Chapter 5

Energy transport in stellar interiors

The energy that a star radiates from its surface is generally replerfisiladsources or reservoirs
located in its hot central region. This represents an outward energytflexery layer in the star,
and it requires anfiective means of transporting energy through the stellar material. Thisdranisf
energy is possible owing to a non-zero temperature gradient in the stéle ifiation is often the

most important means of energy transport, and its is always present, itkeranly means. In stellar
interiors, where matter and radiation are always in local thermodynamic egquiiifChapter 3) and

the mean free paths of both photons and gas particles are extremely smajly @meat) can be

transported from hot to cool regions in two basic ways:

e Random thermal motions of the particles — either photons or gas particles progess that
can be calledheat dffusion In the case of photons, the process is knowradsative djfusion
In the case of gas particles (atoms, ions, electrons) it is usually dadkecconduction

e Collective (bulk) motions of the gas particles, which is knowmasvection This is an impor-
tant process in stellar interiors, not only because it can transpodyenery dficiently, it also
results in rapid mixing. Unfortunately, convection is one of the least utmmtsngredients of
stellar physics.

The transport of energy in stars is the subject of this chapter, which il les to two additional
differential equations for the stellar structure.

5.1 Local energy conservation

In Chapter 2 we considered the global energy budget of a star, tedug the virial theorem. We
have still to take into account the conservation of energy on a local sctie stellar interior. To do
this we turn to the first law of thermodynamics (Sect. 3.4), which states thattdreahenergy of a
system can be changed by two forms of energy transfer: heat atd By f we denote a change in

a quantityf occurring in a small time intervalt. For a gas element of unit mass the first law can be
written as (see eq. 3.47)

P
ouU = 6q+ — 6p. (5.1)
o

The first term is the heat added or extracted, and second term nefsrése work done on (or per-
formed by) the element. We note that compressign ¥ 0) involves an addition of energy, and
expansion is achieved at the expense of the element’s own energy.

Consider a spherical, Lagrangian shell inside the star of constantAmasShanges in the heat
content of the shellsQ = g Am) can occur due to a number of sources and sinks:
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Figure 5.1. Energy generation and heat flow into and
out of a spherical mass shell.

e Heat is added by the release of nuclear energy, if available. The rad@ict nuclear energy
is produced per unit mass and per second is writtea,@s The details of nuclear energy
generation will be treated in Chapter 6.

e Heat can be removed by the release of energetic neutrinos, whicledsmaythe stellar interior
without interaction. Neutrinos are released as a by-product of sonteamueactions, in which
case they are often accounted fogjg.. But neutrinos can also be released by weak interaction
processes in very hot and dense plasmas. This type of neutrino giosdplays a role in late
phases of stellar evolution, and the rate at which these neutrinos takeaesmy per unit mass
is written ase,.

¢ Finally, heat is absorbed or emitted according to the balance of heat flowdésg into and out
of the shell. We define a new variable, flbeal luminosity | as the rate at which energy in the
form of heat flows outward through a sphere of radigsee Fig. 5.1). In spherical symmetry,
| is related to the radial energy fli (in erg st cm2) as

| = 4212 F. (5.2)

Therefore at the surfade = L while at the centrd = 0. Normally heat flows outwards,

in the direction of decreasing temperature. Therefoie usually positive, but under some
circumstances (e.g. cooling of central regions by neutrino emission)cheaflow inwards,
meaning that is negative. (We note that the energy flow in the form of neutrinos is treated
separately and isotincluded in the definition off and of the stellar luminositiz.)

We can therefore write:
6Q = enucAMSt — €, AMét + I(m) 6t — I(m+ Am) 6t,

with I[(m+ Am) = I(m) + (dl/om) - Am, so that after dividing byAm,

5q = (fnuc— € — a_rn) ot. (53)

Combining egs. (5.3) and (5.1) and taking the liatit> 0 yields:

al ou  Pdp

a—mzfnuc—fv—a"'ﬁa (5.4)
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This is the third equation of stellar evolution. The terms containing time derigadike often com-
bined into a functiorey:

o = M, Pop

T ot p2at
0s

= 1= 5.5
5 (5.5)
wheresis the specific entropy of the gas. One can then write
ol
a—rn = €nuc— & + fgr (56)

If gr > 0, energy is released by the mass shell, typically in the case of contradtign<I0, energy
is absorbed by the shell, typically in the case of expansion.

In thermal equilibrium(see Sec. 2.3.2), the star is in a stationary state and the time derivatives
vanish gy = 0). We then obtain a much simpler stellar structure equation,

di

am = €nuc — €. (5_7)

If we integrate this equation over the mass we obtain

M M
L = f Enucdm - f €y dm = Lnuc - LV (58)
0 0

which defines the nuclear luminosity,,c and the neutrino luminositly,. Neglecting the neutrino
losses for the moment, we see that thermal equilibrium implieslthat L, that is, energy is
radiated away at the surface at the same rate at which it is producedcaanueactions in the
interior. This is indeed what we defined as thermal equilibrium in Sec. 2.3.2.

5.2 Energy transport by radiation and conduction

We have seen that most stars are in a long-lived state of thermal equilibrivajch energy gen-
eration in the stellar centre exactly balances the radiative loss from tleesuiVhat would happen
if the nuclear energy source in the centre is suddenly quenched? $herais: very little, at least
initially. Photons that carry the energy are continually scattered, albariskre-emitted in random
directions. Because stellar matter is vepaqueto radiation, the photon mean free pdpj is very
small (typicallyfph ~ 1cm< R,, see Sect. 3.1). As a result, radiation is trapped within the stellar
interior, and photons €use outwards very slowly by a ‘random walk’ process. The time it takes ra
diation to escape from the centre of the Sun by this random walk processyisly 10 years, despite
the fact that photons travel at the speed of light (see Exercise 5.8ngék in the Sun’s luminosity
would only occur after millions of years, on the timescale for radiative greegnsport, which you
may recognise as the Kelvin-Helmholtz timescale for thermal readjustment.

We also estimated in Sec. 3.1 that the temperatuferdince over a distandgy is only AT ~
10*K. This means that the radiation field is extremely close to black-body radiatitmUv =
uo = aT* (Sec. 3.3.6). Black-body radiation is isotropic and as a result no negyem@nsport
would take place. However, a small anisotropy is still present due to thediative temperature
differenceAT/T ~ 10°L This small anisotropy is enough to carry the entire energy flux in the Sun
(see Exercise 5.1). These estimates show that radiative energy mtainsgiellar interiors can be
described as a flusion process. This yields a great simplification of the physical description
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5.2.1 Heat dffusion by random motions

Fick's law of diffusion states that, when there is a grad®ntin the density of particles of a certain
type, the dffusive fluxJ —i.e. the net flux of such particles per unit area per second — is given by

J=-DVn with D=3l (5.9)

HereD is thediffusion cogficient which depends on the average particle velogignd their mean
free path?. The origin of this equation can be understood as follows.

