centre,r = 0:

ρ(0) = ρc and

(

dρ
dr

)

r=0
= 0, (4.4)

whereρc is a parameter to be chosen, or determined from other constraints.
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Table 4.1. Numerical values for polytropic models with indexn.

n zn Θn ρc/ρ̄ Nn Wn

0 2.44949 4.89898 1.00000 . . . 0.119366
1 3.14159 3.14159 3.28987 0.63662 0.392699
1.5 3.65375 2.71406 5.99071 0.42422 0.770140
2 4.35287 2.41105 11.40254 0.36475 1.638183
3 6.89685 2.01824 54.1825 0.36394 11.05068
4 14.97155 1.79723 622.408 0.47720 247.559
4.5 31.8365 1.73780 6189.47 0.65798 4921.84
5 ∞ 1.73205 ∞ ∞ ∞

In order to simplify eq. (4.2), we define two new dimensionless variablesw (related to the density)
andz (related to the radius) by writing

ρ = ρcw
n, (4.5)

r = αz, with α =

(

n+ 1
4πG

Kρ1/n−1
c

)1/2

. (4.6)

This choice ofα ensures that the constantsK and 4πG are eliminated after substitutingr andρ into
eq. (4.2). The resulting second-order differential equation is called theLane-Emden equation:

1
z2

d
dz

(

z2 dw
dz

)

+ wn = 0. (4.7)

A polytropic stellar model can be constructed by integrating this equation outwards from the centre.
The boundary conditions (4.4) imply that in the centre (z = 0) we havew = 1 and dw/dz = 0. For
n < 5 the solutionw(z) is found to decrease monotonically and to reach zero at finitez = zn, which
corresponds to the surface of the model.

No general analytical solution of the Lane-Emden equation exists. The onlyexceptions aren = 0,
1 and 5, for which the solutions are:

n = 0 : w(z) = 1− z2

6
z0 =

√
6, (4.8)

n = 1 : w(z) =
sinz

z
z1 = π, (4.9)

n = 5 : w(z) =

(

1+
z2

3

)−1/2

z5 = ∞. (4.10)

The casen = 0 (γ = ∞) corresponds to a homogeneous gas sphere with constant densityρc, following
eq. (4.5). The solution forn = 5 is peculiar in that it has infinite radius; this is the case for alln ≥ 5,
while for n < 5 zn grows monotonically withn. For values ofn other than 0, 1 or 5 the solution must
be found by numerical integration (this is quite straightforward, see the accompanying computer
practicum). Table 4.1 lists the value ofzn for different values ofn, as well as several other properties
of the solution that will be discussed below.
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4.1.1 Physical properties of the solutions

Once the solutionw(z) of the Lane-Emden equation is found, eq. (4.5) fixes the relative density
distribution of the model, which is thus uniquely determined by the polytropic indexn. Given the
solution for a certainn, the physical properties of a polytropic stellar model, such as its mass and
radius, are then determined by the parametersK andρc, as follows.

The radius of a polytropic model follows from eq. (4.6):

R= αzn =

[

(n+ 1)K
4πG

]1/2

ρ
(1−n)/2n
c zn. (4.11)

The massm(z) interior tozcan be obtained from integrating eq. (2.3), using eqs. (4.5), (4.6) and (4.7):

m(z) =
∫ αz

0
4πr2ρ dr = −4πα3ρc z2dw

dz
. (4.12)

Hence the total mass of a polytropic model is

M = 4πα3ρcΘn = 4π

[

(n+ 1)K
4πG

]3/2

ρ
(3−n)/2n
c Θn, (4.13)

where we have definedΘn as

Θn ≡
(

− z2dw
dz

)

z=zn

. (4.14)

By eliminatingρc from eqs. (4.11) and (4.13) we can find a relation betweenM, RandK,

K = Nn GM(n−1)/nR(3−n)/n with Nn =
(4π)1/n

n+ 1
Θ

(1−n)/n
n z(n−3)/n

n . (4.15)

Numerical values ofΘn and Nn are given in Table 4.1. From the expressions above we see that
n = 1 andn = 3 are special cases. Forn = 1 the radius is independent of the mass, and is uniquely
determined by the value ofK. Conversely, forn = 3 the mass is independent of the radius and
is uniquely determined byK. For a givenK there is only one value ofM for which hydrostatic
equilibrium can be satisfied ifn = 3.

