
Chapter 5

Energy transport in stellar interiors

The energy that a star radiates from its surface is generally replenishedfrom sources or reservoirs
located in its hot central region. This represents an outward energy fluxat every layer in the star,
and it requires an effective means of transporting energy through the stellar material. This transfer of
energy is possible owing to a non-zero temperature gradient in the star. While radiation is often the
most important means of energy transport, and its is always present, it is not the only means. In stellar
interiors, where matter and radiation are always in local thermodynamic equilibrium (Chapter 3) and
the mean free paths of both photons and gas particles are extremely small, energy (heat) can be
transported from hot to cool regions in two basic ways:

• Random thermal motions of the particles – either photons or gas particles – by aprocess that
can be calledheat diffusion. In the case of photons, the process is known asradiative diffusion.
In the case of gas particles (atoms, ions, electrons) it is usually calledheat conduction.

• Collective (bulk) motions of the gas particles, which is known asconvection. This is an impor-
tant process in stellar interiors, not only because it can transport energy very efficiently, it also
results in rapid mixing. Unfortunately, convection is one of the least understood ingredients of
stellar physics.

The transport of energy in stars is the subject of this chapter, which will lead us to two additional
differential equations for the stellar structure.

5.1 Local energy conservation

In Chapter 2 we considered the global energy budget of a star, regulated by the virial theorem. We
have still to take into account the conservation of energy on a local scale inthe stellar interior. To do
this we turn to the first law of thermodynamics (Sect. 3.4), which states that the internal energy of a
system can be changed by two forms of energy transfer: heat and work. By δ f we denote a change in
a quantityf occurring in a small time intervalδt. For a gas element of unit mass the first law can be
written as (see eq. 3.47)

δu = δq+
P

ρ2
δρ. (5.1)

The first term is the heat added or extracted, and second term represents the work done on (or per-
formed by) the element. We note that compression (δρ > 0) involves an addition of energy, and
expansion is achieved at the expense of the element’s own energy.

Consider a spherical, Lagrangian shell inside the star of constant mass∆m. Changes in the heat
content of the shell (δQ = δq∆m) can occur due to a number of sources and sinks:
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Figure 5.1. Energy generation and heat flow into and
out of a spherical mass shell.

• Heat is added by the release of nuclear energy, if available. The rate atwhich nuclear energy
is produced per unit mass and per second is written asǫnuc. The details of nuclear energy
generation will be treated in Chapter 6.

• Heat can be removed by the release of energetic neutrinos, which escape from the stellar interior
without interaction. Neutrinos are released as a by-product of some nuclear reactions, in which
case they are often accounted for inǫnuc. But neutrinos can also be released by weak interaction
processes in very hot and dense plasmas. This type of neutrino production plays a role in late
phases of stellar evolution, and the rate at which these neutrinos take awayenergy per unit mass
is written asǫν.

• Finally, heat is absorbed or emitted according to the balance of heat fluxesflowing into and out
of the shell. We define a new variable, thelocal luminosity l, as the rate at which energy in the
form of heat flows outward through a sphere of radiusr (see Fig. 5.1). In spherical symmetry,
l is related to the radial energy fluxF (in erg s−1 cm−2) as

l = 4πr2 F. (5.2)

Therefore at the surfacel = L while at the centrel = 0. Normally heat flows outwards,
in the direction of decreasing temperature. Thereforel is usually positive, but under some
circumstances (e.g. cooling of central regions by neutrino emission) heatcan flow inwards,
meaning thatl is negative. (We note that the energy flow in the form of neutrinos is treated
separately and isnot included in the definition ofl and of the stellar luminosityL.)

We can therefore write:

δQ = ǫnuc∆mδt − ǫν ∆mδt + l(m) δt − l(m+ ∆m) δt,

with l(m+ ∆m) = l(m) + (∂l/∂m) · ∆m, so that after dividing by∆m,

δq =

(

ǫnuc− ǫν −
∂l
∂m

)

δt. (5.3)

Combining eqs. (5.3) and (5.1) and taking the limitδt → 0 yields:

∂l
∂m
= ǫnuc− ǫν −

∂u
∂t
+

P

ρ2

∂ρ

∂t
(5.4)
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This is the third equation of stellar evolution. The terms containing time derivatives are often com-
bined into a functionǫgr:

ǫgr = −∂u
∂t
+

P

ρ2

∂ρ

∂t

= −T
∂s
∂t

(5.5)

wheres is the specific entropy of the gas. One can then write

∂l
∂m
= ǫnuc− ǫν + ǫgr (5.6)

If ǫgr > 0, energy is released by the mass shell, typically in the case of contraction. If ǫgr < 0, energy
is absorbed by the shell, typically in the case of expansion.

In thermal equilibrium(see Sec. 2.3.2), the star is in a stationary state and the time derivatives
vanish (ǫgr = 0). We then obtain a much simpler stellar structure equation,

dl
dm
= ǫnuc− ǫν. (5.7)

If we integrate this equation over the mass we obtain

L =
∫ M

0
ǫnucdm−

∫ M

0
ǫν dm≡ Lnuc− Lν (5.8)

which defines the nuclear luminosityLnuc and the neutrino luminosityLν. Neglecting the neutrino
losses for the moment, we see that thermal equilibrium implies thatL = Lnuc, that is, energy is
radiated away at the surface at the same rate at which it is produced by nuclear reactions in the
interior. This is indeed what we defined as thermal equilibrium in Sec. 2.3.2.

5.2 Energy transport by radiation and conduction

We have seen that most stars are in a long-lived state of thermal equilibrium, inwhich energy gen-
eration in the stellar centre exactly balances the radiative loss from the surface. What would happen
if the nuclear energy source in the centre is suddenly quenched? The answer is: very little, at least
initially. Photons that carry the energy are continually scattered, absorbed and re-emitted in random
directions. Because stellar matter is veryopaqueto radiation, the photon mean free pathℓph is very
small (typicallyℓph ∼ 1 cm≪ R⊙, see Sect. 3.1). As a result, radiation is trapped within the stellar
interior, and photons diffuse outwards very slowly by a ‘random walk’ process. The time it takes ra-
diation to escape from the centre of the Sun by this random walk process is roughly 107 years, despite
the fact that photons travel at the speed of light (see Exercise 5.1). Changes in the Sun’s luminosity
would only occur after millions of years, on the timescale for radiative energy transport, which you
may recognise as the Kelvin-Helmholtz timescale for thermal readjustment.

We also estimated in Sec. 3.1 that the temperature difference over a distanceℓph is only ∆T ∼
10−4 K. This means that the radiation field is extremely close to black-body radiation with U =

uρ = aT4 (Sec. 3.3.6). Black-body radiation is isotropic and as a result no net energy transport
would take place. However, a small anisotropy is still present due to the tiny relative temperature
difference∆T/T ∼ 10−11. This small anisotropy is enough to carry the entire energy flux in the Sun
(see Exercise 5.1). These estimates show that radiative energy transport in stellar interiors can be
described as a diffusion process. This yields a great simplification of the physical description.
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5.2.1 Heat diffusion by random motions

Fick’s law of diffusion states that, when there is a gradient∇n in the density of particles of a certain
type, the diffusive fluxJ – i.e. the net flux of such particles per unit area per second – is given by

J = −D∇n with D = 1
3ῡℓ. (5.9)

HereD is thediffusion coefficient, which depends on the average particle velocity ¯υ and their mean
free pathℓ. The origin of this equation can be understood as follows.

Consider a unit surface area and particles crossing the surface in either direction. Letz be a
coordinate in the direction perpendicular to the surface. The number of particles crossing in the
positivez direction (say upward) per unit area per second is

dN
dt
= 1

6nῡ,

The factor 1
6 comes from the fact that half of the particles cross the surface in one direction, and

because their motions are isotropic the average velocity perpendicular to thesurface is1
3ῡ (this can

be proven in the same way as the factor1
3 appearing in the pressure integral eq. 3.4). If there is a

gradient in the particle density along thez direction,∂n/∂z, then the particles moving upwards with
mean free pathℓ on average have a densityn(z− ℓ) and those moving down on average have a density
n(z+ ℓ). Therefore the net particle flux across the surface is

J = 1
6ῡn(z− ℓ) − 1

6ῡ n(z+ ℓ) = 1
6ῡ ·

(

− 2ℓ
∂n
∂z

)

= −1
3ῡℓ

∂n
∂z
.

Eq. (5.9) is the generalisation of this expression to three dimensions.
Suppose now that, in addition to a gradient in particle density, there is a gradient in the energy

densityU carried by these particles (e.g. photons or gas particles). Then by analogy, there is a net
flux of energy across the surface, since the particles moving ‘up’ on average carry more energy than
those moving ‘down’. Therefore a gradient in the energy density∇U gives rise to a net energy flux

F = −D∇U, (5.10)

Since a gradient in energy density is associated with a temperature gradient,∇U = (∂U/∂T)V ∇T =
CV ∇T, we can write this as an equation for heat conduction,

F = −K ∇T with K = 1
3ῡℓCV, (5.11)

whereK is theconductivity. This description is valid for all particles in LTE, photons as well as gas
particles.

5.2.2 Radiative diffusion of energy

For photons, we can take ¯υ = c andU = aT4. Hence the specific heat (per unit volume) isCV =

dU/dT = 4aT3. The photon mean free path can be obtained from the equation of radiativetransfer,
which states that the intensityIν of a radiation beam (in a medium without emission) is diminished
over a lengthsby

dIν
ds
= −κνρ Iν, (5.12)

whereκν is the mass absorption coefficient or opacity coefficient (in cm2 g−1) at frequencyν. The
mean free path is the distance over which the intensity decreases by a factorof e, which obviously
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depends on the frequency. If we make a proper average over frequencies (see Sec. 5.2.3), we can
write

ℓph =
1
κρ
. (5.13)

The quantityκ is simply called theopacity. We can then compute the radiative conductivity

Krad =
4
3

acT3

κρ
, (5.14)

such that the radiative energy flux is

Frad = −Krad∇T = −4
3

acT3

κρ
∇T. (5.15)

In spherical symmetric star the flux is related to the local luminosity,Frad = l/4πr2 (eq. 5.2). We can
thus rearrange the equation to obtain the temperature gradient

∂T
∂r
= − 3κρ

16πacT3

l

r2
(5.16)

or when combined with eq. (2.6) for∂r/∂m,

∂T
∂m
= − 3

64π2ac

κl

r4T3
(5.17)

This is the temperature gradient required to carry the entire luminosityl by radiation. It gives the
fourth stellar structure equation, for the case that energy is transportedonly by radiation. A star, or a
region inside a star, in which this holds is said to be inradiative equilibrium, or simplyradiative.

Eq. (5.17) is valid as long asℓph ≪ R, i.e. as long as the LTE conditions hold. This breaks
down when the stellar surface, the photosphere, is approached: this is where the photons escape, i.e.
ℓph ∼> R. Near the photosphere the diffusion approximation is no longer valid and we need to solve
the full, and much more complicated, equations of radiative transfer. This is the subject of the study
of stellar atmospheres. Fortunately, the LTE conditions and the diffusion approximation hold over
almost the entire stellar interior.

In hydrostatic equilibrium, we can combine eqs. (5.17) and (2.13) as follows

dT
dm
=

dP
dm
· dT

dP
= − Gm

4πr4

T
P
· d logT

d logP

so that we can define the dimensionlessradiative temperature gradient

∇rad =

(

d logT
d logP

)

rad
=

3
16πacG

κlP

mT4
(5.18)

This describes the logarithmic variation ofT with depth (where depth is now expressed by thepres-
sure) for a star in HE if energy is transported only by radiation.
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5.2.3 The Rosseland mean opacity

The radiative diffusion equations derived above are independent of frequencyν, since the fluxF is
integrated over all frequencies. However, in general the opacity coefficientκν depends on frequency,
such that theκ appearing in eq. (5.16) or (5.17) must represent a proper average over frequency. This
average must be taken in a particular way.

If Fν dν represents the radiative flux in the frequency interval [ν, ν + dν], then eq. (5.10) must be
replaced by

Fν = −Dν∇Uν = −Dν

∂Uν

∂T
∇T (5.19)

where

Dν =
1
3cℓν =

c
3κνρ

. (5.20)

The energy densityUν in the same frequency interval follows from eq. (3.41),Uν = hν n(ν),

Uν =
8πh

c3

ν3

ehν/kT − 1
(5.21)

which is proportional to the Planck function for the intensity of black-body radiation. The total flux
is obtained by integrating eq. (5.19) over all frequencies,

F = −
[ c
3ρ

∫ ∞

0

1
κν

∂Uν

∂T
dν

]

∇T. (5.22)

This is eq. (5.11) but with conductivity

Krad =
c

3ρ

∫ ∞

0

1
κν

∂Uν

∂T
dν. (5.23)

Comparing with eq. (5.14) shows that the proper average of opacity as it appears in eq. (5.16) or
(5.17) is

1
κ
=

1
4aT3

∫ ∞

0

1
κν

∂Uν

∂T
dν. (5.24)

This is the so-calledRosseland mean opacity. The factor 4aT3 appearing in eq. (5.24) is equal to
∫ ∞
0

(∂Uν/∂T) dν, so that the Rosseland mean can be seen as the harmonic mean ofκν with weighting
function ∂Uν/∂T. (The weighting function has a maximum athν ≈ 4kT, as can be verified by
differentiating eq. (5.21) with respect toT, and subsequently with respect toν.)

We can interpret the Rosseland mean in another way. The integrand of eq.(5.24) also appears in
the expression (5.19) for the monochromatic flux,Fν, when combined with (5.20). The Rosseland
mean therefore favours the frequency range where the flux is large. In other words, 1/κ represents the
averagetransparencyof the stellar gas.

5.2.4 Conductive transport of energy

Collisions between the gas particles (ions and electrons) can also transport heat. Under normal (ideal
gas) conditions, however, the collisional conductivity is very much smaller than the radiative con-
ductivity. The collisional cross sections are typically 10−18− 10−20 cm2 at the temperatures in stellar
interiors, giving a mean free path for collisions that is several orders ofmagnitude smaller thanℓph.
Furthermore the average particle velocity ¯υ =

√
3kT/m ≪ c. So normally we can neglect heat

conduction compared to radiative diffusion of energy.
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However, the situation can be quite different when the electrons become degenerate. In that
case both their velocities increase (their momenta approach the Fermi momentum, see Sec. 3.3.5)
and, more importantly, their mean free paths increase (most of the quantum cells of phase space
are occupied, so an electron has to travel further to find an empty cell andtransfer its momentum).
At very high densities, whenℓe ≫ ℓph, electron conduction becomes a much more efficient way of
transporting energy than radiative diffusion (see Sec. 5.3). This is important for stars in late stages
of evolution with dense degenerate cores and for white dwarfs, in which efficient electron conduction
results in almost isothermal cores.