Consider a unit surface area and patrticles crossing the surface in ditbetion. Letz be a
coordinate in the direction perpendicular to the surface. The numberrti¢les crossing in the
positivez direction (say upward) per unit area per second is

dN
EIEnU,

The factor} comes from the fact that half of the particles cross the surface in onetidire and
because their motions are isotropic the average velocity perpendicular sarfaee is%J(this can
be proven in the same way as the fac%oappearing in the pressure integral eq. 3.4). If there is a
gradient in the particle density along thélirection,dn/dz, then the particles moving upwards with
mean free patli on average have a densitfz— ¢) and those moving down on average have a density
n(z + ¢). Therefore the net particle flux across the surface is

J=ton@z-0-Ltun@z+o) = %5-(—25‘;—2) = —%175@.
Eq. (5.9) is the generalisation of this expression to three dimensions.

Suppose now that, in addition to a gradient in particle density, there is a gradithe energy
densityU carried by these particles (e.g. photons or gas particles). Then byggsntiere is a net
flux of energy across the surface, since the particles moving ‘up’ erage carry more energy than
those moving ‘down’. Therefore a gradient in the energy der8ldygives rise to a net energy flux

F=-DVU, (5.10)

Since a gradient in energy density is associated with a temperature gratiert,(0U/dT)y VT =
Cv VT, we can write this as an equation for heat conduction,

F=-KVT with K=3utCy, (5.11)

whereK is theconductivity This description is valid for all particles in LTE, photons as well as gas
particles.

5.2.2 Radiative dffusion of energy

For photons, we can take = c andU = aT%. Hence the specific heat (per unit volumeg =
dU/dT = 4aT3. The photon mean free path can be obtained from the equation of radratiséer,
which states that the intensity of a radiation beam (in a medium without emission) is diminished
over a lengtts by

%
ds

wherex, is the mass absorption diieient or opacity cofficient (in cnf g=1) at frequency. The
mean free path is the distance over which the intensity decreases by adbetavhich obviously

= —xply, (5.12)
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depends on the frequency. If we make a proper average overefieigs (see Sec. 5.2.3), we can
write

1
boh = —. (5.13)
Kp

The quantityk is simply called thepacity We can then compute the radiative conductivity

acT®
Krad = %_’ (5.14)
Kp

such that the radiative energy flux is

acT®
Frad = —Krad VT = —% VT. (5.15)
Kp

In spherical symmetric star the flux is related to the local luminoBity; = /4712 (eq. 5.2). We can
thus rearrange the equation to obtain the temperature gradient

oT 3kp |
- __>F 5.16
or 16racT3r? (5.16)
or when combined with eq. (2.6) fér /om,
oT 3 «l
- - 5.17
om 64r2acr4T3 (.17)

This is the temperature gradient required to carry the entire luminbbiyyradiation. It gives the
fourth stellar structure equation, for the case that energy is transporhetly radiation. A star, or a
region inside a star, in which this holds is said to beaidiative equilibrium or simplyradiative

Eq. (5.17) is valid as long a&n < R, i.e. as long as the LTE conditions hold. This breaks
down when the stellar surface, the photosphere, is approached: thigiie the photons escape, i.e.
tpnh 2 R. Near the photosphere theffision approximation is no longer valid and we need to solve
the full, and much more complicated, equations of radiative transfer. Thie suthject of the study
of stellar atmospheresFortunately, the LTE conditions and thdfdsion approximation hold over
almost the entire stellar interior.

In hydrostatic equilibrium, we can combine egs. (5.17) and (2.13) as follows

d_T_E d_T__GmI dlogT
dn  dm dP  4ar4 P dlogP

so that we can define the dimensionlesdiative temperature gradient

(5.18)

_(dlogT 3 «P
4= \dlogP) ., 16racGmT?

This describes the logarithmic variation Bfwith depth (where depth is now expressed by fihes-
sure for a star in HE if energy is transported only by radiation.
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5.2.3 The Rosseland mean opacity

The radiative dfusion equations derived above are independent of frequergince the fluxF is
integrated over all frequencies. However, in general the opacitficieatx, depends on frequency,
such that the& appearing in eq. (5.16) or (5.17) must represent a proper avevagé&equency. This
average must be taken in a particular way.

If F, dvrepresents the radiative flux in the frequency intervat |- dv], then eq. (5.10) must be
replaced by

oy,

F,=-D,VU,=-D, —VT 5.19
oT ( )
where
c
D, = ict, = : 5.20
3C 3Kvp ( )
The energy density, in the same frequency interval follows from eq. (3.41),= hv n(v),
8rh V3

which is proportional to the Planck function for the intensity of black-baatjiation. The total flux
is obtained by integrating eq. (5.19) over all frequencies,

c (™ 1aU
F=—— ——Ldv|VT. 22
[Spfo K 0T dV] (5.22)
This is eq. (5.11) but with conductivity
c (™ 10U,
Krad = g‘j; K_v aT dv. (5.23)

Comparing with eq. (5.14) shows that the proper average of opacity apé@aes in eq. (5.16) or
(5.17)is

1 1 > 190U,
Z‘Rfo T (5.24)

This is the so-calledRosseland mean opacityrhe factor 4T2 appearing in eq. (5.24) is equal to
f0°°(6UV/6T) dv, so that the Rosseland mean can be seen as the harmonic meamtbfweighting
function 90U, /dT. (The weighting function has a maximum lat ~ 4kT, as can be verified by
differentiating eq. (5.21) with respectTo and subsequently with respectitd

We can interpret the Rosseland mean in another way. The integrand(df24). also appears in
the expression (5.19) for the monochromatic flé, when combined with (5.20). The Rosseland
mean therefore favours the frequency range where the flux is largehér words, i« represents the
averagdransparencyof the stellar gas.

5.2.4 Conductive transport of energy

Collisions between the gas particles (ions and electrons) can also treimspbrUnder normal (ideal
gas) conditions, however, the collisional conductivity is very much smalker the radiative con-
ductivity. The collisional cross sections are typically 3- 10-2°cn? at the temperatures in stellar
interiors, giving a mean free path for collisions that is several ordensaghitude smaller thafpp.
Furthermore the average particle velocity= v3kT/m < c. So normally we can neglect heat
conduction compared to radiativefdision of energy.
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However, the situation can be quiteffdrent when the electrons become degenerate. In that
case both their velocities increase (their momenta approach the Fermi momeetu®ecs 3.3.5)
and, more importantly, their mean free paths increase (most of the quantisnofcghase space
are occupied, so an electron has to travel further to find an empty cetramgfer its momentum).

At very high densities, whete > (pn, electron conduction becomes a much mdfient way of
transporting energy than radiativeffdision (see Sec. 5.3). This is important for stars in late stages
of evolution with dense degenerate cores and for white dwarfs, in wiiiciheat electron conduction
results in almost isothermal cores.

The energy flux due to heat conduction can be written as

Fea=-Kea VT (5.25)
such that the sum of radiative and conductive fluxes is
F = Frad+ Fcd = —(Krad + Keg) VT. (5.26)

We can define aonductive opacity.q by analogy with the radiative opacity, if we write the conduc-
tivity in the same form as eq. (5.14),

4acT?®
cd = .
3Kcd P

(5.27)

Then we can write the combined flux due to radiation and conduction in the samas$ the radiative
flux, eq. (5.15),

4acT3 . 1 1 1
VT with = — 4= (5.28)

F=-
3kp K Krad Kcd

This result simply means that the transport mechanism with the largest fluxomihate, that is, the
mechanism for which the stellar matter has the highest transparencyx défined as in eq. (5.28),
the stellar structure equation (5.17) also accounts forfileets of conduction, if present.