The average density ¯ρ = M/(4
3πR3) of a polytropic star is related to the central density by

eqs. (4.11) and (4.13) as

ρ̄ =

(

− 3
z

dw
dz

)

z=zn

ρc =
3Θn

z3
n
ρc (4.16)

Hence the ratioρc/ρ̄, i.e. the degree of central concentration of a polytrope, only depends on the
polytropic indexn. This dependence is also tabulated in Table 4.1. One may invert this relation to
find the central density of a polytropic star of a given mass and radius.

The central pressure of a polytropic star follows from eq. (4.1), whichcan be written as

Pc = K ρ
(n+1)/n
c .

In combination with (4.15) and (4.16) this gives

Pc =Wn
GM2

R4
with Wn =

z4
n

4π(n+ 1)Θ2
n
. (4.17)
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Note that in our simple scaling estimate, eq. (2.14), we found the same proportionality Pc ∝ GM2/R4,
where the proportionality constantWn is now determined by the polytropic indexn (see Table 4.1).
We can eliminateR in favour ofρc to obtain the very useful relation

Pc = Cn GM2/3ρ
4/3
c with Cn =

(4π)1/3

n+ 1
Θ
−2/3
n , (4.18)

where you may verify that the constantCn is only weakly dependent onn, unlikeWn in (4.17).
We give without derivation an expression for the gravitational potential energy of a polytrope of

indexn:

Egr = −
3

5− n
GM2

R
. (4.19)

(The derivation can be found in K&W Sec. 19.9 and Maeder Sec. 24.5.1.)

4.2 Application to stars

Eq. (4.15) expresses a relation between the constantK in eq. (4.1) and the mass and radius of a
polytropic model. This relation can be interpreted in two very different ways:

• The constantK may be given in terms of physical constants. This is the case, for example, for a
star dominated by the pressure of degenerate electrons, in either the non-relativistic limit or the
extremely relativistic limit. In that case eq. (4.15) defines a unique relation between the mass
and radius of a star.

• In other cases the constantK merely expresses proportionality in eq. (4.1), i.e.K is a free
parameter that is constant in a particular star, but may vary from star to star. In this case there
are many different possible values ofM andR. For a star with a given mass and radius, the
corresponding value ofK for this star can be determined from eq. (4.15).

In this section we briefly discuss examples for each of these two interpretations.

4.2.1 White dwarfs and the Chandrasekhar mass

Stars that are so compact and dense that their interior pressure is dominated by degenerate electrons
are known observationally aswhite dwarfs. They are the remnants of stellar cores in which hydrogen
has been completely converted into helium and, in most cases, also helium hasbeen fused into carbon
and oxygen. Since the pressure of a completely degenerate electron gasis a function of density only
(Sec. 3.3.5), the mechanical structure if a white dwarf is fixed and is independent of temperature. We
can thus understand some of the structural properties of white dwarfs bymeans of polytropic models.

We start by considering the equation of state for a degenerate, non-relativistic electron gas. From
eq. (3.35) this can be described by a polytropic relation withn = 1.5. Since the correspondingK
is determined by physical constants, eq. (4.15) shows that such a polytrope follows a mass-radius
relation of the from

R∝ M−1/3. (4.20)

More massive white dwarfs are thus more compact, and therefore have a higher density. Above a
certain density the electrons will become relativistic as they are pushed up to higher momenta by the
Pauli exclusion principle. The degree of relativity increases with density,and therefore with the mass
of the white dwarf, until at a certain mass all the electrons become extremely relativistic, i.e., their
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speedυe → c. In this limit the equation of state has changed from eq. (3.35) to eq. (3.37),which
is also a polytropic relation but withn = 3. We have already seen above that ann = 3 polytrope is
special in the sense that it has a unique mass, which is determined byK and is independent of the
radius:

M = 4πΘ3

( K
πG

)3/2

. (4.21)

This value corresponds to an upper limit to the mass of a gas sphere in hydrostatic equilibrium that
can be supported by degenerate electrons, and thus to the maximum possiblemass for a white dwarf.
Its existence was first found by Chandrasekhar in 1931, after whom this limiting mass was named.
Substituting the proper numerical values into eq. (4.21), withK corresponding to eq. (3.37), we obtain
theChandrasekhar mass

MCh = 5.836µ−2
e M⊙. (4.22)

White dwarfs are typically formed of helium, carbon or oxygen, for whichµe = 2 and therefore
MCh = 1.46M⊙. Indeed no white dwarf with a mass exceeding this limit is known to exist.