The energy flux due to heat conduction can be written as

Fcd = −Kcd∇T (5.25)

such that the sum of radiative and conductive fluxes is

F = Frad+ Fcd = −(Krad+ Kcd)∇T. (5.26)

We can define aconductive opacityκcd by analogy with the radiative opacity, if we write the conduc-
tivity in the same form as eq. (5.14),

Kcd =
4acT3

3κcdρ
. (5.27)

Then we can write the combined flux due to radiation and conduction in the same form as the radiative
flux, eq. (5.15),

F = −4acT3

3κρ
∇T with

1
κ
=

1
κrad
+

1
κcd

(5.28)

This result simply means that the transport mechanism with the largest flux will dominate, that is, the
mechanism for which the stellar matter has the highest transparency. Withκ defined as in eq. (5.28),
the stellar structure equation (5.17) also accounts for the effects of conduction, if present.

5.3 Opacity

The opacity coefficientκ appearing in eq. (5.17) determines the flux that can be transported by radia-
tion for a certain temperature gradient, or more to the point, how large the temperature gradient must
be in order to carry a given luminosityl by radiation. Thereforeκ is an important quantity that has a
large effect on the structure of a star.

5.3.1 Sources of opacity

In the following subsections we briefly describe the different physical processes that contribute to the
opacity in stellar interiors, and give some simple approximations.

Electron scattering

An electromagnetic wave that passes an electron causes it to oscillate and radiate in other directions,
like a classical dipole. This scattering of the incoming wave is equivalent to theeffect of absorption,
and can be described by the Thomson cross-section of an electron

σe =
8π
3

( e2

mec2

)2

= 6.652× 10−25 cm2 (5.29)

59



The associated opacity coefficient is due to the combined cross-section of all electrons in a unit mass
of gas, which is obtained by dividingσTh by ρ/ne = µemu,

κes=
σe

µemu
= 0.20 (1+ X) cm2/g (5.30)

Since the electron scattering opacity is independent of frequency, this expression also gives the
Rosseland mean. In the last equality we have assumed that the gas is completelyionized so that
µe = 2/(1+ X) (eq. 3.20). Electron scattering is an important opacity source in an ionizedgas that is
not too dense. When the degree of ionization drops (typically whenT ∼< 104 K in hydrogen-rich gas)
the electron density becomes so small that the electron scattering opacity is strongly reduced below
eq. (5.30).

When the photon energy becomes a significant fraction of the rest mass ofthe electron,hν ∼>
0.1mec2, the exchange of momentum between photon and electron must be taken into account (Comp-
ton scattering). This occurs at high temperature, since the Planck functionhas a maximum athν =
4.965kT (Wien’s law), i.e. whenkT ∼> 0.02mec2 or T ∼> 108 K. At such temperatures the electron
scattering opacity is smaller than given by eq. (5.30).

Free-free absorption

A free electron cannot absorb a photon because this would violate momentumand energy conser-
vation. However, if a charged ion is in its vicinity, absorption is possible because of the electro-
magnetic coupling between the ion and electron. Thisfree-free absorptionis the inverse process of
bremsstrahlung, where an electron emits a photon when it passes by and interacts with an ion.

The full derivation of the absorption coefficient for this process is a quantum-mechanical problem.
However, an approximate calculation has been done classically by Kramers. He derived that the
absorption efficiency of such a temporary electron-ion system is proportional toZi

2ν−3, whereZi is
the charge of the ion. To obtain the cross-section of a certain ioni, this has to be multiplied by the
electron densityne and by the time during which the electron and ion will be close enough for the
coupling to occur. This can be estimated from the mean velocity of the electrons, ῡ = (3kT/me)1/2, so
that∆t ∝ 1/ῡ ∝ T−1/2, i.e.σff,i ∝ neT−1/2Zi

2ν−3. The opacity coefficient follows by multiplying the
cross section byni/ρ, whereni is the ion number density, and summing over all ions in the mixture:

κν,ff ∝
ne

ρ

∑

i

ni Zi
2 T−1/2 ν−3.

In a completely ionized gas,ne/ρ = 1/(µemu) = (1+X)/2mu. Following Sec. 3.3.3, the sum over ions
can be written as

∑

i niZi
2 = (ρ/mu)

∑

i (XiZi
2/Ai) = (ρ/mu) (X+Y+ B), whereB =

∑

i>2 (XiZi
2/Ai) is

the contribution of elements heavier than helium. As long as their abundance is small, one can take
X + Y+ B ≈ 1 to a reasonable approximation.

When we take the Rosseland mean, the factorν−3 becomes a factorT−3 (this can be verified by
performing the integration of eq. 5.24 withκν ∝ ν−α, see Exercise 5.2). We thus obtain

κff ∝ ρT−7/2. (5.31)

An opacity law of this form is calledKramers opacity. Putting in the numerical factors and the
compositional dependence for an ionized gas, the following approximate expression is obtained,

κff ≈ 3.8× 1022 (1+ X) ρT−7/2 cm2/g. (5.32)

N.B. This formula should be used with caution: it can give some insight in simplifying approaches
but should not be used in serious applications. One omission is a correctionfactor for quantum-
mechanical effects, the so-called Gaunt factorgff.
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Bound-free and bound-bound absorption

Bound-free absorption is the absorption of a photon by a bound electronwhereby the photon energy
exceeds the ionization energyχ of the ion or atom. Computing the opacity due to this process requires
carefully taking into account the atomic physics of all the ions and atoms present in the mixture, and
is thus very complicated. Classical considerations, similar to those for free-free absorption, show that
the frequency dependence is again∝ ν−3, as long ashν > χion. Therefore, in rough approximation the
total bound-free opacity is also of the Kramers form. A very approximate formula is

κbf ≈ 4.3× 1025 (1+ X)Z ρT−7/2 cm2/g. (5.33)

Again one should use this formula with caution. It should certainly not be applied for T ∼< 104 K
because most of the photons are not energetic enough to ionize the electrons, while at very highT
most species are fully ionized so the bound-free opacity is smaller than eq. (5.33) suggests. Keeping
these limitations in mind, the bound-free opacity is seen to depend directly on the metallicity Z. One
thus has, very approximately,κbf ≈ 103Z×κff. We may thus expect bound-free absorption to dominate
over free-free absorption forZ ∼> 10−3.

Bound-bound absorption is related to photon-induced transitions betweenbound states in atoms or
ions. Although this is limited to certain transition frequencies, the process can be efficient because the
absorption lines are strongly broadened by collisions. Again, the computation of opacity is complex
because one has to include a detailed treatment of line profiles under a wide variety of conditions.
Bound-bound absorption is mainly important forT ∼< 106 K, at higher temperatures its contribution
to the total opacity is small.

The negative hydrogen ion

An important source of opacity in relatively cool stars (e.g. in the solar atmosphere) is formed by
bound-free absorption of the negative hydrogen ion H−. Neutral hydrogen is easily polarized by a
nearby charge and can then form a bound state with another electron, withan ionization potential of
0.75 eV. The resulting H− is very fragile and is easily ionized at temperatures of a few thousand K.
However, to make the ion requires the presence of both neutral hydrogen and free electrons. The free
electrons come mainly from singly ionized metals such as Na, K, Ca or Al. The resulting opacity
is therefore sensitive to metallicity and to temperature. A very approximate formula in the range
T ∼ (3− 6)× 103 K, ρ ∼ (10−10− 10−5) g/cm3 and 0.001< Z < 0.02 is

κH− ≈ 2.5× 10−31
( Z
0.02

)

ρ1/2 T9 cm2/g (5.34)

At very low metal abundance and/or T ∼< 3000 K the H− opacity becomes ineffective. AtT ∼> 104 K
most of the H− has disappeared and the Kramers opacity and electron scattering take over.

Molecules and dust

In cool stars withTeff ∼< 4000 K opacity sources arising from molecules and (at even lower temper-
atures) dust grains become dominant. Here one has to deal with complicated molecular chemistry
and dust formation processes, which still contains a lot of uncertainty. When dust grains form, at
T ∼< 1500 K, they are very effective absorbers in the outer atmospheres of very cool stars.

Conductive opacities

As we saw in Sec. 5.2.4, energy transport by means of heat conduction can also be described by means
of a conductive opacity coefficient κcd. Under ideal gas conditions, conduction is very inefficient
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compared to radiative transport of energy (κcd ≫ κrad). Therefore we only need to consider the case
of a degenerate electron gas. In this case the following approximation holds

κcd ≈ 4.4× 10−3
∑

i Zi
5/3Xi/Ai

(1+ X)2

(T/107 K)2

(ρ/105 g/cm3)2
cm2/g. (5.35)

At high densities and low temperatures, the conductive opacity becomes very small because of the
large electron mean free path in a highly degenerate gas. This is why degenerate stellar regions are
highly conductive and rapidly become isothermal.

5.3.2 A detailed view of stellar opacities

In general,κ = κ(ρ,T,Xi) is a complicated function of density, temperature and composition. While
certain approximations can be made, as in the examples shown above, these are usually too simplified
and inaccurate to apply in detailed stellar models. An additional complication is thatthe Rosseland
mean opacity (eq. 5.24) is not additive: the opacity of a mixture of gases is not simply equal to the sum
of the opacities of its components. Instead, one first has to add the frequency-dependent opacities,
κν =

∑

i Xiκν,i and then integrate overν to calculate the Rosseland mean.
In practical stellar structure calculations one usually interpolates in pre-computed opacity tables,

e.g. as calculated in the 1990s by the OPAL project. An example is shown in Fig.5.2 for a quasi-solar
mixture of elements. One may recognize the various regions in the density-temperature plane where
one of the processes discussed above dominates. At low density and hightemperature,κ has a constant
value given by electron scattering. Opacity increases towards higherρ and lowerT due to free-free
and bound-free absorptions. ForT < 104 K opacity decreases drastically due to recombination of
hydrogen, the main opacity source here is the H− ion. At lower temperatures still,κ rises again

0−2−4−6−8−10

 3  4  5  6  7  8

−4

−2

 0

 2

 4

log T

lo
g 

κ

OPAL opacities

X = 0.70, Z = 0.02

1 Msun

10
100

−10 −5  0  5
 3

 4

 5

 6

 7

 8

log ρ

lo
g 

T

log κ

X = 0.70, Z = 0.02

Figure 5.2. Rosseland mean opacities as a function ofT andρ, for a mixture of elements representative of solar
abundances (X = 0.7,Z = 0.02), calculated by the OPAL project for high temperatures and by J. Ferguson for
low temperatures (logT < 3.8). The left panel shows curves of logκ (in cm2/g) versus temperature for several
values of the density, labelled by the value of logρ (in g/cm3). The right panel shows contour lines of constant
logκ in theρ-T plane, in steps of 1.0 between−4 and 5, over the region in temperature and density for which
the radiative opacity has been calculated. The thick lines are detailed structure models for main-sequence stars
of 1, 10 and 100M⊙, as in Fig. 3.4.
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due to molecules and dust formation. Finally, at very high density the opacity isdominated by the
conductivity of degenerate electrons and decreases strongly with increasingρ (just visible in the upper
right corner of Fig. 5.2). It should be clear that there is much more structure in the functionκ(ρ,T)
than in the simple power-law approximations, such as the Kramers law. The manyridges and bumps
show that the Kramers law is a rather poor approximation of the actual opacity.

For comparison, interior structure models for main-sequence stars of different masses are also
shown. The opacity in the interior of a 1M⊙ star is dominated by free-free and bound-free absorption,
and is very high (up to 105 cm2/g) in the envelope, at temperatures between 104 and 105 K. In the
surface layers the opacity rapidly decreases due to the H− opacity. More massive stars are located
at lower densities than the Sun, and generally have much lower opacities in their envelopes. In the
most massive stars the opacity is dominated by electron scattering, at lowρ and highT. However,
even here one has to deal with additional opacity bumps, most prominently the one due to bound-free
transitions of Fe at logT ≈ 5.3.

Note that the chemical composition, in particular the metallicityZ, can have a large effect onκ.
This provides the most important influence of composition on stellar structure.

5.4 The Eddington luminosity

We have seen that radiative transport of energy inside a star requiresa temperature gradient dT/dr,
the magnitude of which is given by eq. (5.16). SincePrad =

1
3aT4, this means there is also a gradient

in the radiation pressure:

dPrad

dr
= −4

3
aT3dT

dr
= − κρ

4πc
l

r2
. (5.36)

This radiation pressure gradient represents an outward force due to the net flux of photons outwards.
Of course, for a star in hydrostatic equilibrium this outward radiation forcemust be smaller than the
inward force of gravity, as given by the pressure gradient necessary for HE, eq. (2.12). In other words,
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This gives an upper limit to the local luminosity, which is known as the (local)Eddington luminosity,

l <
4πcGm
κ

= lEdd. (5.37)

This is the maximum luminosity that can be carried by radiation, inside a star in hydrostatic equilib-
rium.

The inequality expressed by eq. (5.37) can be violated in the case of a very large heat flux (largel),
which may result from intense nuclear burning, or in the case of a very high opacityκ. As we saw in
Sec. 5.3, high opacities are encountered at relatively low temperatures, near the ionization temperature
of hydrogen and helium (and for example in the outer layers of the Sun). In such cases hydrostatic
equilibrium (eq. 2.13) and radiative equilibrium (eq. 5.17) cannot hold simultaneously. Therefore, if
the star is to remain in HE, energy must be transported by a different means than radiative diffusion.
This means of transport isconvection, the collective motion of gas bubbles that carry heat and can
distribute it efficiently. We shall consider convection in detail in Sec. 5.5. It will turn out that eq. (5.37)
is a necessary, but not a sufficient condition for a region of a star to be stable against convection.