5.3 Opacity

The opacity cofficientx appearing in eq. (5.17) determines the flux that can be transportediby rad
tion for a certain temperature gradient, or more to the point, how large the tetupegradient must
be in order to carry a given luminositypy radiation. Therefore is an important quantity that has a
large dfect on the structure of a star.

5.3.1 Sources of opacity
In the following subsections we briefly describe thffatient physical processes that contribute to the
opacity in stellar interiors, and give some simple approximations.

Electron scattering

An electromagnetic wave that passes an electron causes it to oscillatedatd naother directions,
like a classical dipole. This scattering of the incoming wave is equivalent teffthet of absorption,
and can be described by the Thomson cross-section of an electron
8 € \?
go= L (—) — 6.652x 1025 cn? (5.29)
3 \mec?
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The associated opacity déeient is due to the combined cross-section of all electrons in a unit mass
of gas, which is obtained by dividingr, by p/ne = uemy,

Oe

- 0.20 (1+ X) cn?/g (5.30)

Kes =
Me

Since the electron scattering opacity is independent of frequency, thiesston also gives the
Rosseland mean. In the last equality we have assumed that the gas is conipferelg so that

ue = 2/(1 + X) (eq. 3.20). Electron scattering is an important opacity source in an iogaethat is

not too dense. When the degree of ionization drops (typically WherL0* K in hydrogen-rich gas)

the electron density becomes so small that the electron scattering opacityhigysteduced below
eg. (5.30).

When the photon energy becomes a significant fraction of the rest maiss efectronhy 2
0.1mec?, the exchange of momentum between photon and electron must be takercouat{€omp-
ton scattering). This occurs at high temperature, since the Planck futa®a maximum &ty =
4.965kT (Wien’s law), i.e. wherkT = 0.02m.c? or T = 108 K. At such temperatures the electron
scattering opacity is smaller than given by eq. (5.30).

Free-free absorption

A free electron cannot absorb a photon because this would violate momaniimnergy conser-
vation. However, if a charged ion is in its vicinity, absorption is possible ezaf the electro-
magnetic coupling between the ion and electron. Tigie-free absorptioris the inverse process of
bremsstrahlung, where an electron emits a photon when it passes by aadtgwath an ion.

The full derivation of the absorption cfiient for this process is a quantum-mechanical problem.
However, an approximate calculation has been done classically by Krarherslerived that the
absorption ficiency of such a temporary electron-ion system is proportion#}%o3, wherez; is
the charge of the ion. To obtain the cross-section of a certain, itiis has to be multiplied by the
electron density, and by the time during which the electron and ion will be close enough for the
coupling to occur. This can be estimated from the mean velocity of the eleciren@kT/me)/?, so
thatAt o« 1/ o« T-Y2, j.e. oz o NeTY2Z;2y=3. The opacity cofficient follows by multiplying the
cross section by /p, wheren; is the ion number density, and summing over all ions in the mixture:

Ne 24+-1/2_ -3
Ky ff 0C — nzZ<T v .

In a completely ionized gase/p = 1/(uemy) = (1+ X)/2my. Following Sec. 3.3.3, the sum over ions
can be written a8 Nz = (o/my) 3 (XZ2/A) = (o/my) (X + Y + B), whereB = ;.5 (XiZi%/A) is
the contribution of elements heavier than helium. As long as their abundanoalis sne can take
X +Y + B~ 1to areasonable approximation.

When we take the Rosseland mean, the fagtdtbecomes a factoF 2 (this can be verified by
performing the integration of eq. 5.24 with < v~¢, see Exercise 5.2). We thus obtain

ki oc p T2, (5.31)

An opacity law of this form is calle&ramers opacity Putting in the numerical factors and the
compositional dependence for an ionized gas, the following approximptession is obtained,

ki ~ 3.8x 107?21+ X)p T2 cné/qg. (5.32)

N.B. This formula should be used with caution: it can give some insight in sinipdifgpproaches
but should not be used in serious applications. One omission is a corréation for quantum-
mechanical ffects, the so-called Gaunt factyy.
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Bound-free and bound-bound absorption

Bound-free absorption is the absorption of a photon by a bound elestrereby the photon energy
exceeds the ionization energyf the ion or atom. Computing the opacity due to this process requires
carefully taking into account the atomic physics of all the ions and atomsrriesihe mixture, and

is thus very complicated. Classical considerations, similar to those fofrire@bsorption, show that
the frequency dependence is again~3, as long a$w > yion. Therefore, in rough approximation the
total bound-free opacity is also of the Kramers form. A very approximatadta is

Kkpf & 4.3x 10 (L+ X)Z pT~772 cné/g. (5.33)

Again one should use this formula with caution. It should certainly not béieapfor T < 10*K
because most of the photons are not energetic enough to ionize theredegtiole at very highr
most species are fully ionized so the bound-free opacity is smaller thah.88) 6uggests. Keeping
these limitations in mind, the bound-free opacity is seen to depend directly on thliciig Z. One
thus has, very approximatekss ~ 10°Zx«gz. We may thus expect bound-free absorption to dominate
over free-free absorption fa@ > 1073,

Bound-bound absorption is related to photon-induced transitions betveeed states in atoms or
ions. Although this is limited to certain transition frequencies, the processcdfidient because the
absorption lines are strongly broadened by collisions. Again, the computstimpacity is complex
because one has to include a detailed treatment of line profiles under aavidty wf conditions.
Bound-bound absorption is mainly important for< 10°K, at higher temperatures its contribution
to the total opacity is small.

The negative hydrogen ion

An important source of opacity in relatively cool stars (e.g. in the solar giheos) is formed by
bound-free absorption of the negative hydrogen ion MNeutral hydrogen is easily polarized by a
nearby charge and can then form a bound state with another electrognihization potential of
0.75eV. The resulting His very fragile and is easily ionized at temperatures of a few thousand K.
However, to make the ion requires the presence of both neutral hydesgkfree electrons. The free
electrons come mainly from singly ionized metals such as Na, K, Ca or Al. Thadtirey opacity

is therefore sensitive to metallicity and to temperature. A very approximate farimiuhe range
T~(@-6)x10°K, p ~ (10~ 105 g/cm® and 0001 < Z < 0.02 is

z
K ~ 25 1@31(0—02) P2 T9 en?/g (5.34)

At very low metal abundance afut T < 3000 K the H opacity becomes irfEective. AtT > 10°K
most of the H has disappeared and the Kramers opacity and electron scattering take ove
Molecules and dust

In cool stars withTer < 4000 K opacity sources arising from molecules and (at even lower temper-
atures) dust grains become dominant. Here one has to deal with complicdezllmochemistry

and dust formation processes, which still contains a lot of uncertaintyerMdiist grains form, at

T <1500K, they are veryfeective absorbers in the outer atmospheres of very cool stars.