4.2.2 Eddington’s standard model

As an example of a situation whereK is not fixed by physical constants but is essentially a free
parameter, we consider a star in which the pressure is given by a mixture ofideal gas pressure and
radiation pressure, eq. (3.45). In particular we make the assumption that the ratioβ of gas pressure to
total pressure is constant, i.e. has the same value in each layer of the star. Since Pgas = βP we can
write

P =
1
β

R
µ
ρT, (4.23)

while also

1− β = Prad

P
=

aT4

3P
. (4.24)

Thus the assumption of constantβ means thatT4 ∝ P throughout the star. If we substitute the
complete expression forT4 into eq. (4.24) we obtain

P =

(

3R4

aµ4

1− β
β4

)1/3

ρ4/3, (4.25)

which is a polytropic relation withn = 3 for constantβ. Since we are free to chooseβ between 0 and
1, the constantK is indeed a free parameter dependent onβ.

The relation (4.25) was derived by Arthur Eddington in the 1920s for his famous ‘standard model’.
He found that in regions with a high opacityκ (see Ch. 5) the ratio of local luminosity to mass coor-
dinatel/m is usually small, and vice versa. Making the assumption thatκl/m is constant throughout
the star is equivalent to assuming thatβ is constant (again, see Ch. 5). Indeed, for stars in which
radiation is the main energy transport mechanism this turns out to be approximately true, even though
it is a very rough approximation to the real situation. Nevertheless, the structure of stars on the main
sequence withM ∼> M⊙ is reasonably well approximated by that of an = 3 polytrope. Since the
mass of an = 3 polytrope is given by eq. (4.21), we see from eq. (4.25) that there is aunique relation
between the massM of a star andβ. The relative contribution of radiation pressure increases with the
mass of a star. This was also noted by Eddington, who pointed out that the limitedrange of known
stellar masses corresponds to values ofβ that are significantly different from 0 or 1.
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Suggestions for further reading

Polytropic stellar models are briefly covered in Chapter 24.5 of Maeder and treated more extensively
in Chapter 19 of Kippenhahn & Weigert and Chapter 7.2 of Hansen.

Exercises

4.1 The Lane-Emden equation

(a) Derive eq. (4.2) from the stellar structure equations for mass continuity and hydrostatic equilib-
rium. (Hint: multiply the hydrostatic equation byr2/ρ and take the derivative with respect to
r).

(b) What determines the second boundary condition of eq. (4.4), i.e., why does the density gradient
have to vanish at the center?

(c) By making the substitutions (4.3), (4.5) and (4.6), derive the Lane-Emden equation (4.7).

(d) Solve the Lane-Emden equation analytically for the cases n = 0 andn = 1.

4.2 Polytropic models

(a) DeriveK andγ for the equation of state of an ideal gas at a fixed temperatureT, of a non-relativistic
degenerate gas and of a relativistic degenerate gas.

(b) Using the Lane-Emden equation, show that the mass distribution in a polytropic star is given by
eq. (4.12), and show that this yields eq. (4.13) for the totalmass of a polytrope.

(c) Derive the expressions for the central densityρc and the central pressurePc as function of mass
and radius, eqs. (4.16) and (4.17).

(d) Derive eq. (4.18) and compute the constantCn for several values ofn.

4.3 White dwarfs

To understand some of the properties of white dwarfs (WDs) we start by considering the equation of
state for a degenerate, non-relativistic electron gas.

(a) What is the value ofK for such a star? Remember to consider an appropriate value ofthe mean
molecular weight per free electronµe.

(b) Derive how the central densityρc depends on the mass of a non-relativistic WD. Using this with
the result of Exercise 4.2(b), derive a radius-mass relation R= R(M). Interpret this physically.

(c) Use the result of (b) to estimate for which WD masses the relativistic effects would become im-
portant.

(d) Show that the derivation of aR= R(M) relation for the extreme relativistic case leads to a unique
mass, the so-calledChandrasekhar mass. Calculate its value, i.e. derive eq. (4.22).

4.4 Eddington’s standard model

(a) Show that for constantβ the virial theorem leads to

Etot =
β

2
Egr = −

β

2− βEint, (4.26)

for a classical, non-relativistic gas. What happens in the limitsβ→ 1 andβ→ 0?

51



(b) Verify eq. (4.25), and show that the corresponding constantK depends onβ and the mean molec-
ular weightµ as

K =
2.67× 1015

µ4/3

(

1− β
β4

)1/3

. (4.27)

(c) Use the results from above and the fact that the mass of ann = 3 polytrope is uniquely determined
by K, to derive the relationM = M(β, µ). This is useful for numerically solving the amount of
radiation pressure for a star with a given mass.
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