The surface layer of a star is always radiative, since it is from here that energy escapes the star in
the form of photons. Applying eq. (5.37) at the surface of the star (m= M) we get

L < LEdd =
4πcGM

κ
, (5.38)
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whereκ is the opacity in the photosphere. Violation of this condition now means violation ofhy-
drostatic equilibrium: matter is accelerated away from the star by the photon pressure, giving rise to
violent mass loss. The Eddington luminosity expressed by eq. (5.38) is a critical stellar luminosity
that cannot be exceeded by a star in hydrostatic equilibrium. If we assumeκ to be approximately
constant (in very luminous main-sequence stars the opacity is dominated by electron scattering, so
this is not a bad assumption) thenLEdd is only dependent onM. It can be expressed as follows

LEdd = 3.8× 104
(

M
M⊙

)(

0.34 cm2/g
κ

)

L⊙. (5.39)

The value of 0.34 cm2/g corresponds to the electron scattering opacity forX = 0.7.
Since LEdd is proportional toM, while stars (at least on the main sequence) follow a mass-

luminosity relationL ∝ Mx with x > 1 (Sec. 1.1.2), this implies that for stars of increasing mass
L will at some point exceedLEdd. Hence, we can expect amaximum massto exist for main-sequence
stars. Note that the existence of a steep mass-luminosity relation (withx ≈ 3) can be derived directly
for stars in which energy transport occurs by radiation (see Exercise5.3, and also Sec. 7.4), without
having to assume anything about how energy is generated.

5.5 Convection

For radiative diffusion to transport energy outwards, a certain temperature gradient is needed, given
by eq. (5.16) or eq. (5.17). The larger the luminosity that has to be carried, the larger the temperature
gradient required. There is, however, an upper limit to the temperature gradient inside a star – if this
limit is exceeded an instability in the gas sets in. This instability leads to cyclic macroscopic motions
of the gas, known asconvection. Convection can be regarded as a type of dynamical instability,
although (as we shall see later in this section) it does not have disruptive consequences. In particular,
it does not lead to an overall violation of hydrostatic equilibrium. Convection affects the structure of
a star only as an efficient means of heat transport and as an efficient mixing mechanism.

In Sec. 5.4 we already derived an upper limit to the luminosity that can be transported by radiation.
We will now derive a more stringent criterion for convection to occur, based on considerations of
dynamical stability.

5.5.1 Criteria for stability against convection

So far we have assumed strict spherical symmetry in our description of stellar interiors, i.e. assuming
all variables are constant on concentric spheres. In reality there will besmall fluctuations, arising
for example from the thermal motions of the gas particles. If these small perturbations do not grow
they can safely be ignored. However, if the perturbations do grow they can give rise to macroscopic
motions, such as convection. We therefore need to consider thedynamical stabilityof a layer inside a
star against such perturbations.

Consider a mass element that, due to a small perturbation, is displaced upwards by a small distance
as depicted in Fig. 5.3. At its original position (at radiusr) the density and pressure areρ1 andP1,
and at its new position (r + ∆r) the ambient density and pressure areρ2 and P2. Since pressure
decreases outwards,P2 < P1 and the gas element will expand to restore pressure equilibrium with its
surroundings. Hence the pressure of the gas element at position 2 isPe = P2, but its new density after
expansionρe is not necessarily equal toρ2. If ρe > ρ2, the gas element will experience a net buoyancy
force downwards (by Archimedes’ law), which pushes it back towardsits original position. Then the
small perturbation is quenched, and the situation is stable. On the other hand,if ρe < ρ2 then there is
a net buoyancy force upwards and we have anunstablesituation that leads to convection.
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Figure 5.3. Schematic illustration of the Schwarzschild criterion forstability against convection. A gas
element is perturbed and displaced upwards from position 1 to position 2, where it expands adiabatically to
maintain pressure equilibrium with its surroundings. If its density is larger than the ambient density, it will
sink back to its original position. If its density is smaller, however, buoyancy forces will accelerate it upwards:
convection occurs. On the right the situation is shown in a density-pressure diagram. A layer is stable against
convection if the density varies more steeply with pressurethan for an adiabatic change.

The expansion of the gas element as it rises over∆r occurs on the local dynamical timescale (i.e.
with the speed of sound), which is typically much shorter than the local timescalefor heat exchange,
at least in the deep interior of the star. The displacement and expansion ofthe gas element will
therefore be very close to adiabatic. We have seen in Sec. 3.4 that the adiabatic exponentγad defined
by eq. (3.56) describes the logarithmic response of the pressure to an adiabatic change in the density.
Writing asδρe andδPe the changes in the density and pressure of the element when it is displaced
over a small distance∆r, we therefore have

δPe

Pe
= γad

δρe

ρe
. (5.40)

HereδPe is determined by the pressure gradient dP/dr inside the star becausePe = P2, i.e. δPe =

P2 − P1 = (dP/dr)∆r. Therefore the change in densityδρe follows from eq. (5.40)

δρe =
ρe

Pe

1
γad

dP
dr
∆r. (5.41)

We can writeρe = ρ1 + δρe andρ2 = ρ1 + (dρ/dr)∆r, where dρ/dr is the density gradient inside the
star. We can then express the criterion for stability against convection,ρe > ρ2, as

δρe >
dρ
dr
∆r, (5.42)

which combined with eq. (5.41) yields an upper limit to the density gradient for which a layer inside
the star is stable against convection,

1
ρ

dρ
dr

<
1
P

dP
dr

1
γad

, (5.43)

where we have replacedPe andρe by P andρ, since the perturbations are assumed to be very small.
Remember, however, that both dρ/dr and dP/dr are negative. Therefore, in absolute value the sign
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of eq. (5.43) reverses, which means that the density gradient must besteeperthan a critical value,
determined byγad. If we divide (5.43) by dP/dr we obtain the general criterion for stability against
convection, which is depicted on the right-hand side in Fig. 5.3,

d logρ
d logP

>
1
γad

. (5.44)

If condition (5.44) is violated then convective motions will develop. Gas bubbles that, due to
a small perturbation, are slightly hotter than their surroundings will move up, transporting their heat
content upwards until they are dissolved. Other bubbles may be slightly cooler than their environment,
these will move down and have a smaller heat content than their surroundings. When these bubbles
finally dissolve, they absorb heat from their surroundings. Therefore, both the upward and downward
moving convective bubbles effectively transport heat in the upward direction. Hence there is anet
upward heat flux, even though there is no net mass flux, since upward and downward moving bubbles
carry equal amounts of mass. This is the principle behind convective heattransport.

The Schwarzschild and Ledoux criteria

The stability criterion (5.44) is not of much practical use, because it involves computation of a density
gradient which is not part of the stellar structure equations. We would rather have a criterion for the
temperature gradient, because this also appears in the equation for radiative transport. We can rewrite
eq. (5.44) in terms of temperature by using the equation of state. We write the equation of state in its
general, differential form (eq. 3.48) but now also take into account a possible variation in composition.
If we characterize the composition by the mean molecular weightµ thenP = P(ρ,T, µ) and we can
write

dP
P
= χT

dT
T
+ χρ

dρ
ρ
+ χµ

dµ
µ
, (5.45)

with χT andχρ defined by eqs. (3.49) and (3.50), andχµ is defined as

χµ =

(

∂ logP
∂ logµ

)

ρ,T
. (5.46)

For an ideal gasχµ = −1. With the help of eq. (5.45) we can write the variation of density with
pressure through the star as

d logρ
d logP

=
1
χρ

(

1− χT
d logT
d logP

− χµ
d logµ
d logP

)

=
1
χρ

(1− χT∇ − χµ∇µ). (5.47)

Here we have introduced, by analogy with eq. (5.18), the symbols∇ ≡ d logT/d logP and∇µ ≡
d logµ/d logP. These quantities represent the actual gradients of temperature and of mean molecular
weight through the star, regardingP as the variable that measures depth. In the displaced gas element
the composition does not change, and from eq. (3.63) we can write

1
γad
=

1
χρ

(1− χT∇ad),

so that the stability criterion (5.44) becomes

∇ < ∇ad−
χµ

χT
∇µ. (5.48)
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If all the energy is transported by radiation then∇ = ∇rad as given by eq. (5.18). Hence we can replace
∇ by∇rad in eq. (5.48) and thus arrive at theLedoux criterionwhich states that a layer is stable against
convection if

∇rad < ∇ad−
χµ

χT
∇µ (Ledoux) (5.49)

In chemically homogeneous layers∇µ = 0 and eq. (5.49) reduces to the simpleSchwarzschild crite-
rion for stability against convection1

∇rad < ∇ad (Schwarzschild) (5.50)

N.B. Note the difference in meaning of the various∇ symbols appearing in the above criteria:∇rad

and∇µ represent aspatialgradient of temperature and mean molecular weight, respectively. On the
other hand,∇ad represents the adiabatic temperature variation in a specific gas element undergoing a
change in pressure.

For an ideal gas (χT = 1,χµ = −1) the Ledoux criterion reduces to

∇rad < ∇ad+ ∇µ. (5.51)

The mean molecular weight normally increases inwards, because in deeperlayers nuclear reactions
have produced more and more heavy elements. Therefore normally∇µ ≥ 0, so that according to the
Ledoux criterion a composition gradient has a stabilizing effect. This is plausible because an upwards
displaced element will then have a higherµ than its surroundings, so that even when it is hotter than
its new environment (which would make it unstable according to the Schwarzschild criterion) it has a
higher density and the buoyancy force will push it back down.

Occurrence of convection

According to the Schwarzschild criterion, we can expect convection to occur if

∇rad =
3

16πacG
P

T4

κl
m
> ∇ad. (5.52)

This requires one of following:

• A large value ofκ, that is, convection occurs in opaque regions of a star. Examples are the
outer envelope of the Sun (see Fig. 5.2) and of other cool stars, because opacity increases with
decreasing temperature. Since low-mass stars are cooler than high-mass stars, we may expect
low-mass stars to have convective envelopes.

• A large value ofl/m, i.e. regions with a large energy flux. We note that towards the centre of a
starl/m≈ ǫnuc by eq. (5.4), so that stars with nuclear energy production that is stronglypeaked
towards the centre can be expected to have convective cores. We shallsee that this is the case
for relatively massive stars.

1We can relate the convection criterion to the Eddington limit derived in Sec. 5.4. By writing ∇rad in terms ofl, lEdd

(defined in eq. 5.37) andPrad = (1− β)P we can rewrite the Schwarzschild criterion for stability as

l < 4(1− β)∇ad lEdd

(see Exercise 5.6). Forβ > 0 and∇ad > 0.25 we see that convection already sets in before the Eddington limit is reached.
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Figure 5.4. The variation of∇ad (red, solid line) and∇rad (blue, dashed line) with radius in two detailed
stellar models of 1M⊙ and 4M⊙ at the start of the main sequence. The solar-mass model has a very large
opacity in its outer layers, resulting in a large value of∇rad which gives rise to a convective envelope where
∇rad > ∇ad (indicated by gray shading). On the other hand, the 4M⊙ model has a hotter outer envelope with
lower opacity so that∇rad stays small. The large energy generation rate in the centre now results in a large∇rad

and a convective core extending over the inner 0.4R⊙. In both models∇ad ≈ 0.4 since the conditions are close
to an ideal gas. In the surface ionization zones, however,∇ad < 0.4 and a thin convective layer appears in the
4 M⊙ model.

• A small value of∇ad, which as we have seen in Sec. 3.5 occurs in partial ionization zones at
relatively low temperatures. Therefore, even if the opacity is not very large, the surface layers
of a star may be unstable to convection. It turns out that stars of all masseshave shallow surface
convection zones at temperatures where hydrogen and helium are partially ionized.

These effects are illustrated in Fig. 5.4.

5.5.2 Convective energy transport

We still have to address the question how much energy can be transported by convection and, related
to this, what is the actual temperature gradient∇ inside a convective region. To answer these questions
properly requires a detailed theory of convection, which to date remains a very difficult problem in
astrophysics that is still unsolved. Even though convection can be simulatednumerically, this requires
solving the equations of hydrodynamics in three dimensions over a huge range of length scales and
time scales, and of pressures, densities and temperatures. Such simulationsare therefore very time-
consuming and still limited in scope, and cannot be applied in stellar evolution calculations. We have
to resort to a very simple one-dimensional ‘theory’ that is based on roughestimates, and is known as
themixing length theory(MLT).

In the MLT one approximates the complex convective motions by blobs of gas that travel up or
down over a radial distanceℓm (the mixing length), after which they dissolve in their surroundings
and lose their identity. As the blob dissolves it releases its excess heat to its surroundings (or, in the
case of a downward moving blob, it absorbs its heat deficit from its surroundings). The mixing length
ℓm is an unknown free parameter in this very schematic model. One presumes thatℓm is of the order
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of the local pressure scale height, which is the radial distance over whichthe pressure changes by an
e-folding factor,

HP =

∣

∣

∣

∣

∣

∣

dr
d lnP

∣

∣

∣

∣

∣

∣

=
P
ρg
. (5.53)

The last equality holds for a star in hydrostatic equilibrium. The assumption thatℓm ∼ HP is not
unreasonable considering that a rising gas blob will expand. Supposingthat in a convective region in
a star, about half of a spherical surface area is covered by rising blobs and the other half by sinking
blobs, the expanding rising blobs will start covering most of the surface area after rising over one or
two pressure scale heights.

The convective energy flux

Within the framework of MLT we can calculate the convective energy flux, and the corresponding
temperature gradient required to carry this flux, as follows. After rising over a radial distanceℓm the
temperature difference between the gas element (e) and its surroundings (s) is

∆T = Te− Ts =

[(

dT
dr

)

e
− dT

dr

]

ℓm = ∆

(

dT
dr

)

ℓm.