Conductive opacities

As we saw in Sec. 5.2.4, energy transport by means of heat conduati@so be described by means
of a conductive opacity cdigcient x.q. Under ideal gas conditions, conduction is veryfiioéent
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compared to radiative transport of energyy (> «rad). Therefore we only need to consider the case
of a degenerate electron gas. In this case the following approximation holds

03 i Z°PXi /A (T/10°K)?
(1+X)2 (po/10Pg/cmd)2
At high densities and low temperatures, the conductive opacity becomgesmaetl because of the

large electron mean free path in a highly degenerate gas. This is whyestatgentellar regions are
highly conductive and rapidly become isothermal.

Keg ~ 44% 1 n/g. (5.35)

5.3.2 A detailed view of stellar opacities

In generalx = «(p, T, X;) is a complicated function of density, temperature and composition. While
certain approximations can be made, as in the examples shown above yéhesegedly too simplified
and inaccurate to apply in detailed stellar models. An additional complication ithéh&osseland
mean opacity (eq. 5.24) is not additive: the opacity of a mixture of gases$amply equal to the sum

of the opacities of its components. Instead, one first has to add the fi®gdependent opacities,

ky = 3 Xikyj and then integrate overto calculate the Rosseland mean.

In practical stellar structure calculations one usually interpolates in prgated opacity tables,
e.g. as calculated in the 1990s by the OPAL project. An example is shown iB.Eifpr a quasi-solar
mixture of elements. One may recognize the various regions in the densityrtdompeplane where
one of the processes discussed above dominates. At low density artdrijggratures has a constant
value given by electron scattering. Opacity increases towards higéied lowerT due to free-free
and bound-free absorptions. Fbr< 10*K opacity decreases drastically due to recombination of
hydrogen, the main opacity source here is theibh. At lower temperatures stilk rises again
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Figure 5.2. Rosseland mean opacities as a functiom ahdp, for a mixture of elements representative of solar
abundancesX = 0.7,Z = 0.02), calculated by the OPAL project for high temperaturestanJ. Ferguson for
low temperatures (lo§ < 3.8). The left panel shows curves of legin cnm?/g) versus temperature for several
values of the density, labelled by the value of o@in g/cm?). The right panel shows contour lines of constant
logk in thep-T plane, in steps of 1.0 betweer and 5, over the region in temperature and density for which
the radiative opacity has been calculated. The thick lineslatailed structure models for main-sequence stars
of 1, 10 and 10M,, as in Fig. 3.4.
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due to molecules and dust formation. Finally, at very high density the opadiiynsnated by the
conductivity of degenerate electrons and decreases strongly witlagiege (just visible in the upper
right corner of Fig. 5.2). It should be clear that there is much more steigtuthe functiork(p, T)
than in the simple power-law approximations, such as the Kramers law. Theridgag and bumps
show that the Kramers law is a rather poor approximation of the actual opacity

For comparison, interior structure models for main-sequence starsfefedit masses are also
shown. The opacity in the interior of aM,, star is dominated by free-free and bound-free absorption,
and is very high (up to fcn?/g) in the envelope, at temperatures betweehdtl 10 K. In the
surface layers the opacity rapidly decreases due to thegdcity. More massive stars are located
at lower densities than the Sun, and generally have much lower opacitiesriertielopes. In the
most massive stars the opacity is dominated by electron scattering, atdod highT. However,
even here one has to deal with additional opacity bumps, most prominentlgétdue to bound-free
transitions of Fe at lo§j ~ 5.3.

Note that the chemical composition, in particular the metalligitgan have a largefiect onk.
This provides the most important influence of composition on stellar structure.

5.4 The Eddington luminosity

We have seen that radiative transport of energy inside a star requieesperature gradienddr,
the magnitude of which is given by eq. (5.16). Sifgy = %aT“, this means there is also a gradient
in the radiation pressure:

dPrag _ 4. 7adT _ _xp |

dr 3 dr 4nc r2’
This radiation pressure gradient represents an outward force due netfiux of photons outwards.
Of course, for a star in hydrostatic equilibrium this outward radiation farast be smaller than the

inward force of gravity, as given by the pressure gradient nepefseHE, eq. (2.12). In other words,

(5.36)

WPrag _ (AP K 1 _Gmp
dr dr /e 4ncrz - r2
This gives an upper limit to the local luminosity, which is known as the (Idgédtington luminosity
4ncG
| < ZOM (5.37)

This is the maximum luminosity that can be carried by radiation, inside a star io$tatic equilib-
rium.

The inequality expressed by eq. (5.37) can be violated in the case of kaxge heat flux (largb,
which may result from intense nuclear burning, or in the case of a velydpgcityx. As we saw in
Sec. 5.3, high opacities are encountered at relatively low temperataegdhe ionization temperature
of hydrogen and helium (and for example in the outer layers of the Sargudh cases hydrostatic
equilibrium (eq. 2.13) and radiative equilibrium (eq. 5.17) cannot hold lsameously. Therefore, if
the star is to remain in HE, energy must be transported b¥ferdnt means than radiativefidision.
This means of transport nvection the collective motion of gas bubbles that carry heat and can
distribute it dficiently. We shall consider convection in detail in Sec. 5.5. It will turn outélaa (5.37)
is a necessary, but not afBaient condition for a region of a star to be stable against convection.

The surface layer of a star is always radiative, since it is from hetestieagy escapes the star in
the form of photons. Applying eq. (5.37) at the surface of the stat M) we get

47cGM
L < Ledq = ”CK , (5.38)
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whereck is the opacity in the photosphere. Violation of this condition now means violatidry-of
drostatic equilibrium: matter is accelerated away from the star by the photssupee giving rise to
violent mass loss. The Eddington luminosity expressed by eq. (5.38) is alcsitidlar luminosity
that cannot be exceeded by a star in hydrostatic equilibrium. If we asgumbe approximately
constant (in very luminous main-sequence stars the opacity is dominatedchpmlscattering, so
this is not a bad assumption) thegyq is only dependent oM. It can be expressed as follows

Leqq = 3.8 % 104(Mﬂ)(0‘34—m‘2/g) Lo. (5.39)

o) K

The value of 0.34 cAlg corresponds to the electron scattering opacityder 0.7.

Since Lgyq is proportional toM, while stars (at least on the main sequence) follow a mass-
luminosity relationL o« M* with x > 1 (Sec. 1.1.2), this implies that for stars of increasing mass
L will at some point exceellggg. Hence, we can expectaaximum mast® exist for main-sequence
stars. Note that the existence of a steep mass-luminosity relationXwit) can be derived directly
for stars in which energy transport occurs by radiation (see Exescdsend also Sec. 7.4), without
having to assume anything about how energy is generated.

5.5 Convection

For radiative difusion to transport energy outwards, a certain temperature gradiergdsdegiven
by eq. (5.16) or eq. (5.17). The larger the luminosity that has to be cathiethrger the temperature
gradient required. There is, however, an upper limit to the temperatadiegt inside a star — if this
limit is exceeded an instability in the gas sets in. This instability leads to cyclic magiasnotions
of the gas, known asonvection Convection can be regarded as a type of dynamical instability,
although (as we shall see later in this section) it does not have disruptigeguences. In particular,
it does not lead to an overall violation of hydrostatic equilibrium. Convectifects the structure of
a star only as anficient means of heat transport and as fiicient mixing mechanism.