Here dT/dr is the ambient temperature gradient, (dT/dr)e is the variation of temperature with radius
that the element experiences as it rises and expands adiabatically, and∆(dT/dr) is the difference
between these two. We can write∆T in terms of∇ and∇ad by noting that

dT
dr
= T

d lnT
dr
= T

d lnT
d lnP

d lnP
dr
= − T

HP
∇ and

(

dT
dr

)

e
= − T

HP
∇ad,

noting that the ‘−’ sign appears because dP/dr < 0 in eq. (5.53). Hence

∆T = T
ℓm

HP
(∇ − ∇ad). (5.54)

The excess of internal energy of the gas element compared to its surroundings is∆u = cP∆T per
unit mass. If the convective blobs move with an average velocityυc, then the energy flux carried by
the convective gas elements is

Fconv = υc ρ∆u = υc ρcP∆T (5.55)

We therefore need an estimate of the average convective velocity. If the difference in density between
a gas element and its surroundings is∆ρ, then the buoyancy force will give an acceleration

a = −g
∆ρ

ρ
≈ g
∆T
T
,

where the last equality is exact for an ideal gas for whichP ∝ ρT and∆P = 0. The blob is accelerated
over a distanceℓm, i.e. for a timet given byℓm =

1
2at2. Therefore its average velocity isυc ≈ ℓm/t =

√

1
2ℓma, that is

υc ≈
√

1
2ℓmg

∆T
T
≈

√

ℓm
2g

2HP
(∇ − ∇ad). (5.56)

Combining this with eq. (5.55) gives

Fconv = ρcPT

(

ℓm

HP

)2
√

1
2gHP (∇ − ∇ad)

3/2. (5.57)

The above two equations relate the convective velocity and the convectiveenergy flux to the so-called
superadiabaticity∇−∇ad, the degree to which the actual temperature gradient∇ exceeds the adiabatic
value.
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Estimate of the convective temperature gradient

Which value of∇−∇ad is required to carry the whole energy flux of a star by convection, i.e.Fconv =

l/4πr2? To make a rough estimate, we take typical values for the interior making use ofthe virial
theorem and assuming an ideal gas:

ρ ≈ ρ̄ = 3M

4πR3
T ≈ T̄ ∼ µ

R
GM
R

cP =
5
2
R
µ

√

gHP =

√

P
ρ
=

√

R
µ

T ∼
√

GM
R

noting that the last expression is also approximately equal to the average speed of soundυs in the
interior. We then obtain, neglecting factors of order unity,

Fconv ∼
M

R3

(

GM
R

)3/2

(∇ − ∇ad)
3/2. (5.58)

If we substituteFconv = l/4πr2 ∼ L/R2 then we can rewrite the above to

∇ − ∇ad ∼
(

LR
M

)2/3
R

GM
(5.59)

Putting in typical numbers, i.e. solar luminosity, mass and radius, we obtain the following rough
estimate for the superadiabaticity in the deep interior of a star like the Sun

∇ − ∇ad ∼ 10−8

Convection is so efficient at transporting energy that only a tiny superadiabaticity is required.This
means thatFconv ≫ Frad in convective regions. A more accurate estimate yields∇ − ∇ad ∼ 10−5 −
10−7, which is still a very small number. We can conclude that in the deep stellar interior the actual
temperature stratification is nearly adiabatic, and independent of the details of the theory. Therefore
a detailed theory of convection is not needed for energy transport by convection and we can simply
take

dT
dm
= − Gm

4πr4

T
P
∇ with ∇ = ∇ad. (5.60)

However in the outermost layers the situation is different, becauseρ ≪ ρ̄ andT ≪ T̄. Therefore
Fconv is much smaller and the superadiabaticity becomes substantial (∇ > ∇ad). The actual tem-
perature gradient then depends on the details of the convection theory. Within the context of MLT,
the T-gradient depends on the assumed value ofαm = ℓm/HP. In practice one often calibrates de-
tailed models computed with different values ofαm to the radius of the Sun and of other stars with
well-measured radii. The result of this procedure is that the best match is obtained forαm ≈ 1.5–2.

As the surface is approached, convection becomes very inefficient at transporting energy. Then
Fconv≪ Frad so that radiation effectively transports all the energy, and∇ ≈ ∇rad despite convection
taking place. These effects are shown in Fig. 5.5 for a detailed solar model.

5.5.3 Convective mixing

Besides being an efficient means of transporting energy, convection is also a very efficient mixing
mechanism. We can see this by considering the average velocity of convective cells,eq. (5.56), and
takingℓm ≈ HP and

√
gHP ≈ υs, so that

υc ≈ υs

√

∇ − ∇ad. (5.61)
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Figure 5.5. The variation of∇ad (red, solid line) and∇rad (blue, dashed line) in the same detailed model of 1M⊙
as shown in Fig. 5.4, but now plotted against logP rather than radius to focus on the outermost layers (where
the pressure gradient is very large). The thick green line shows the actual temperature gradient∇. The partial
ionization zones are clearly visible as depressions in∇ad (compare to Fig. 3.5b). The convection zone stretches
from logP ≈ 14 to 5 (indicated by a gray bar along the bottom). In the deep interior (for logP > 8) convection
is very efficient and∇ = ∇ad. Higher up, at lower pressures, convection becomes less andless efficient at
transporting energy and requires a largerT-gradient,∇ > ∇ad. In the very outer part of the convection zone
convection is very inefficient and∇ ≈ ∇rad.

Because∇−∇ad is only of the order 10−6 in the deep interior, typical convective velocities are strongly
subsonic, by a factor∼ 10−3, except in the very outer layers where∇ − ∇ad is substantial. This is
the main reason why convection has no disruptive effects, and overall hydrostatic equilibrium can be
maintained in the presence of convection.

By substituting into eq. (5.61) rough estimates for the interior of a star, i.e.υs ∼
√

GM/R and
eq. (5.59) for∇ − ∇ad, we obtainυc ∼ (LR/M)1/3 ≈ 5 × 103 cm/s for a star like the Sun. These
velocities are large enough to mix a convective region on a small timescale. We can estimate the
timescale on which a region of radial sized = qR is mixed asτmix ≈ d/υc ∼ q(R2M/L)1/3, which
is ∼ q × 107 sec for solar values. Depending on the fractional extentq of a convective region, the
convective mixing timescale is of the order of weeks to months. Henceτmix ≪ τKH ≪ τnuc, so that
over a thermal timescale, and certainly over a nuclear timescale, a convective region inside a star will
be mixed homogeneously. (Note that convective mixing remains very efficient in the outer layers of a
star, even though convection becomes inefficient at transporting energy.)

This has important consequences for stellar evolution, which we will encounter in future chapters.
Briefly, the large efficiency of convective mixing means that:

• A star in which nuclear burning occurs in aconvective corewill homogenize the region in-
side the core by transporting burning ashes (e.g. helium) outwards and fuel (e.g. hydrogen)
inwards. Such a star therefore has a larger fuel supply and can extend its lifetime compared to
the hypothetical case that convection would not occur.

• A star with a deepconvective envelope, such that it extends into regions where nuclear burning
has taken place, will mix the burning products outwards towards the surface. This process
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(often called ‘dredge-up’), which happens when stars become red giants, can therefore modify
the surface composition, and in such a star measurements of the surface abundances provide a
window into nuclear processes that have taken place deep inside the star.

Composition changes inside a star will be discussed in the next chapter.

5.5.4 Convective overshooting

To determine the extent of a region that is mixed by convection, we need to lookmore closely at what
happens at the boundary of a convective zone. According to the Schwarzschild criterion derived in
Sec. 5.5.1, in a chemically homogeneous layer this boundary is located at the surface where∇rad =

∇ad. At this point the acceleration due to the buoyancy force,a ≈ g(∇ − ∇ad), vanishes. Just outside
this boundary, the acceleration changes sign and a convective bubble will be strongly braked – even
more so when the non-mixed material outside the convective zone has a lowerµ and hence a lower
density. However, the convective eddies have (on average) a non-zero velocity when they cross the
Schwarzschild boundary, and willovershootby some distance due to their inertia. A simple estimate
of this overshooting distance shows that it should be much smaller than a pressure scale height, so that
the Schwarzschild criterion should determine the convective boundary quite accurately. However the
convective elements also carry some heat and mix with their surroundings, so that both|∇ − ∇ad| and
theµ-gradient decrease. Thus also the effective buoyancy force that brakes the elements decreases,
and a positive feedback loop can develop that causes overshooting elements to penetrate further and
further. This is a highly non-linear effect, and as a result the actual overshooting distance is very
uncertain and could be substantial.

Convective overshooting introduces a large uncertainty in the extent of mixed regions, with im-
portant consequences for stellar evolution. A convectively mixed core that is substantially larger will
generate a larger fuel supply for nuclear burning, and thus affects both the hydrogen-burning lifetime
and the further evolution of a star. In stellar evolution calculations one usually parametrizes the effect
of overshooting by assuming that the distancedov by which convective elements penetrate beyond the
Schwarzschild boundary is a fixed fraction of the local pressure scaleheight,dov = αovHP. Hereαov

is a free parameter, that can be calibrated against observations (see Chapter 9).

Suggestions for further reading

The contents of this chapter are also covered by Chapters 3, 5 and 8 of Maeder, by Chapters 4, 5, 7
and 17 of Kippenhahn and by Chapters 4 and 5 of Hansen.

Exercises

5.1 Radiation transport

The most important way to transport energy form the interiorof the star to the surface is by radiation,
i.e. photons traveling from the center to the surface.

(a) How long does it typically take for a photon to travel fromthe center of the Sun to the surface?
[Hint: estimate the mean free path of a photon in the central regions of the Sun.] How does this
relate to the thermal timescale of the Sun?
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(b) Estimate a typical value for the temperature gradient dT/dr. Use it to show that the difference in
temperature∆T between to surfaces in the solar interior one photon mean free pathℓph apart is

∆T = ℓph
dT
dr
≈ 2× 10−4 K.

In other words the anisotropy of radiation in the stellar interior is very small. This is why radiation
in the solar interior is close to that of a black body.

(c) Verify that a gas element in the solar interior, which radiates as a black body, emits≈ 6 ×
1023 erg cm−2 s−1.

If the radiation field would be exactly isotropic, then the same amount of energy would radiated
into this gas element by the surroundings and so there would be no net flux.

(d) Show that the minute deviation from isotropy between twosurfaces in the solar interior one photon
mean free path apart atr ∼ R⊙/10 andT ∼ 107 K, is sufficient for the transfer of energy that results
in the luminosity of the Sun.

(e) Why does the diffusion approximation for radiation transport break down when the surface (pho-
tosphere) of a star is approached?

5.2 Opacity

(a) Identify the various processes contributing to the opacity as shown in Fig. 5.2, and theT andρ
ranges where they are important.

(b) Compare the opacity curve for logρ = −6 in the left panel of Fig. 5.2 to the approximations given
in Sec. 5.3.1 for (1) electron scattering, (2) free-free absorption, (3) bound-free absorption and (4)
the H− ion. How well do these approximations fit the realistic opacity curve?

(c) Calculate (up to an order of magnitude) the photon mean free path in a star of 1M⊙ at radii where
the temperature is 107 K, 105 K and 104 K, using the right panel of Fig. 5.2.

(d) Suppose that the frequency-dependent opacity coefficient has the formκν = κ0ν
−α. Show that the

Rosseland mean opacity depends on the temperature asκ ∝ T−α.

5.3 Mass-luminosity relation for stars in radiative equilibrium

Without solving the stellar structure equations, we can already derive useful scaling relations. In this
question you will use the equation for radiative energy transport with the equation for hydrostatic equi-
librium to derive a scaling relation between the mass and theluminosity of a star.

(a) Derive how the central temperature,Tc, scales with the mass,M, radius,R, and luminosity,L,
for a star in which the energy transport is by radiation. To dothis, use the stellar structure equa-
tion (5.16) for the temperature gradient in radiative equilibrium. Assume thatr ∼ R and that the
temperature is proportional toTc, l ∼ L and estimating dT/dr ∼ −Tc/R.

(b) Derive howTc scales withM andR, using the hydrostatic equilibrium equation, and assumingthat
the ideal gas law holds.

(c) Combine the results obtained in (a) and (b), to derive howL scales withM andR for a star whose
energy transport is radiative.

You have arrived at a mass-luminosity relation without assuming anything about how the energy is
produced, only about how it istransported(by radiation). It shows that the luminosity of a star isnot
determined by the rate of energy production in the centre, but by how fast it can be transported to the
surface!

(d) Compare your answer to the relation betweenM and L which you derived from observations
(Exercise 1.3). Why does the derived power-law relation start to deviate from observations for low
mass stars? Why does it deviate for high mass stars?
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5.4 Conceptual questions: convection

(a) Why does convection lead to a net heat flux upwards, even though there is no net mass flux
(upwards and downwards bubbles carry equal amounts of mass)?

(b) Explain the Schwarzschild criterion
(

d ln T
d ln P

)

rad

>

(

d ln T
d ln P

)

ad

in simple physical terms (using Archimedes law) by drawing aschematic picture . Consider both
cases∇rad > ∇ad and∇rad < ∇ad. Which case leads to convection?

(c) What is meant by thesuperadiabaticityof a convective region? How is it related to the convective
energy flux (qualitatively)? Why is it very small in the interior of a star, but can be large near the
surface?

5.5 Applying Schwarzschild’s criterion

(a) Low-mass stars, like the Sun, have convective envelopes. The fraction of the mass that is convec-
tive increases with decreasing mass. A 0.1M⊙ star is completely convective. Can you qualitatively
explain why?

(b) In contrast higher-mass stars have radiative envelopesand convective cores, for reasons we will
discuss in the coming lectures. Determine if the energy transport is convective or radiative at two
different locations (r = 0.242R⊙ andr = 0.670R⊙) in a 5M⊙ main sequence star. Use the data of a
5 M⊙ model in the table below. You may neglect the radiation pressure and assume that the mean
molecular weightµ = 0.7.

r/R⊙ m/M⊙ Lr/L⊙ T [K] ρ [g cm−3] κ [g−1 cm2]
0.242 0.199 3.40× 102 2.52× 107 18.77 0.435
0.670 2.487 5.28× 102 1.45× 107 6.91 0.585

5.6 The Eddington luminosity

The Eddington luminosity is the maximum luminosity a star (with radiative energy transport) can have,
where radiation force equals gravity.

(a) Show that

lmax =
4πcGm
κ

.

(b) Consider a star with a uniform opacityκ and of uniform parameter 1− β = Prad/P. Show that
L/LEdd = 1− β for such a star.

(c) Show that the Schwarzschild criterion for stability against convection∇rad < ∇ad can be rewritten
as:

l
lmax

< 4
Prad

P
∇ad

(d) Consider again the star of question (b). By assuming thatit has a convective core, and no nuclear
energy generation outside the core, show that the mass fraction of this core is given by

Mcore

M
=

1
4∇ad

.
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Chapter 6

Nuclear processes in stars

For a star in thermal equilibrium, an internal energy source is required to balance the radiative energy
loss from the surface. This energy source is provided bynuclear reactionsthat take place in the deep
interior, where the temperature and density are sufficiently high. In ordinary stars, where the ideal-
gas law holds, this stellar nuclear reactor is very stable: the rate of nuclearreactions adapts itself to
produce exactly the amount of energy that the star radiates away from its surface. Nuclear reactions
do not determine the luminosity of the star – this is set by how fast the energy can be transported,
i.e. by the opacity of the stellar gas – but they do determine for how long the staris able to sustain
its luminosity. In stars composed of degenerate gas, on the other hand, nuclear reactions are unstable
and may give rise to flashes or even explosions.

Apart from energy generation, another important effect of nuclear reactions is that they change
the composition by transmutations of chemical elements into other, usually heavier, elements. In this
way stars produces all the elements in the Universe heavier than helium – a process calledstellar
nucleosynthesis.