In Sec. 5.4 we already derived an upper limit to the luminosity that can betreted by radiation.
We will now derive a more stringent criterion for convection to occurebasn considerations of
dynamical stability.

5.5.1 Ciriteria for stability against convection

So far we have assumed strict spherical symmetry in our description of &tédeors, i.e. assuming
all variables are constant on concentric spheres. In reality there wiliad! fluctuations, arising
for example from the thermal motions of the gas particles. If these small patims do not grow
they can safely be ignored. However, if the perturbations do grow theygive rise to macroscopic
motions, such as convection. We therefore need to considdlytiamical stabilityof a layer inside a
star against such perturbations.

Consider a mass element that, due to a small perturbation, is displaced sjpwarsmall distance
as depicted in Fig. 5.3. At its original position (at radijghe density and pressure argand Py,
and at its new positionr (+ Ar) the ambient density and pressure ageand P,. Since pressure
decreases outwardB; < P; and the gas element will expand to restore pressure equilibrium with its
surroundings. Hence the pressure of the gas element at positiéta 2iB,, but its new density after
expansiorpe is not necessarily equal 9. If pe > p2, the gas element will experience a net buoyancy
force downwards (by Archimedes’ law), which pushes it back towasdsriginal position. Then the
small perturbation is quenched, and the situation is stable. On the otherithane, o, then there is
a net buoyancy force upwards and we haveiastablesituation that leads to convection.
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Figure 5.3. Schematic illustration of the Schwarzschild criterion &ability against convection. A gas
element is perturbed and displaced upwards from positian dosition 2, where it expands adiabatically to
maintain pressure equilibrium with its surroundings. #f density is larger than the ambient density, it will
sink back to its original position. If its density is smajlaowever, buoyancy forces will accelerate it upwards:
convection occurs. On the right the situation is shown inressig-pressure diagram. A layer is stable against
convection if the density varies more steeply with presshae for an adiabatic change.

The expansion of the gas element as it rises awvasccurs on the local dynamical timescale (i.e.
with the speed of sound), which is typically much shorter than the local timefscdieat exchange,
at least in the deep interior of the star. The displacement and expanstbe ghs element will
therefore be very close to adiabatic. We have seen in Sec. 3.4 that thatadéexponeny,q defined
by eq. (3.56) describes the logarithmic response of the pressure tiadaticichange in the density.
Writing asépe andsPe the changes in the density and pressure of the element when it is displaced
over a small distancar, we therefore have

%Pe = Yad%- (5.40)
e Pe
HeredPe is determined by the pressure gradieR{dr inside the star becaus® = Py, i.e. 6P =
P, — P, = (dP/dr) Ar. Therefore the change in denséiye follows from eq. (5.40)

pe 1 dP
We can writeoe = p1 + dpe andp2 = p1 + (do/dr) Ar, where @/dr is the density gradient inside the
star. We can then express the criterion for stability against convegtionp-, as

@
dr

which combined with eq. (5.41) yields an upper limit to the density gradient faciwa layer inside
the star is stable against convection,
1do 1dP 1

AR (5.43)

Spe > —= A, (5.42)

where we have replacdel andpe by P andp, since the perturbations are assumed to be very small.
Remember, however, that botp/dr and d°/dr are negative. Therefore, in absolute value the sign
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of eq. (5.43) reverses, which means that the density gradient mustedgerthan a critical value,
determined byy,g. If we divide (5.43) by &/dr we obtain the general criterion for stability against
convection, which is depicted on the right-hand side in Fig. 5.3,

dlogp 1
d10gP ~ yad (5.44)

If condition (5.44) is violated then convective motions will develop. Gas msthat, due to
a small perturbation, are slightly hotter than their surroundings will move apsporting their heat
content upwards until they are dissolved. Other bubbles may be slightlgr¢ban their environment,
these will move down and have a smaller heat content than their surrosndtgen these bubbles
finally dissolve, they absorb heat from their surroundings. Thezefmth the upward and downward
moving convective bubbledfectively transport heat in the upward direction. Hence thererista
upward heat fluxeven though there is no net mass flux, since upward and downwardgrimuitles
carry equal amounts of mass. This is the principle behind convectivdérhaaport.

The Schwarzschild and Ledoux criteria

The stability criterion (5.44) is not of much practical use, because it ingawenputation of a density
gradient which is not part of the stellar structure equations. We wouldratve a criterion for the
temperature gradient, because this also appears in the equation foveagisport. We can rewrite
eg. (5.44) in terms of temperature by using the equation of state. We writeuhdayof state in its
general, dferential form (eq. 3.48) but now also take into account a possible variatmmposition.
If we characterize the composition by the mean molecular weighenP = P(p, T, 1) and we can
write

dP daTr do du

FzXT? +XpF +X’u/_l , (545)

with yt andy,, defined by egs. (3.49) and (3.50), gndis defined as

dlogP
Xﬂ=( g) : (5.46)
o, T

dlogu

For an ideal gag, = —1. With the help of eq. (5.45) we can write the variation of density with
pressure through the star as

dlogp il— dIogT_ dlogu
dlogP  x, XT dlogP ~** dlogP

1
= — A -x1V—xuVW). (5.47)
Xp

Here we have introduced, by analogy with eq. (5.18), the sym®bois dlogT/dlogP andV, =
dlogu/dlogP. These quantities represent the actual gradients of temperature androfmo&ecular
weight through the star, regardifas the variable that measures depth. In the displaced gas element
the composition does not change, and from eq. (3.63) we can write

1 1
— = —(1-x1Vad).
Yad Xp

so that the stability criterion (5.44) becomes

V< Va- v, (5.48)
XT
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If all the energy is transported by radiation tHer: V,,qas given by eq. (5.18). Hence we can replace
V by V,aqin eg. (5.48) and thus arrive at thedoux criterionwhich states that a layer is stable against
convection if

Viad < Vaa— £V, | (Ledoux) (5.49)
XT

In chemically homogeneous layevg = 0 and eq. (5.49) reduces to the simflehwarzschild crite-
rion for stability against convectidn

Viad < Vad (Schwarzschild) (5.50)

N.B. Note the diference in meaning of the varioWssymbols appearing in the above criteriyqg
andV, represent apatialgradient of temperature and mean molecular weight, respectively. On the
other handyV,q represents the adiabatic temperature variation in a specific gas elemergainga
change in pressure.

For an ideal gas(r = 1, x, = —1) the Ledoux criterion reduces to

Viad < Vad+ V. (5.51)

The mean molecular weight normally increases inwards, because in dagger nuclear reactions
have produced more and more heavy elements. Therefore noially0, so that according to the
Ledoux criterion a composition gradient has a stabilizifiga. This is plausible because an upwards
displaced element will then have a highethan its surroundings, so that even when it is hotter than
its new environment (which would make it unstable according to the Schebdld sriterion) it has a
higher density and the buoyancy force will push it back down.