6.1 Basic nuclear properties

Consider a reaction whereby a nucleusX reacts with a particlea, producing a nucleusY and a particle
b. This can be denoted as

X + a→ Y+ b or X(a,b)Y . (6.1)

The particlea is generally another nucleus, while the particleb could also be a nucleus, aγ-photon or
perhaps another kind of particle. Some reactions produce more than two particles (e.g. when a weak
interaction is involved, an electron and anti-neutrino can be produced in addition to nucleusY), but
the general principles discussed here also apply to reactions involving different numbers of nuclei.
Each nucleus is characterized by two integers, the chargeZi (representing the number of protons in
the nucleus) and the baryon number or mass numberAi (equal to the total number of protons plus
neutrons). Charges and baryon numbers must be conserved during areaction, i.e. for the example
above:

ZX + Za = ZY + Zb and AX + Aa = AY + Ab. (6.2)

If a or b are non-nuclear particles thenAi = 0, while for reactions involving weak interactions the
lepton number must also be conserved during the reaction. Therefore any three of the reactants
uniquely determine the fourth.
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6.1.1 Nuclear energy production

The masses of atomic nuclei are not exactly equal to the sum of the masses ofthe individual nucleons
(protons and neutrons), because the nucleons are bound together bythe strong nuclear force. Ifmi

denotes the mass of a nucleusi, then thebinding energyof the nucleus can be defined as

EB,i = [(Ai − Zi)mn + Zimp −mi ] c2, (6.3)

wheremn andmp are the masses of a free neutron and proton respectively. Therefore, although
∑

Ai

is conserved during a nuclear reaction, the sum of the actual masses involved in the reaction is not.
This mass difference∆m is converted into energy according to Einstein’s formulaE = ∆mc2. The
energy released by a reaction of the kindX(a,b)Y is therefore

Q = (mX +ma −mY −mb) c2. (6.4)

Note thatQ may be negative if energy is absorbed by the reaction; such reactions are calledendother-
mic. Reactions that release energy (Q > 0) are calledexothermic.

In practice, one often uses atomic masses rather than nuclear masses to calculate Q. This is
allowed because the number of electrons is conserved during a reaction –despite the fact that the
nuclei are completely ionized under the conditions where nuclear reactionstake place. Atomic masses
of a few important isotopes are given in Table 6.1. The energy release bya reaction is related to the
so-calledmass defectof nuclei, defined as

∆Mi = (mi − Aimu) c2. (6.5)

Since nucleon number is conserved during a reaction, we can write (6.4) as

Q = ∆MX + ∆Ma − ∆MY − ∆Mb. (6.6)

Nuclear binding energies and reactionQ-values are usually expressed in MeV. Published tables of
atomic masses often list the mass defects in MeV, rather than the masses themselves. Remember that
mu is defined as 1/12 times the mass of the12C atom; a useful identity ismuc2 = 931.494 MeV.

When comparing different nuclei, thebinding energy per nucleon EB/A is a more informative
quantity thanEB itself. In Fig. 6.1 this quantity is plotted against mass numberA. With the exception
of the lightest nuclei, typical values are around 8 MeV. This reflects the short range of the strong
nuclear force: a nucleon only ‘feels’ the attraction of the nucleons in its immediate vicinity, so that
EB/A quickly saturates with increasingA. There is a slow increase withA up to a maximum at56Fe,

Table 6.1. Atomic masses of several important isotopes.

element Z A M/mu element Z A M/mu element Z A M/mu

n 0 1 1.008665 C 6 12 12.000000 Ne 10 20 19.992441
H 1 1 1.007825 6 13 13.003354 Mg 12 24 23.985043

1 2 2.014101 N 7 13 13.005738 Si 14 28 27.976930
He 2 3 3.016029 7 14 14.003074 Fe 26 56 55.934940

2 4 4.002603 7 15 15.000108 Ni 28 56 55.942139
Li 3 6 6.015124 O 8 15 15.003070

3 7 7.016003 8 16 15.994915
Be 4 7 7.016928 8 17 16.999133

4 8 8.005308 8 18 17.999160
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Figure 6.1. Binding energy
of atomic nuclei per nucleon,
EB/A as a function of mass
numberA.

which hasEB/A = 8.79 MeV, beyond which the binding energy per nucleon decreases towards larger
A. This decrease is due to the increase in the number of protonsZ with A: the protons inside the
nucleus experience a repulsive Coulomb force, which has a long rangeand does not saturate with
increasingZ. There is additional structure in the curve, caused by the shell structureof nuclei and
pairing effects.

The most tightly bound nuclei occur around the maximum at56Fe. Energy can be gained from
the fusion of light nuclei into heavier ones as long asEB/A increases; this is the main energy source
in stars. Fusion of nuclei heavier than56Fe would be endothermic and does not occur in nature (but
energy can be released by fission reactions that break up heavy nuclei into lighter ones).56Fe thus
forms the natural endpoint of the stellar nuclear reaction cycles. In a starinitially consisting mostly
of hydrogen, each step in the transformation of H into Fe releases energy: a total of 8.8 MeV per
nucleon, of which 7.0 MeV are already used up in the first step, the fusionof H into He.

6.2 Thermonuclear reaction rates

Consider again a reaction of the typeX(a,b)Y. Let us first suppose that particlesX are bombarded
by particlesa with a particular velocityυ. The rate at which they react then depends on thecross-
section, i.e. the effective surface area of the particleX for interacting with particlea. The cross-section
is defined as

σ =
number of reactionsX(a,b)Y per second

flux of incident particlesa
,

which indeed has a unit of area (cm2). We denote the reacting particlesX anda by indicesi and j
and their number densities asni andn j , respectively. The incident flux of particlesa is thenn j υ, so
that the number of reactions with a certain particleX taking place per second isn j υσ. The number
of reactions per second in a unit volume is therefore

r̃ i j = nin j υσ,

which defines the reaction rate at a particular relative velocityυ. This expression applies ifX and
a are of a different kind. If the reacting particles are identical, then the number of possible reacting
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pairs is notnin j but 1
2ni(ni − 1) ≈ 1

2n2
i for large particle numbers. Thus we can write more generally

r̃ i j =
1

1+ δi j
nin j υσ, (6.7)

sinceδi j = 0 if i , j andδi j = 1 if i = j.
In general,σ = σ(υ) depends on the relative velocity. In a stellar gas there is a distribution of

velocitiesφ(υ), normalized such that
∫ ∞
o
φ(υ) dυ = 1. The overall reaction rate, i.e the number of

reactions taking place per second and per unit volume, is therefore

r i j =
1

1+ δi j
nin j

∫ ∞

0
φ(υ)σ(υ)υdυ =

1
1+ δi j

nin j〈συ〉. (6.8)

In an ideal gas in LTE, the particle velocities are given by the Maxwell-Boltzmann distribution,
eq. (3.13). If each particle velocity distribution is Maxwellian, then so is theirrelativevelocity distri-
bution,

φ(υ) = 4πυ2
( m
2πkT

)3/2
exp

(

−mυ2

2kT

)

, (6.9)

wherem is the reduced mass in the centre-of-mass frame of the particles,

m=
mimj

mi +mj
. (6.10)

We replace the relative velocityυ by the kinetic energy in the centre-of-mass frame,E = 1
2mυ2. Using

the fact thatφ(υ) dυ = φ(E) dE, we can write the average overσυ in eq. (6.8) as

〈συ〉 =
(

8
πm

)1/2

(kT)−3/2
∫ ∞

0
σ(E) E exp

(

− E
kT

)

dE. (6.11)

This depends only on temperature, i.e. the dependence on velocity in eq. (6.7) turns into a dependence
on thetemperaturein the overall reaction rate. The temperature dependence of a nuclear reaction is
thus expressed by the factor〈συ〉. To understand this temperature dependence, we must consider in
more detail the reaction cross sections and their dependence on energy.

6.2.1 Nuclear cross-sections

The cross-sectionσ appearing in the reaction rate equation (6.8) is a measure of the probability that
a nuclear reaction occurs, given the number densities of the reacting nuclei. While the energy gain
from a reaction can be simply calculated from the mass deficits of the nuclei, thecross-section is
much more difficult to obtain. Classically, the geometrical cross-section for a reaction between nuclei
i and j with radii Ri andRj isσ = π(Ri +Rj)2. A good approximation to the nuclear ‘radius’, or rather
for the range of the nuclear force, is

Ri ≈ R0A1/3
i with R0 = 1.44× 10−13 cm. (6.12)

This would yield typical cross-sections of the order of 10−25–10−24 cm2. On the other hand, quantum-
mechanically the particles ‘see’ each other as smeared out over a length equal to the de Broglie
wavelength associated with their relative momentump,

λ =
~

p
=

~

(2mE)1/2
, (6.13)

with mandE the reduced mass and relative kinetic energy as defined before. The last equality assumes
non-relativistic particles. A better estimate of the geometrical cross-section isthereforeσ = πλ2. At
typical conditions in the stellar gas, this is (much) larger than the classical estimate sinceλ > Ri +Rj .
The real situation is much more complicated owing to a number of effects:
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• Charged nuclei experience a repulsive Coulomb force which, although weaker than the strong
nuclear force, has a much longer range. This Coulomb barrier would prevent any reaction to
occur under stellar condition, were it not for the quantum-mechanicaltunnel effect.

• The nature of the force involved in the reaction determines the strength of theinteraction. For
a reactionX(a,b)Y, the emitted particle may be either another nucleus, aγ-photon, or an e−ν̄
or e+ν pair. In the first case, only the strong force is involved and the cross-section may be
close to the geometrical one. The second case also involves the electromagnetic force, which
is weaker and gives a lower reaction probability, i.e. a smaller cross-section. In the last case, a
weak interaction must occur which has an even lower probability and smaller cross-section.

• Nuclear structure effects can have a strong influence on the cross-section. This is particularly
true in the case ofresonant interactions.

Coulomb barrier and the tunnel effect

At distancesr larger than the range of the nuclear force, two nuclei with chargesZi andZ j experience
a repulsive Coulomb potential

V(r) =
ZiZ je2

r
= 1.44

ZiZ j

r [fm]
MeV, (6.14)

with r expressed in fm= 10−13 cm in the last equality. To experience the attractive nuclear force the
particles have to approach each other within a typical distancern ∼ A1/3 R0 as given by eq. (6.12).
For r < rn the nuclear attraction gives a potential drop to roughlyV0 ≈ −30 MeV. The particles must
therefore overcome a typical Coulomb barrierEC = V(rn) ≈ Z1Z2 MeV, see Fig. 6.2.

If an incoming particle has a kinetic energyE at infinity in the reference frame of the nucleus,
it can classically only come within a distancerc given byE = V(rc). In stellar interiors the kinetic
energies of nuclei have a Maxwellian distribution, with an average value〈E〉 = 3

2kT ≈ 1.3 keV at
107 K, which is typical of the centre of the Sun and other main-sequence stars.This falls short of the
Coulomb barrier by a factor of about 1000. Even considering the high-energy tail of the Maxwell-
Boltzmann distribution, the fraction of particles withE > EC is vanishingly small. With purely
classical considerations nuclear reactions have no chance of happening at such temperatures.

We need to turn to quantum mechanics to see how nuclear reactions are possible at stellar tem-
peratures. As was discovered by G. Gamow, there is a finite probability thatthe projectile penetrates
the repulsive Coulomb barrier even ifE≪ EC. The tunnelling probability can be estimated as

P ∼ exp

(

−
∫ rc

rn

√
2m[V(r) − E]

~
dr

)

where

rc =
ZiZ je2

E
is the classical distance of closest approach. The result is

P = P0 exp(−b E−1/2) with b = 2π
ZiZ je2

~

(

m
2

)1/2

= 31.29ZiZ jA
1/2 [keV]1/2. (6.15)

HereA = AiA j/(Ai + A j) is the reduced mass in units ofmu andP0 is a constant.P increases steeply
with E and decreases withZiZ j , i.e., with the height of the Coulomb barrier. Therefore, at relative
low temperatures only the lightest nuclei (with the smallestZiZ j) have a non-negligible chance to
react. Reactions with heavier nuclei, with largerZiZ j , require larger energies and therefore higher
temperatures to have a comparable penetration probability.
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Nuclear structure effects on the cross-section

A typical thermonuclear reaction proceeds as follows. After penetrating the Coulomb barrier, the
two nuclei can from an unstable, excitedcompound nucleuswhich after a short time decays into the
product particles, e.g.

X + a→ C∗ → Y+ b .

Although the lifetime of the compound nucleusC∗ is very short, it is much longer than the crossing
time of the nucleus at the speed of light (∼ 10−21 s). Therefore by the time it decays, the compound
nucleus has no ‘memory’ of how it was formed, and the decay depends only on the energy.

The decay can proceed via different channels, e.g.C∗ → X+a, → Y1+b1, → Y2+b2, . . . , →
C + γ. In the first case the original particles are reproduced, the last case isa decay to a stable energy
level of C with γ-emission. In the other cases the particlesb1, b2, etc. may be protons, neutrons
or α-particles. (Reactions involving electron and neutrino emission do not proceed via a compound
intermediate state, since the necessaryβ-decays would be prohibitively slow.) In order for a certain
energy level ofC∗ to decay via a certain channel, the conservations laws of energy, momentum,
angular momentum and nuclear symmetries must be fulfilled. The outgoing particles obtain a certain
kinetic energy, which – with the exception of neutrinos that escape without interaction – is quickly
thermalised, i.e. shared among the other gas particles owing to the short photon and particle mean
free paths in the stellar gas.

The energy levels of the compound nucleus play a crucial role in determiningthe reaction cross-
section, see Fig. 6.2. LetEmin be the minimum energy required to remove a nucleon from the ground
state ofC to infinity, analogous to the ionization energy of an atom. Energy levels belowEmin corre-
spond to bound states in an atom; these can only decay byγ-emission which is relatively improbable.
These ‘stationary’ energy levels have long lifetimesτ and correspondingly small widthsΓ, since
according to Heisenberg’s uncertainty relation

Γ =
~

τ
. (6.16)
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Figure 6.2. Schematic depiction of the combined nuclear and Coulomb po-
tential, shown as a thick line. The potential is dominated byCoulomb repul-
sion at distancesr > rn, and by nuclear attraction forr < rn. An incoming
particle with kinetic energyE at infinity can classically approach to a distance
rc. The horizontal lines for 0< r < rn indicate energy levels in the compound
nucleus formed during the reaction. The ground state is at energy−Emin; the
quasi-stationary levels withE > 0 are broadened due to their very short life-
times. If the incoming particles have energyE′ corresponding to such a level
they can find a resonance in the compound nucleus (see text).
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Figure 6.3. Example of the dependence of the reac-
tion cross section on energyE for the 3He+ 4He→
7Be + γ reaction. Althoughσ varies very strongly
with energy, and becomes immeasurably small at
very low E, the factorS(E) is only a very weak func-
tion of E and – at least for this reaction – can be safely
extrapolated to the low energies that are relevant for
nuclear reactions in stars (15–30 keV, vertical bar on
the left).

Energy levels aboveEmin can also expel particles, which is much more probable thanγ-emission.
These levels also have finite lifetimes because of the sharp potential rise beyondrn, but eventually the
particles can escape by the tunnel effect. These ‘quasi-stationary’ levels have much shorter lifetimes
and correspondingly larger widths. The probability of escape increases with energy and so does the
level width, until eventuallyΓ is larger than the distance between levels resulting in a continuum of
energy states above a certainEmax.

The possible existence of discrete energy levels aboveEmin can give rise to so-called ‘resonances’
with much increased reaction probabilities. Suppose we letX anda react with gradually increasing
relative energyE (measured at large distance). As long asE is in a region without or in between quasi-
stationary levels, the reaction probability will simply increase with the penetrationprobability (6.15).
However, ifE coincides with such a level (e.g. energyE′ in Fig. 6.2), then the reaction probability can
be enhanced by several orders of magnitude. For energies close to such a levelEres the cross-section
has an energy dependence with a typical resonance form,

ξ(E) ∝ 1
(E − Eres)2 + (Γ/2)2

. (6.17)

At E = Eres the cross-section can be close to the geometrical cross-section,πλ2, whereλ is the de
Broglie wavelength (6.13). We can thus expect the cross-section to depend on energy as

σ(E) ∝ πλ2 P(E) ξ(E). (6.18)

The astrophysical cross-section factor

Sinceλ2 ∝ 1/E andP(E) ∝ exp(−b E−1/2), one usually writes

σ(E) = S(E)
exp(−b E−1/2)

E
. (6.19)

This equation defines the ‘astrophysicalS-factor’ S(E), which contains all remaining effects, i.e. the
intrinsic nuclear properties of the reaction including possible resonances.
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Figure 6.4. Example of the Gamow peak for the12C(p, γ)13N reaction. The left panel shows as dash-dotted
lines the tunnelling probability factor, exp(−b/E1/2), and as dashed lines the tail of the Maxwell distribution,
exp(−E/kT), for three values of temperature:T = 2.0×107 K (lower curve), 2.5×107 K (middle) and 3.0×107 K
(upper). The solid lines show the product of these two factors, f (E) as in eq. (6.21), labelled byT7 ≡ T/107 K.
Note the enormous range of the vertical log-scale. To appreciate the sharpness of the Gamow peak, and the
enormous sensitivity to temperature, the right panel showsf (E) on a linear scale forT7 = 2.4, 2.5 and 2.6. The
dashed line is the Gamow peak for the14N(p, γ)15O reaction forT7 = 2.4, multiplied by a factor 200.

TheS-factor can in principle be calculated, but in practice one relies on laboratory measurements
of the cross-section to obtainS(E). The difficulty is that such measurements are only feasible at
largeE, typically > 0.1 MeV, because cross-sections quickly become unmeasurably small at lower
energies. This lowest energy is still an order of magnitude larger than the energies at which reactions
typically take place under stellar conditions. One therefore has to extrapolate S(E) down over quite
a large range ofE to the relevant energies. In many casesS(E) is nearly constant or varies slowly
with E – unlikeσ(E)! – and this procedure can be quite reliable (e.g. see Fig. 6.3). However, when
resonances occur in the range of energies over which to extrapolate, the results can be very uncertain.

6.2.2 Temperature dependence of reaction rates

Combining eqs. (6.11) and (6.19), the cross-section factor〈συ〉 can be written as

〈συ〉 = (8/πm)1/2(kT)−3/2
∫ ∞

0
S(E) exp

(

− E
kT
− b

E1/2

)

dE. (6.20)

We will look at the case ofnon-resonantreactions, where we can assume thatS(E) varies slowly
with E. The integrand is then dominated by the product of two exponential factors: exp(−E/kT), the
tail of the Maxwell-Boltzmann distribution which decreases rapidly withE; and exp(−bE−1/2), the
penetration probability due to the tunnel effect which increases rapidly withE. The product of these
two exponentials,

f (E) = exp

(

− E
kT
− b

E1/2

)

, (6.21)
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is a sharply peaked function called theGamow peak, which has appreciable values only around a
maximum at energyE0. Fig. 6.4 shows an example for the reaction12C + p → 13N + γ. Since by
assumptionS(E) varies slowly withE, we can takeS(E) ≈ S(E0) out of the integral (6.20) and obtain

〈συ〉 ≈ (8/πm)1/2(kT)−3/2 S(E0)
∫ ∞

0
exp

(

− E
kT
− b

E1/2

)

dE. (6.22)

The reaction rate then only depends on the integral
∫ ∞
0

f (E) dE.

Properties of the Gamow peak

The value of the Gamow peak energyE0 can be found by taking df /dE = 0, which gives

E0 = (1
2bkT)2/3 = 5.665 (Z2

i Z2
j A T2

7)1/3 keV. (6.23)

To obtain the last equality we have substitutedb as given by eq. (6.15) and we use the notation
Tn = T/(10n K), while A is the reduced mass inmu as before. For reactions between light nuclei
at temperaturesT ∼ 1–2× 107 K, E0 ∼ 10–30 keV, while the average kinetic energies are 1–2 keV.
The peak is quite narrow, having a width∆E at half maximum that is always smaller thanE0. Thus,
the nuclei that contribute to the reaction rate have energies in a narrow interval around 10 times the
thermal energy, but about 2 orders of magnitude below the Coulomb barrier.

The right panel of Fig. 6.4 illustrates the strong dependence of the maximum value f (E0) of the
Gamow peak on the temperature. In the case of the12C(p, γ)13N reaction, an increase in temperature
by 4% (fromT7 = 2.4 to 2.5, or from 2.5 to 2.6) almost doubles the maximum value off (E). The
width of the peak also increases modestly, such that the area under the curve – which is the integral
that appears in eq. (6.22) – increases enormously with increasing temperature. This is the reason why
thermonuclear reaction rates are extremely sensitive to the temperature.

When we compare different reactions, the factorb ∝ Z1Z2A1/2 changes and thereby the pene-
tration probability at a certain energy. A reaction between heavier nuclei (with largerA andZ) will
therefore have a much lower rate at certain fixed temperature. This is illustrated in the right panel
of Fig. 6.4 by the dashed curve, showing the Gamow peak for the14N(p, γ)15O reaction atT7 = 2.4,
multiplied by a factor 200. Hence, the probability of this reaction is 200 times smallerthan that of the
12C(p, γ)13N reaction at the same temperature. In other words, reactions between heavier nuclei will
need a higher temperature to occur at an appreciable rate.

To summarize, the properties of the Gamow peak imply that

• the reaction rate〈συ〉 increasesvery strongly with temperature.

• 〈συ〉 decreases strongly with increasing Coulomb barrier.

Analytic expressions for the temperature dependence

We can find an analytical expression for the reaction rate if we approximatethe integrandf (E) in
eq. (6.22) by a Gaussian centred atE0, i.e.,

f (E) ≈ f (E0) exp

[

−
(

E − E0

∆E

)2]

, (6.24)

Considering the shapes of the curves in Fig. 6.4, this is not a bad approximation. From eq. (6.21) we
find f (E0) = exp(−3E0/kT) ≡ exp(−τ), which defines the often used quantityτ,

τ =
3E0

kT
= 19.72

(Z2
i Z2

j A

T7

)1/3

. (6.25)
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The width∆E of the Gaussian can be obtained by expanding eq. (6.21) forf (E) in a Taylor series
aroundE0,

f (E) = f (E0) + f ′(E0) (E − E0) + 1
2 f ′′(E0) (E − E0)2 + . . . ,

in which the second term equals zero becausef ′(E0) = 0. Comparing this with a similar expansion
of the Gaussian approximation tof (E) yields the same expression, to second order, if

∆E =

(

−2 f
f ′′

)1/2

E=E0

=

(

4E0kT
3

)1/2

(6.26)

We can then approximate the integral in eq. (6.22) by

∫ ∞

0
f (E) dE ≈ e−τ

∫ ∞

0
exp

[

−
(

E − E0

∆E

)2]

dE ≈ e−τ
√
π∆E. (6.27)

In the last step we have extended the integral from−∞ to ∞ to obtain the result
√
π∆E, which

introduces only a very small error because the exponential is negligibly small for E < 0. When we
substitute (6.27) with the expression (6.26) for∆E into (6.22), and we eliminateE0 andkT in favour
of τ andb using (6.23) and (6.25), then we find after some manipulation

〈συ〉 ≈ 8
9

(

2
3m

)1/2
S(E0)

b
τ2 e−τ =

7.21× 105

ZiZ jA

(

S(E0)
keV cm2

)

τ2 e−τ. (6.28)

In the last equality we have substituted the explicit expression (6.15) forb. Sinceτ ∝ T−1/3 this gives
a temperature dependence of the form

〈συ〉 ∝ 1

T2/3
exp

(

− C

T1/3

)

, (6.29)

where the constantC in the exponential factor depends onZiZ j , i.e. on the height of the Coulomb
barrier. This is indeed a strongly increasing function of temperature.

If we consider a small range of temperatures around some valueT0, we can write

〈συ〉 = 〈συ〉0
(

T
T0

)ν

with ν ≡ ∂ log〈συ〉
∂ logT

=
τ − 2

3
. (6.30)

The last equality follows from (6.28) and (6.25). Therefore the exponent ν is not a constant but
depends onT itself – in factν decreases withT roughly asT−1/3. In general, however, any particular
reaction is only important in quite a limited range of temperatures, so that takingν as constant in
(6.30) is approximately correct. Values of the exponentν are in all cases≫ 1. For example, at
T7 = 1.5 we find 〈συ〉 ∝ T3.9 for the p+ p reaction for hydrogen fusion and〈συ〉 ∝ T20 for the
14N(p, γ) reaction in the CNO cycle (see Sec. 6.4.1). Thus thermonuclear reaction rates are about the
most strongly varying functions found in physics. This temperature sensitivity has a strong influence
on stellar models, as we shall see.

6.2.3 Electron screening

We found that the repulsive Coulomb force between nuclei plays a crucial role in determining the rate
of a thermonuclear reaction. In our derivation of the cross section we have ignored the influence of
the surrounding free electrons, which provide overall charge neutrality in the gas. In a dense medium,
the attractive Coulomb interactions between atomic nuclei and free electrons cause each nucleus to
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be effectively surrounded by a cloud of electrons. This electron cloud reduces the Coulomb repulsion
between the nuclei at large distances, and may thus increase the probabilityof tunneling through the
Coulomb barrier. This effect is know aselectron screeningor electron shielding.

We simply give the main results, the derivation of which can be found in Maeder Sec. 9.4 or
Kippenhahn Sec. 18.4. The repulsive Coulomb potential (eq. 6.14) is reduced by a factor exp(−r/rD),
whererD, the so-called Debye-Ḧuckel radius, represents the effective radius of the electron cloud.
The stronger the Coulomb interactions between nuclei and electrons, the smaller rD. We have found
(Sec. 3.6.1) that Coulomb interactions increase in strength with increasing density and decreasing
temperature, and so does the magnitude of the electron screening effect. It turns out that the reaction
rate〈συ〉 is enhanced by a factor

f = exp

(

ED

kT

)

, (6.31)

where, for small values ofED/kT ≪ 1,

ED

kT
=

Z1Z2e2

rDkT
∼ 0.006Z1Z2

ρ1/2

T7
3/2
. (6.32)

This is theweak screeningapproximation, which applies to relatively low densities and high temper-
atures such as found in the centre of the Sun and other main-sequence stars. Under these conditions,
reaction rates are enhanced only by modest factors,f ∼< 1.1.

The description of electron screening becomes complicated at high densitiesand relatively low
temperatures, where the weak screening approximation is no longer valid. Ageneral result is that with
increasing strength of electron screening, the temperature sensitivity of the reaction rate diminishes
and the density dependence becomes stronger. At very high densities,ρ ∼> 106 g/cm3, the screening
effect is so large that it becomes the dominating factor in the reaction rate. The shielding of the
Coulomb barrier can be so effective that the reaction rate depends mainly on the density and no
longer on temperature. Reactions between charged nuclei become possible even at low temperature,
if the density exceeds a certain threshold. One then speaks ofpycnonuclear reactions, which can play
an important role in late stages of stellar evolution. In a very cool and densemedium one must also
take into account the effect of crystallization, which decreases the mobility of the nuclei and thus the
probability of collisions.

6.3 Energy generation rates and composition changes

Having obtained an expression for the cross-section factor〈συ〉, the reaction rater i j follows from
eq. (6.8). We can then easily obtain the energy generation rate. Each reaction releases an amount
of energyQi j according to eq. (6.4), so thatQi j r i j is the energy generated per unit volume and per
second. The energy generation rate perunit massfrom the reaction between nuclei of typei and j is
then

ǫi j =
Qi j r i j

ρ
. (6.33)

We can express the energy generation rate in terms of the mass fractionsXi andX j and the densityρ
using eq. (6.8). Replacing the number densityni by the mass fractionXi according toni = Xi ρ/(Aimu),
eq. (6.33) can be written as

ǫi j =
Qi j

(1+ δi j ) AiA jm2
u
ρXiX j 〈συ〉i j =

qi j

(1+ δi j ) Amu
ρXiX j 〈συ〉i j , (6.34)
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In the last identityA = AiA j/(Ai + A j) is the reduced mass in units ofmu, and we have replacedQi j

by the energy released per unit mass by this reaction

qi j =
Qi j

mi +mj
≈

Qi j

(Ai + A j)mu
. (6.35)

Remember that〈συ〉 contains the temperature dependence of the reaction rate. If we use the power-
law approximation (6.30) we can write the energy generation rate of a reaction as

ǫi j = ǫ0,i j XiX j ρTν. (6.36)

The total nuclear energy generation rate results from all reactions takingplace in a certain mass
element in the star, i.e.

ǫnuc =
∑

i, j

ǫi j . (6.37)

This is the quantityǫnuc that appears in the stellar structure equation for the luminosity, eq. (5.4).