Occurrence of convection

According to the Schwarzschild criterion, we can expect convectiondorot

3 P«
Viad= =————=—— > Vaa 5.62
4= TracGTam (6-52)

This requires one of following:

¢ A large value ofk, that is, convection occurs in opaque regions of a star. Examples are the
outer envelope of the Sun (see Fig. 5.2) and of other cool stars,4®opacity increases with
decreasing temperature. Since low-mass stars are cooler than hightanaswe may expect
low-mass stars to have convective envelopes.

e Alarge value of/m, i.e. regions with a large energy flux. We note that towards the centre of a
starl/m =~ ey by eq. (5.4), so that stars with nuclear energy production that is strpegled
towards the centre can be expected to have convective cores. Weesh#tlat this is the case
for relatively massive stars.

\We can relate the convection criterion to the Eddington limit derived in Sdc.By writing V,,q in terms ofl, lggq
(defined in eq. 5.37) anB,q = (1 — B)P we can rewrite the Schwarzschild criterion for stability as

I <4(1-pB)Vadledd

(see Exercise 5.6). Fgr> 0 andV,q > 0.25 we see that convection already sets in before the Eddington limit isagach
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Figure 5.4. The variation ofV4q (red, solid line) andv,,q (blue, dashed line) with radius in two detailed
stellar models of M, and 4M,, at the start of the main sequence. The solar-mass model haxy davge
opacity in its outer layers, resulting in a large valueVfy which gives rise to a convective envelope where
Viad > Vag (indicated by gray shading). On the other hand, tiM.,4dmodel has a hotter outer envelope with
lower opacity so tha¥,,q Stays small. The large energy generation rate in the ceowaesults in a larg¥ g
and a convective core extending over the inne.4In both modelsv, 4 ~ 0.4 since the conditions are close

to an ideal gas. In the surface ionization zones, how&gr< 0.4 and a thin convective layer appears in the
4 Mg model.

e A small value ofV,q, which as we have seen in Sec. 3.5 occurs in partial ionization zones at
relatively low temperatures. Therefore, even if the opacity is not vegelahe surface layers
of a star may be unstable to convection. It turns out that stars of all masseshallow surface
convection zones at temperatures where hydrogen and helium ardyantized.

These &ects are illustrated in Fig. 5.4.

5.5.2 Convective energy transport

We still have to address the question how much energy can be transppdedvection and, related

to this, what is the actual temperature gradiiriside a convective region. To answer these questions
properly requires a detailed theory of convection, which to date remaiesyadifficult problem in
astrophysics that is still unsolved. Even though convection can be simulateetically, this requires
solving the equations of hydrodynamics in three dimensions over a huge ofmength scales and
time scales, and of pressures, densities and temperatures. Such simaleitverefore very time-
consuming and still limited in scope, and cannot be applied in stellar evolution@@dms. We have

to resort to a very simple one-dimensional ‘theory’ that is based on restfmates, and is known as
themixing length theoryMLT).

In the MLT one approximates the complex convective motions by blobs of gasrével up or
down over a radial distana&, (the mixing length), after which they dissolve in their surroundings
and lose their identity. As the blob dissolves it releases its excess heat toasralings (or, in the
case of a downward moving blob, it absorbs its heat deficit from its sndiags). The mixing length
{m is an unknown free parameter in this very schematic model. One presumég thaif the order
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of the local pressure scale height, which is the radial distance over Weghressure changes by an
e-folding factor,

dr P
dinP| "~ pg’
The last equality holds for a star in hydrostatic equilibrium. The assumptiorfithat Hp is not
unreasonable considering that a rising gas blob will expand. Suppibsiniy a convective region in
a star, about half of a spherical surface area is covered by risig blod the other half by sinking
blobs, the expanding rising blobs will start covering most of the surfee after rising over one or
two pressure scale heights.

p= (5.53)

The convective energy flux

Within the framework of MLT we can calculate the convective energy fluxi, thie corresponding
temperature gradient required to carry this flux, as follows. After risirey a radial distancé;, the
temperature dierence between the gas element (e) and its surroundings (s) is

dT dT dar
W)e Ll P A(E)gm.
Here dr'/dr is the ambient temperature gradientT (dr). is the variation of temperature with radius
that the element experiences as it rises and expands adiabatically(dhar) is the diference
between these two. We can writd in terms ofV andV 4 by noting that

AT:Te—TS:[(

dT dinT dinT dIinP T dT T
@ o " TdmPp o~ mey A (E)e‘_H_pVad’
noting that the -’ sign appears becaus®r < 0 in eq. (5.53). Hence
AT =T m (V = Vag). (5.54)
Hp

The excess of internal energy of the gas element compared to its stimgamsAu = cpAT per
unit mass. If the convective blobs move with an average velagityhen the energy flux carried by
the convective gas elements is

Fconv = UCpAU = UCpCPAT (555)
We therefore need an estimate of the average convective velocity. lifffeeetice in density between
a gas element and its surroundingajs then the buoyancy force will give an acceleration
Ap AT
a=-—~(QJ—,
g P g T
where the last equality is exact for an ideal gas for witch oT andAP = 0. The blob is accelerated
over a distancé, i.e. for a timet given by{m = %atz. Therefore its average velocityig ~ {m/t =

\3ma, that is
., AT tm’g
Uc X Qfmg? X _2Hp (V - Vad)- (5-56)

Combining this with eqg. (5.55) gives
2

14 [
Fconv = pCpT (H_n;) %g Hp (V - Vad)g/z- (5-57)

The above two equations relate the convective velocity and the conventivgy flux to the so-called
superadiabaticityv — V4, the degree to which the actual temperature gradiexceeds the adiabatic
value.
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Estimate of the convective temperature gradient

Which value ofV — V44is required to carry the whole energy flux of a star by convectionkFp&y =
|/47r?? To make a rough estimate, we take typical values for the interior making ube wirial
theorem and assuming an ideal gas:

— 3M — u GM 5R P R GM
cp= 2 T EEY 2R R = /_= /_T~ |EM
PEP= hRe R R P 2u gre o u R

noting that the last expression is also approximately equal to the average spsoundss in the
interior. We then obtain, neglecting factors of order unity,

3/2
M/GM
I:conv ~ @(?) (V - Vad)3/2- (5-58)

If we substituteFcony = | /4712 ~ L/R2 then we can rewrite the above to

LR
v ()

2/3
PR

&N (5.59)

Putting in typical numbers, i.e. solar luminosity, mass and radius, we obtain ltbeifg rough
estimate for the superadiabaticity in the deep interior of a star like the Sun

V — Vag~ 1078

Convection is sofficient at transporting energy that only a tiny superadiabaticity is requirbis
means thaFony > Fraq in coOnvective regions. A more accurate estimate yi&ldsVag ~ 107> —
107, which is still a very small number. We can conclude that in the deep stellaiointee actual
temperature stratification is nearly adiabatic, and independent of the déthiestbeory. Therefore
a detailed theory of convection is not needed for energy transporiyection and we can simply
take

g—; - —% gv with V=V (5.60)

However in the outermost layers the situation i$atient, because < p andT < T. Therefore
Fconv IS much smaller and the superadiabaticity becomes substaitial ¥V,q). The actual tem-
perature gradient then depends on the details of the convection thedhin We context of MLT,
the T-gradient depends on the assumed value®f= ¢n/Hp. In practice one often calibrates de-
tailed models computed with fiierent values of, to the radius of the Sun and of other stars with
well-measured radii. The result of this procedure is that the best matctainet forany, ~ 1.5-2.

As the surface is approached, convection becomes vefiycieat at transporting energy. Then
Fconv < Frag SO that radiation féectively transports all the energy, ald~ V54 despite convection
taking place. Thesefects are shown in Fig. 5.5 for a detailed solar model.

5.5.3 Convective mixing

Besides being anficient means of transporting energy, convection is also a V@igient mixing
mechanismWe can see this by considering the average velocity of convective egll$5.56), and
taking £y ~ Hp and v/gHp =~ v, SO that

Uc R Us \/V - Vad. (561)
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Figure 5.5. The variation 0V4 (red, solid line) an&,,q (blue, dashed line) in the same detailed model ;1

as shown in Fig. 5.4, but now plotted against Btather than radius to focus on the outermost layers (where
the pressure gradient is very large). The thick green limsvsithe actual temperature gradi®tThe partial
ionization zones are clearly visible as depressiongj{compare to Fig. 3.5b). The convection zone stretches
from logP ~ 14 to 5 (indicated by a gray bar along the bottom). In the detsior (for logP > 8) convection

is very dficient andV = V.4 Higher up, at lower pressures, convection becomes lesseandfficient at
transporting energy and requires a largegradient,V > V.q. In the very outer part of the convection zone
convection is very inficient andv = V4.

Becausé —V,qis only of the order 1¢° in the deep interior, typical convective velocities are strongly
subsonic, by a factor 1073, except in the very outer layers wheVe- Vaq is substantial. This is
the main reason why convection has no disrupti¥eats, and overall hydrostatic equilibrium can be
maintained in the presence of convection.

By substituting into eq. (5.61) rough estimates for the interior of a staryd.e. VGM/R and
eq. (5.59) forV — V,q, we obtainue ~ (LR/M)Y3 ~ 5 x 10%cnys for a star like the Sun. These
velocities are large enough to mix a convective region on a small timescale.aflestimate the
timescale on which a region of radial side= qRis mixed asrmix ~ d/vc ~ q(R°M/L)Y/3, which
is ~ g x 10" sec for solar values. Depending on the fractional exteot a convective region, the
convective mixing timescale is of the order of weeks to months. Hefpge<x 1k < Thue SO that
over a thermal timescale, and certainly over a nuclear timescale, a coevegfion inside a star will
be mixed homogeneously. (Note that convective mixing remains ¥Bcyeat in the outer layers of a
star, even though convection becomedtingnt at transporting energy.)

This has important consequences for stellar evolution, which we will erteoin future chapters.
Briefly, the large #iciency of convective mixing means that:

e A star in which nuclear burning occurs incanvective corevill homogenize the region in-
side the core by transporting burning ashes (e.g. helium) outwards eh@efg. hydrogen)
inwards. Such a star therefore has a larger fuel supply and cardatadifietime compared to
the hypothetical case that convection would not occur.

o A star with a deegonvective envelopsuch that it extends into regions where nuclear burning
has taken place, will mix the burning products outwards towards the surfahis process
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(often called ‘dredge-up’), which happens when stars become ratsg@an therefore modify
the surface composition, and in such a star measurements of the suidadaiates provide a
window into nuclear processes that have taken place deep inside the star.

Composition changes inside a star will be discussed in the next chapter.

5.5.4 Convective overshooting

To determine the extent of a region that is mixed by convection, we need torloakclosely at what
happens at the boundary of a convective zone. According to theegBesehild criterion derived in
Sec. 5.5.1, in a chemically homogeneous layer this boundary is located atrtheeswherev,,g =

Vag At this point the acceleration due to the buoyancy foece,g(V — Vaq), vanishes. Just outside
this boundary, the acceleration changes sign and a convective buililide wtrongly braked — even
more so when the non-mixed material outside the convective zone has gd@mdrhence a lower
density. However, the convective eddies have (on average) aaronslocity when they cross the
Schwarzschild boundary, and will’ershooby some distance due to their inertia. A simple estimate
of this overshooting distance shows that it should be much smaller tharsaresale height, so that
the Schwarzschild criterion should determine the convective bound#eyapcurately. However the
convective elements also carry some heat and mix with their surroundintigtbothV — V44 and

the u-gradient decrease. Thus also ttigeetive buoyancy force that brakes the elements decreases,
and a positive feedback loop can develop that causes overshootingndteto penetrate further and
further. This is a highly non-linearfiect, and as a result the actual overshooting distance is very
uncertain and could be substantial.

Convective overshooting introduces a large uncertainty in the extent efdnegions, with im-
portant consequences for stellar evolution. A convectively mixed catddisubstantially larger will
generate a larger fuel supply for nuclear burning, and tifiests both the hydrogen-burning lifetime
and the further evolution of a star. In stellar evolution calculations ondlyqsametrizes thefeect
of overshooting by assuming that the distadggby which convective elements penetrate beyond the
Schwarzschild boundary is a fixed fraction of the local pressure beadht,d,y = aoyHp. Hereagy
is a free parameter, that can be calibrated against observations @eteiCd).

Suggestions for further reading

The contents of this chapter are also covered by Chapters 3, 5 and &ofrylby Chapters 4, 5, 7
and 17 of Kepennann and by Chapters 4 and 5 ofalken.

Exercises

5.1 Radiation transport
The most important way to transport energy form the intesicthe star to the surface is by radiation,
i.e. photons traveling from the center to the surface.

(a) How long does it typically take for a photon to travel fréne center of the Sun to the surface?
[Hint: estimate the mean free path of a photon in the cengigibns of the Sun.] How does this
relate to the thermal timescale of the Sun?
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(b) Estimate a typical value for the temperature gradi@ntdd. Use it to show that the fference in
temperaturéd\T between to surfaces in the solar interior one photon mearpéht,, apart is

aT
AT = lngr ~ 2% 107*K.

In other words the anisotropy of radiation in the stellaeridr is very small. This is why radiation
in the solar interior is close to that of a black body.

(c) Verify that a gas element in the solar interior, whichiaées as a black body, emits 6 x
10%%ergeni?st.
If the radiation field would be exactly isotropic, then thensaamount of energy would radiated
into this gas element by the surroundings and so there wauittbnet flux.

(d) Show that the minute deviation from isotropy betweenswdaces in the solar interior one photon
mean free path apartat- R,/10 andT ~ 107 K, is suficient for the transfer of energy that results
in the luminosity of the Sun.

(e) Why does the diusion approximation for radiation transport break down mitie surface (pho-
tosphere) of a star is approached?

5.2 Opacity

(a) Identify the various processes contributing to the d@paxs shown in Fig. 5.2, and thE andp
ranges where they are important.

(b) Compare the opacity curve for lpg= —6 in the left panel of Fig. 5.2 to the approximations given
in Sec. 5.3.1 for (1) electron scattering, (2) free-freeogson, (3) bound-free absorption and (4)
the H ion. How well do these approximations fit the realistic opacurve?