Composition changes

The reaction rates also determine the rate at which the composition changes. The rate of change in
the number densityni of nuclei of typei owing to reactions with nuclei of typej is

(

dni

dt

)

j
= −(1+ δi j ) r i j = −nin j 〈συ〉i j . (6.38)

The factor 1+δi j takes into account that a reaction between identical nuclei consumestwosuch nuclei.
One can define thenuclear lifetimeof a speciesi owing to reactions withj as

τi, j =
ni

|(dni/dt) j |
=

1
n j 〈συ〉i j

, (6.39)

which is the timescale on which the abundance ofi changes as a result of this reaction.
The overall change in the numberni of nuclei of typei in a unit volume can generally be the result

of different nuclear reactions. Some reactions (with rater i j as defined above) consumei while other
reactions, e.g. between nucleik andl, may producei. If we denote the rate of reactions of the latter
type asrkl,i , we can write for the total rate of change ofni :

dni

dt
= −

∑

j

(1+ δi j ) r i j +
∑

k,l

rkl,i (6.40)

The number densityni is related to the mass fractionXi by ni = Xi ρ/(Aimu), so that we can write the
rate of change of the mass fraction due to nuclear reactions as

dXi

dt
= Ai

mu

ρ

(

−
∑

j

(1+ δi j ) r i j +
∑

k,l

rkl,i

)

(6.41)

For each nuclear speciesi one can write such an equation, describing the composition change at
a particular mass shell inside the star (with densityρ and temperatureT) resulting from nuclear
reactions. In the presence of internal mixing (in particular ofconvection, Sec. 5.5.3) the redistribution
of composition between different mass shells should also be taken into account.
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Note the similarity between the expressions for the nuclear energy generation rate (6.37) and the
equation for composition changes (6.41), both of which are proportionalto r i j . Using eq. (6.35) for
the energy released per gram, we can write the reaction rate as

r i j =
ǫi j

qi j (Ai + A j)
ρ

mu
. (6.42)

If we substitute this expression into eq. (6.41) the factorρ/mu drops out. We obtain a useful expression
in simple cases where onlyonereaction occurs, or a reaction chain in which one reaction determines
the overall rate. An example is the fusion of 41H into 4He, which is the net result of a chain of
reactions (see Sec. 6.4.1). In that case you may verify that (6.41) and (6.42) reduce to

dY
dt
= −dX

dt
=
ǫH

qH
, (6.43)

whereǫH is the energy generation rate by the complete chain of H-burning reactions,andqH is amount
of energy produced by converting 1 gram of1H into 4He.

6.4 The main nuclear burning cycles

In principle, many different nuclear reactions can occur simultaneously in a stellar interior. If one is
interested in following the detailed isotopic abundances produced by all these reactions, or if structural
changes occur on a very short timescale, a large network of reactions has to be calculated (as implied
by eq. 6.41). However, for the calculation of the structure and evolution of a star usually a much
simpler procedure is sufficient, for the following reasons:

• The very strong dependence of nuclear reaction rates on the temperature, combined with the
sensitivity to the Coulomb barrierZ1Z2, implies that nuclear fusions of different possible fuels
– hydrogen, helium, carbon, etc. – are well separated by substantial temperature differences.
The evolution of a star therefore proceeds through several distinctnuclear burning cycles.

• For each nuclear burning cycle, only a handful of reactions contributesignificantly to energy
production and/or cause major changes to the overall composition.

• In a chain of subsequent reactions, often one reaction is by far the slowest and determines the
rate of the whole chain. Then only the rate of this bottleneck reaction needs tobe taken into
account.

6.4.1 Hydrogen burning

The net result of hydrogen burning is the fusion of four1H nuclei into a4He nucleus,

41H→ 4He+ 2 e+ + 2ν . (6.44)

You may verify using Sec. 6.1.1 that the total energy release is 26.734 MeV. In order to create a4He
nucleus two protons have to be converted into neutrons. Therefore two neutrinos are released by weak
interactions (p→ n+e+ + ν), which escape without interacting with the stellar matter. It is customary
not to include the neutrino energies into the overall energy releaseQ, but to take into account only
the energy that is used to heat the stellar gas. This includes energy released in the form ofγ-rays
(including theγ-rays resulting from pair annihilation after e+ emission) and in the form of kinetic
energies of the resulting nuclei. The effectiveQ-value of hydrogen burning is therefore somewhat
smaller than 26.734 MeV and depends on the reaction in which the neutrinos are emitted.
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Since a simultaneous reaction between four protons is extremely unlikely, a chain of reactions is
always necessary for hydrogen burning. This can take place in two distinct ways: either direct fusion
of protons via thep-p chain, or by using already present CNO-nuclei as catalysts in theCNO cycle.
Hydrogen burning in stars takes place at temperatures ranging between 8× 106 K and 5.0 × 107 K,
depending on stellar mass and evolution stage.

The p-p chains

The first reaction is the so-called p-p reaction:

1H + 1H→ 2H + e+ + ν or p+ p→ D + e+ + ν . (6.45)

This involves the simultaneousβ-decay of one of the protons during the strong nuclear interaction.
This is very unlikely and the p-p reaction therefore has an extremely small cross-section, about 10−20

times that of a typical reaction involving only strong interactions. The reactionrate cannot be mea-
sured in the laboratory and is only known from theory.

After some deuterium is produced, it rapidly reacts with another proton to from 3He. Subse-
quently three different branches are possible to complete the chain towards4He:

1H + 1H→ 2H + e+ + ν
2H + 1H→ 3He+ γ

�
�

�
���

H
H
H

HHj

3He+ 3He→ 4He+ 21H

pp1

3He+ 4He→ 7Be+ γ
�

�
�

���

H
H
H

HHj

7Be+ e− → 7Li + ν
7Li + 1H→ 4He+ 4He

pp2

7Be+ 1H→ 8B + γ
8B→ 8Be+ e+ + ν
8Be→ 4He+ 4He

pp3 (6.46)

The pp1 branch requires two3He nuclei, so the first two reactions in the chain have to take place
twice. The alternative pp2 and pp3 branches require only one3He nucleus and an already existing4He
nucleus (either present primordially, or produced previously by hydrogen burning). The resulting7Be
nucleus can either capture an electron or fuse with another proton, giving rise to the second branching
into pp2 and pp3. Three of the reactions in the chains are accompanied by neutrino emission, and the
(average) neutrino energy is different in each case:〈Eν〉 = 0.265 MeV for the p-p reaction, 0.814 MeV
for electron capture of7Be and 6.71 MeV for theβ-decay of8B. Therefore the total energy release
QH for the production of one4He nucleus is different for each chain: 26.20 MeV (pp1), 25.66 MeV
(pp2) and only 19.76 MeV for pp3.

The relative frequency of the three chains depends on temperature andchemical composition.
Because the3He+ 4He reaction is slightly more sensitive to temperature than the3He+ 3He reaction
(it has a somewhat higher reduced mass and largerτ, eq. 6.25), the pp1 chain dominates over the other
two at relatively low temperature (T7 ∼< 1.5). The pp1 chain is the main energy-producing reaction
chain in the Sun. At increasingT, first the pp2 chain and then the pp3 chain become increasingly
important.
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At low temperatures (T < 8× 106 K) the rates of all reactions should be calculated separately to
obtain the energy generation rate and the changes in abundances. In particular, the3He+ 3He reaction
is quite slow and a substantial abundance of3He can accumulate before further reactions occur. For
T ∼> 8× 106 K all reactions in the chain are fast enough that they reach a steady state,where once a
D nucleus is produced by the first, very slow reaction, all successive reactions proceed very quickly
until 4He is formed. The nuclear lifetimes (eq. 6.39) of the intermediate nuclei D,3He, 7Li, etc,
are very short compared to the overall nuclear timescale, and their abundances are very small. The
overall rate of the whole reaction chain is then set by the rate of the bottleneck p-p reaction,rpp. In
this steady-state or ‘equilibrium’ situation the rate of each subsequent reaction adapts itself to the pp
rate.1 The energy generation rate (given by the sum of energies released byeach reaction, eq. 6.37)
can then be expressed in a single term of the form (6.33), i.e.ǫnuc = QHrpp/ρ whereQH is the total
energy released in the whole chain (6.44). The above expression applies to the pp2 and pp3 chains,
which each require one p-p reaction to complete. For the pp1 chain two p-p reactions are needed and
therefore in that caseǫnuc =

1
2QHrpp/ρ. Expressingrpp in terms of the cross section factor〈συ〉pp and

the hydrogen abundanceX, we can compute the energy generation rate for hydrogen burning by the
combination of pp chains as

ǫpp = ψqHX2 ρ

mu
〈συ〉pp, (6.47)

whereqH = QH/4mu is the total energy release per gram of hydrogen burning andψ is a factor be-
tween 1 (for the pp1 chain) and 2 (for the pp2 and pp3 chains), depending on the relative frequency of
the chains. Bothψ andqH therefore depend on the temperature, because the three chains have differ-
ent neutrino losses. The overall temperature dependence ofǫpp is dominated by theT-dependence of
〈συ〉pp and is shown in Fig. 6.5. The pp chain is the least temperature-sensitive of all nuclear burning
cycles with a power-law exponentν (eq. 6.30) varying between about 6 atT6 ≈ 5 and 3.5 atT6 ≈ 20.

The CNO cycle

If some C, N, and O is already present in the gas out of which a star forms,and if the temperature
is sufficiently high, hydrogen fusion can take place via the so-calledCNO cycle. This is a cyclical
sequence of reactions that typically starts with a proton capture by a12C nucleus, as follows:

12C+ 1H→ 13N + γ
13N→ 13C+ e+ + ν

13C+ 1H→ 14N + γ
14N + 1H→ 15O+ γ

15O→ 15N + e+ + ν
15N + 1H→ 12C+ 4He

?

→ 16O+ γ
16O+ 1H→ 17F+ γ

17F→ 17O+ e+ + ν
17O+ 1H→ 14N + 4He

-

(6.48)
1For example, if we denote byrpD the rate of2H + 1H, one hasrpD = rpp, etc. Note that describing the p-p reaction as

‘slow’ and the2H + 1H as ‘fast’ refers to the difference in cross-section factors〈συ〉 and not to the number of reactions per
secondr given by eq. (6.8).
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The 12C nucleus is reproduced after the first six reactions, and thus only acts as a catalyst for the
net hydrogen burning reaction (6.44). This set of six reactions forms the main cycle, also called the
CN cycle. The15N + 1H reaction has a small probability (somewhat less than 10−3) to produce16O
instead of12C + 4He. This opens up a branching into the second cycle indicated in (6.48). The last
three reactions have the effect of transforming16O, which is initially very abundant, into14N and thus
bringing it into the main CN cycle. The relative proportions of C, N and O nuclei in the cycles change
according to the different speeds of the reactions involved, but the total number of CNO-nuclei is
always conserved. The threeβ-decay reactions have neutrino energies between 0.71 and 1.00 MeV
and decay times between 102 and 103 sec. Unless very rapid changes are considered, theseβ-decays
are so fast that one can ignore their detailed rates and the small resulting abundances of13N, 15O and
17F.

At high enough temperatures,T ∼> 1.5× 107 K, all reactions in the cycle come into a steady state
or ‘equilibrium’ where the rate of production of each nucleus equals its rateof consumption. In this
situation, as was the case with the p-p chain, the speed of the whole CNO cycleis controlled by the
slowest reaction (the one with the smallest cross-section) which is14N(p, γ)15O. This reaction acts
like a bottleneck that congests the nuclei in their flow through the cycle, and14N thus becomes by
far the most abundant of all the CNO nuclei. Looking at this in a bit more detail,the speed of the
different reactions in the cycle can be expressed in terms of the nuclear lifetimesτp against proton
captures, as defined in eq. (6.39). In equilibrium one has dn(12C)/dt = dn(13C)/dt, etc., so that

[

n(12C)
n(13C)

]

eq
=
〈σv〉13

〈σv〉12
=
τp(12C)

τp(13C)
, etc. (6.49)

For the reactions in the CN cycle one typically has

τp(15N) ≪ τp(13C) < τp(12C)≪ τp(14N) ≪ τnuc .

Thus nearly all initially present CNO nuclei are transformed into14N by the CNO cycle. Therefore,
apart from4He, the second-most important product of the CNO-cycle is14N – especially because the
gas out of which stars form is typically more abundant in carbon and oxygen than in nitrogen.

The energy generation rate of the CNO cycle in equilibrium can be written as

ǫCNO = qH X X14
ρ

mu
〈συ〉pN, (6.50)

Figure 6.5. Total energy generation rateǫH (in
erg g−1 s−1) for hydrogen burning as a function of
temperature, forρ = 1 g/cm3 and abundancesX = 1
andXCNO = 0.01. The dashed curves show the con-
tributions of the pp chain and the CNO cycle. Figure
from Kippenhahn.
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where〈συ〉pN is the cross-section factor of the14N(p, γ)15O reaction which controls the rate of the
whole cycle. X14 is the14N mass fraction in the energy-generating zone of the star, which is close
to the total abundanceXCNO of CNO nuclei once equilibrium is reached in the full CNO cycle. The
energy release per unit massqH = QH/4mu takes into account the neutrino losses, which for the CNO
cycle in equilibrium amounts toQH = 24.97 MeV. The temperature sensitivity of the CNO cycle is
much higher than for the pp chain, withν varying between 23 and 13 forT7 ranging from 1.0 to 5.0.
This is illustrated in Fig. 6.5 where the temperature dependence ofǫCNO is compared to that ofǫpp.
For the purpose of very simple approximations one can take

ǫpp ∝ X2 ρT4 and ǫCNO ∝ XX14ρT18. (6.51)

The strong difference in temperature sensitivity has the consequence that the pp chain dominates at
low temperatures,T7 ∼< 1.5, while the CNO cycle is dominant at higher temperatures.

6.4.2 Helium burning

Helium burning consists of the fusion of4He into a mixture of12C and16O, which takes place at
temperaturesT ∼> 108 K. Such high temperatures are needed because (1) the Coulomb barrier for
He fusion is higher than that of the H-burning reactions considered above, and (2) fusion of4He is
hindered by the fact that no stable nucleus exists with mass numberA = 8. Therefore helium burning
must occur in two steps:

4He+ 4He↔ 8Be
8Be+ 4He→ 12C

∗ → 12C+ γ
(6.52)

The 8Be nucleus temporarily formed in the first reaction has a ground state that is 92 keV higher in
energy than that of two separate4He nuclei. It therefore decays back into twoα particles after a few
time 10−16 s. While extremely short, this time is long enough to build up a very small equilibrium
concentration of8Be, which increases with temperature and reaches about 10−9 at T ≈ 108 K. Then
the second reaction8Be(α, γ)12C starts to occur at a significant rate, because of a resonance at just
the Gamow peak energy. The result is an excited compound nucleus12C

∗
which subsequently decays

to the ground state of12C with emission of aγ photon. The corresponding energy level in the12C
nucleus was predicted by Fred Hoyle in 1954, because he could not otherwise explain the existence
of large amounts of carbon in the Universe. This excited state of12C was subsequently found in
laboratory experiments.

The net effect of the two reactions (6.52) is called thetriple-α reaction,

34He→ 12C+ γ, (6.53)

which hasQ = 7.275 MeV. The energy release per unit mass isq3α = Q/m(12C) = 5.9× 1017 erg/g,
which is about 1/10 smaller than for H-burning. Since the two reactions need to occur almost simul-
taneously, the 3α reaction behaves as if it were a three-particle reaction and its rate is proportional to
n3
α. The energy-generation rate can be written as

ǫ3α = q3α X3
4 ρ

2 λ3α, (6.54)

where the temperature dependence is described by the factorλ3α, which depends on the combined
cross-sections of the two reactions (6.52).X4 ≈ Y is the mass fraction of4He. The temperature
sensitivity of the 3α rate is extremely high, withν ≈ 40 atT8 ≈ 1.0.

When a sufficient amount of12C has been created by the 3α reaction, it can capture a furtherα
particle to form16O,

12C+ 4He→ 16O+ γ, (6.55)
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Figure 6.6. Dependence of the mass fractions of
12C and16O on 4He during He-burning, for typical
conditions in intermediate-mass stars.

which hasQ = 7.162 MeV, orqαC = 4.32× 1017 erg per gram of produced16O. In principle further
α captures on16O are possible, forming20Ne, but during normal helium burning conditions these are
very rare. The12C(α, γ)16O reaction is strongly affected by resonances and its rate is quite uncertain.
This is important because this reaction competes with the 3α reaction for available4He nuclei, as
illustrated by Fig. 6.6. The final12C/16O ratio reached at the end of He-burning is therefore also
uncertain.

6.4.3 Carbon burning and beyond

In the mixture of mainly12C and16O that is left after helium burning, further fusion reactions can
occur if the temperature rises sufficiently. In order of increasing temperature, the nuclear burning
cycles that may follow are the following.

Carbon burning When the temperature exceedsT8 ∼> 5 the large Coulomb barrier for12C + 12C
fusion can be overcome. This is a complicated reaction, in which first an excited compound24Mg
nucleus is formed which can then decay via many different channels. The most important channels
are the following:

12C+ 12C→ 24Mg
∗ → 20Ne+ α Q = 4.616 MeV (∼ 50%)

→ 23Na+ p Q = 2.238 MeV (∼ 50%)
(6.56)

The protons andα particles released find themselves at extremely high temperatures compared to
those needed for hydrogen and helium burning, and will almost immediately react with other nuclei
in the mixture, from12C to 24Mg. Examples are23Na(p, α)20Ne, 20Ne(α, γ)24Mg and chains such as
12C(p, γ)13N(e+ν)13C(α,n)16O, where the neutron will immediately react further. The overall energy
release is obtained from the combination of all these reactions and is roughlyQ ≈ 13 MeV per
12C+12C reaction. The main products after exhaustion of all carbon are16O, 20Ne and24Mg (together
95% by mass fraction). These most abundant nuclei have equal numbers of protons and neutron, but
some of the side reactions produce neutron-rich isotopes like21,22Ne, 23Na and25,26Mg, so that after
C burning the overall composition has a ‘neutron excess’ (n/p > 1, orµe > 2).
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Neon burning The next nuclear burning cycle might be expected to be oxygen fusion, but already
at somewhat lower temperature (T9 ≈ 1.5) a process called ‘neon burning’ is initiated by the photo-
disintegration of20Ne. At this temperature a sufficient number of photons have energies in the MeV
range which is sufficient to break up the relatively fragile20Ne nucleus into16O and4He. This is
immediately followed by the capture of theα particle by another20Ne nucleus, thus:

20Ne+ γ ↔ 16O+ α Q = −4.73 MeV
20Ne+ α→ 24Mg + γ Q = 9.31 MeV

(6.57)

The first reaction is endothermic, but effectively the two reactions combine to 220Ne→ 16O+ 24Mg
with a net energy releaseQ > 0. The composition after neon burning is mostly16O and24Mg (together
95% by mass fraction).

Oxygen burning At T9 ≈ 2.0 fusion of16O nuclei sets in, which is in many ways analogous to the
carbon fusion reaction described above. Also in this case there are several reaction channels, the most
important ones being:

16O+ 16O→ 32S
∗ → 28Si+ α Q = 9.59 MeV (∼ 60%)

→ 31P+ p Q = 7.68 MeV (∼ 40%)
(6.58)

Similar to carbon burning, the p andα particles are immediately captured by other nuclei, giving
rise to a multitude of secondary reactions that eventually lead to a composition mostly consisting
of 28Si and32S (together 90% by mass fraction). The net energy release per16O + 16O reaction is
Q ≈ 16 MeV. Since some of the side reactions involveβ+-decays and electron captures, the neutron
excess of the final mixture is further increased.

Silicon burning The lightest and most abundant nucleus in the ashes of oxygen burning is28Si, but
the Coulomb barrier for28Si+ 28Si fusion is prohibitively high. Instead silicon burning proceeds by
a series of photo-disintegration (γ, α) andα-capture (α, γ) reactions whenT9 ∼> 3. Part of the silicon
‘melts’ into lighter nuclei, while another part captures the released4He to make heavier nuclei:

28Si (γ, α) 24Mg (γ, α) 20Ne (γ, α) 16O (γ, α) 12C (γ, α) 2α
28Si (α, γ) 32S (α, γ) 36Ar (α, γ) 40Ca (α, γ) 44Ti (α, γ) . . . 56Ni

(6.59)

Most of these reactions are in equilibrium with each other, e.g.28Si + γ ↔ 24Mg + α, and the
abundances of the nuclei can be described by nuclear equivalents ofthe Saha equation for ionization
equilibrium. ForT > 4× 109 K a state close tonuclear statistical equilibrium (NSE)can be reached,
where the most abundant nuclei are those with the lowest binding energy,constrained by the total
number of neutrons and protons present. The final composition is then mostly56Fe because n/p > 1
(due toβ-decays and e−-captures during previous burning cycles).

6.5 Neutrino emission

Neutrinos play a special role because their cross-section for interactionwith normal matter is ex-
tremely small. The neutrinos that are released as a by-product of nuclearreactions have typical
energies in the MeV range, and at such energies the interaction cross-section isσν ∼ 10−44 cm2.
The corresponding mean free path in matter at densityρ = nµmu is ℓν = 1/(nσν) = µmu/(ρσν) ∼
2× 1020 cm/ρ, for µ ≈ 1. Even at densities as high as 106 g/cm3, this givesℓν ∼ 3000R⊙. Therefore
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any neutrino produced in the interior of a normal star leaves the star withoutinteraction, carrying
away its energy. The energy of neutrinos therefore has to be treated separately from other forms of
energy, which are transported by a diffusive process due to a temperature gradient.

As mentioned before, the energy loss by neutrinos that are produced in nuclear reactions are
conventionally taken into account by subtracting the neutrino energy fromthe total energy release
of a reaction. In other words, theǫnuc term in the energy balance equation (5.4) is reduced and no
separateǫν term is needed for these neutrinos.

However, also in the absence of nuclear reactions,spontaneous neutrino emissioncan occur at
high densities and temperatures as a result of weak interaction processes. Owing to the fundamental
coupling of the electromagnetic and weak interactions, for each electronic process that emits a photon,
there is a very small but finite probability of emitting a neutrino-antineutrino pair instead of a photon.
The theory of weak interactions predicts this probability to be

P(νν̄)
P(γ)

≈ 3× 10−18
(

Eν

mec2

)4

, (6.60)

whereEν is the neutrino energy. Theseνν̄ emissions represent a direct loss of energy from the stellar
interior (a positiveǫν in eq. 5.4) and thus give rise tocoolingof the stellar matter.

The following processes of this type are important in stellar interiors (see Maeder Sec. 9.5 or
Kippenhahn Sec. 18.6 for more details):

Photo-neutrinos In the process of electron scattering, discussed in Sec. 5.3.1, a photon isscat-
tered by a free electron. There is a tiny probability (6.60) that the outgoing photon is replaced by
a neutrino-antineutrino pair:γ + e− → e− + ν + ν̄. The average neutrino energy isEν ∼ kT, and
therefore the probability of producing aνν̄ pair instead of a photon is proportional toT4. The rate of
neutrino emission is also proportional to the number density of photons,nγ ∝ T3, so thatǫν is a very
strong function of temperature, roughlyǫν ∝ T8. The process of photo-neutrino emission results in
significant cooling of stellar matter atT ∼> 2× 108 K.

Pair annihilation neutrinos At temperatures,T ∼> 109 K, energetic photons can undergo pair cre-
ation (Sec. 3.6.2), quickly followed by annihilation of the electron-positron pair. This normally yields
two photons and these processes reach an equilibrium (γ+ γ ↔ e+ +e−). Once in every∼ 1019 cases,
however, the annihilation produces a neutrino-antineutrino pair: e+ + e− → ν + ν̄, which results in a
small one-way leakage out of the equilibrium exchange. This representsan important energy loss in a
very hot, but not too dense plasma (ǫν increases even more strongly withT than for photo-neutrinos,
but is inversely proportional toρ).

Plasma-neutrinos In a dense plasma, an electromagnetic wave can generate collective oscillations
of the electrons. The energy of these waves is quantized and a quantum of this oscillation energy is
called a ‘plasmon’. The plasmon usually decays into photons, but again there is a finite probability
(6.60) of νν̄ emission. This process of neutrino energy loss dominates at high density, when the
electron gas is degenerate.

Bremsstrahlung neutrinos Bremsstrahlung is the emission of a photon by an electron that is
slowed down in the Coulomb field of an atomic nucleus (the inverse of free-free absorption, Sec. 5.3.1).
The small probability ofνν̄ emission instead of a photon gives rise to significant cooling at low tem-
perature and very high density. Unlike the processes discussed above, Bremsstrahlung depends on
the presence of nuclei and therefore is more efficient for heavy elements (the neutrino emission rate
is ∝ Z2/A).
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The Urca process This process is different from the ones discussed above in that it involves nuclear
transformations. Certain nuclei (Z,A) can capture an electron and subsequently undergo aβ-decay
back to the original nucleus,

(Z,A) + e− → (Z − 1,A) + ν

(Z − 1,A) → (Z,A) + e− + ν̄.
(6.61)

The net result is that the original particles are restored and two neutrinosare emitted. Only certain
nuclei are suitable for this process: the nucleus (Z−1,A) must beβ-unstable and have a slightly higher
rest energy than (Z,A), and the captured electron must be energetic enough to make the first reaction
possible. These conditions are quite restrictive and the Urca process is inconsequential under most
conditions found in stars, but it can play a role in very late stages of evolution at very high densities.

Suggestions for further reading

The contents of this chapter are also covered by Chapter 9 of Maeder and by Chapter 18 of Kippen-
hahn.

Exercises

6.1 Conceptual questions: Gamow peak

N.B. Discuss your answers to this question with your fellow students or with the assistant.

In the lecture (see eq. 6.22) you saw that the reaction rate isproportional to

〈συ〉 =
(

8
mπ

)1/2 S(E0)
(kT)3/2

∫ ∞

0
e−E/kTe−b/E1/2

dE,

where the factorb = π(2m)1/2Z1Z2e2/~, andm= m1m2/(m1 +m2) is the reduced mass.

(a) Explain in general terms the meaning of the termse−E/kT ande−b/E1/2
.

(b) Sketch both terms as function ofE. Also sketch the product of both terms.

(c) The reaction rate is proportional to the area under the product of the two terms. Draw a similar
sketch as in question (b) but now for a higher temperature. Explain why and how the reaction rate
depends on the temperature.

(d) Explain why hydrogen burning can take place at lower temperatures than helium burning.

(e) Elements more massive than iron, can be produced by neutron captures. Neutron captures can
take place at low temperatures (even at terrestrial temperatures). Can you explain why?

6.2 Hydrogen burning

(a) Calculate the energy released per reaction in MeV (theQ-value) for the three reactions in the pp1
chain. (Hint: first calculate the equivalent ofmuc2 in MeV.)

(b) What is the total effectiveQ-value for the conversion of four1H nuclei into4He by the pp1 chain?
Note that in the first reaction (1H + 1H→ 2H + e+ + ν) a neutrino is released with (on average) an
energy of 0.263 MeV.

(c) Calculate the energy released by the pp1 chain in erg/g.

(d) Will the answer you get in (c) be different for the pp2 chain, the pp3 chain or the CNO cycle? If
so, why? If not, why not?
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6.3 Relative abundances for CN equilibrium

Estimate the relative abundances of the nuclei CN-equilibrium if their lifetimes against proton capture
atT = 2× 107 K are:τp(15N) = 30 yr,τp(13C) = 1600 yr,τp(12C) = 6600 yr andτp(14N) = 6× 105 yr.

6.4 Helium burning

(a) Calculate the energy released per gram for He burning by the 3α reaction and the12C+α reaction,
if the final result is a mixture of 50% carbon and 50% oxygen (bymass fraction).

(b) Compare the answer to that for H-burning. How is this related to the duration of the He-burning
phase, compared to the main-sequence phase?

6.5 Comparing radiative and convective cores

Consider a H-burning star of massM = 3M⊙, with a luminosityL of 80L⊙, and an initial composition
X = 0.7 andZ = 0.02. The nuclear energy is generated only in the central 10% ofthe mass, and the
energy generation rate per unit mass,ǫnuc, depends on the mass coordinate as

ǫnuc = ǫc

(

1− m
0.1M

)

(a) Calculate and draw the luminosity profile,l, as a function of the mass,m. Expressǫc in terms of
the known quantities for the star.

(b) Assume that all the energy is transported by radiation. Calculate the H-abundance as a function of
mass and time,X = X(m, t). What is the central value forX after 100 Myr? DrawX as a function
of m. (Hint: the energy generation per unit mass isQ = 6.3× 1018 erg g−1).

(c) In reality,ǫnuc is so high that the inner 20% of the mass is unstable to convection. Now, answer the
same question as in (b) and draw the newX profile as a function ofm. By how much is the central
H-burning lifetime extended as a result of convection?
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