(c) Calculate (up to an order of magnitude) the photon mesafath in a star of U, at radii where
the temperature is 1&, 10°K and 1@ K, using the right panel of Fig. 5.2.

(d) Suppose that the frequency-dependent opacitfficamt has the form, = xgv~*. Show that the
Rosseland mean opacity depends on the temperature ds®.

5.3 Mass-luminosity relation for stars in radiative equilibrium

Without solving the stellar structure equations, we canatly derive useful scaling relations. In this
guestion you will use the equation for radiative energydpamt with the equation for hydrostatic equi-
librium to derive a scaling relation between the mass andutiménosity of a star.

(a) Derive how the central temperatuiie, scales with the mas$4, radius,R, and luminosity,L,
for a star in which the energy transport is by radiation. Tdtds, use the stellar structure equa-
tion (5.16) for the temperature gradient in radiative @friim. Assume that ~ R and that the
temperature is proportional @, | ~ L and estimating @/dr ~ - T/R.

(b) Derive howT, scales withM andR, using the hydrostatic equilibrium equation, and assurtiiag
the ideal gas law holds.

(c) Combine the results obtained in (a) and (b), to derive hagales withM andR for a star whose
energy transport is radiative.

You have arrived at a mass-luminosity relation without asisg anything about how the energy is
produced only about how it igransported(by radiation). It shows that the luminosity of a stamnist
determined by the rate of energy production in the centrebfpunow fast it can be transported to the
surface!

(d) Compare your answer to the relation betwéérand L which you derived from observations
(Exercise 1.3). Why does the derived power-law relatiort stateviate from observations for low
mass stars? Why does it deviate for high mass stars?
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5.4 Conceptual questions: convection

(&) Why does convection lead to a net heat flux upwards, evamgththere is no net mass flux
(upwards and downwards bubbles carry equal amounts of thass)

(b) Explain the Schwarzschild criterion
dinT . dinT
dinP/ 4 \dInP/ 4
in simple physical terms (using Archimedes law) by drawirgghematic picture . Consider both
caseV,ad > VagandV 44 < Vag. Which case leads to convection?

(c) What is meant by theuperadiabaticityof a convective region? How is it related to the convective
energy flux (qualitatively)? Why is it very small in the interiof a star, but can be large near the
surface?

5.5 Applying Schwarzschild’s criterion

(a) Low-mass stars, like the Sun, have convective enveldffesfraction of the mass that is convec-
tive increases with decreasing mass. ARl star is completely convective. Can you qualitatively
explain why?

(b) In contrast higher-mass stars have radiative envelapdsconvective cores, for reasons we will
discuss in the coming lectures. Determine if the energysprart is convective or radiative at two
different locationsr(= 0.242R, andr = 0.670R;) in a 5M, main sequence star. Use the data of a
5 My model in the table below. You may neglect the radiation presand assume that the mean
molecular weighg: = 0.7.

r'Ro | m/Mg Li/Lo T [K] plgcm] [ «[g7T cn¥]
0.242] 0.199 | 340x 1C? | 252x 10’ 18.77 0.435
0.670| 2.487 | 5.28x 10? | 1.45x 10’ 6.91 0.585

5.6 The Eddington luminosity
The Eddington luminosity is the maximum luminosity a staitiwadiative energy transport) can have,
where radiation force equals gravity.
(&) Show that

47cGm
Imax = .
K

(b) Consider a star with a uniform opacityand of uniform parameter 4 8 = P,9/P. Show that
L/Lgqq = 1 — B for such a star.

(c) Show that the Schwarzschild criterion for stability ig& convectiorV,,q < Vaq can be rewritten
as:
[ I:)rad
— <4—V
.. < p ad

(d) Consider again the star of question (b). By assumingitias a convective core, and no nuclear
energy generation outside the core, show that the masgfraaftthis core is given by
Mcore — 1
M 4Va4
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Chapter 6

Nuclear processes in stars

For a star in thermal equilibrium, an internal energy source is requiredaadmthe radiative energy
loss from the surface. This energy source is providedustear reactionghat take place in the deep
interior, where the temperature and density affigantly high. In ordinary stars, where the ideal-
gas law holds, this stellar nuclear reactor is very stable: the rate of nueksaions adapts itself to
produce exactly the amount of energy that the star radiates away froorfaise. Nuclear reactions
do not determine the luminosity of the star — this is set by how fast the enenglyecransported,
i.e. by the opacity of the stellar gas — but they do determine for how long théssthate to sustain
its luminosity. In stars composed of degenerate gas, on the other hafehmeactions are unstable
and may give rise to flashes or even explosions.

Apart from energy generation, another importafieéet of nuclear reactions is that they change
the composition by transmutations of chemical elements into other, usually hedeieents. In this
way stars produces all the elements in the Universe heavier than heliunmoeesg calledtellar
nucleosynthesis

6.1 Basic nuclear properties

Consider a reaction whereby a nucleligzacts with a particla, producing a nucleu¥ and a particle
b. This can be denoted as

X+a—->Y+b or X(a, b)Y . (6.1)

The particleais generally another nucleus, while the particleould also be a nucleus;aphoton or
perhaps another kind of particle. Some reactions produce more than ttiicdgza(e.g. when a weak
interaction is involved, an electron and anti-neutrino can be producedliticadto nucleusY), but
the general principles discussed here also apply to reactions invohffiegedit numbers of nuclei.
Each nucleus is characterized by two integers, the chgr@representing the number of protons in
the nucleus) and the baryon number or mass nurmbéequal to the total number of protons plus
neutrons). Charges and baryon numbers must be conserved dugagtin, i.e. for the example
above:

Ix +2Za =2y + 2y and Ax + Ag = Ay + Ap. (62)

If a or b are non-nuclear particles théy = 0, while for reactions involving weak interactions the
lepton number must also be conserved during the reaction. Therefprihi@e of the reactants
uniquely determine the fourth.
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6.1.1 Nuclear energy production

The masses of atomic nuclei are not exactly equal to the sum of the masisesnafividual nucleons
(protons and neutrons), because the nucleons are bound togettier $tyong nuclear force.
denotes the mass of a nucléuthen thebinding energyof the nucleus can be defined as

Egi = [(A - Z)my + Zimp — m] ¢, (6.3)

wherem, andm, are the masses of a free neutron and proton respectively. Therafttx@ighy A
is conserved during a nuclear reaction, the sum of the actual massbk&hunthe reaction is not.
This mass dferenceAm is converted into energy according to Einstein’s formila= Am¢. The
energy released by a reaction of the kiXi@, b)Y is therefore

Q= (Mx + My — My — my) ¢%. (6.4)

Note thatQ may be negative if energy is absorbed by the reaction; such reactmoaldendother-
mic. Reactions that release ener@y ¥ 0) are callecexothermic

In practice, one often uses atomic masses rather than nuclear massesitatec@Ic This is
allowed because the number of electrons is conserved during a readespite the fact that the
nuclei are completely ionized under the conditions where nuclear reatdicnplace. Atomic masses
of a few important isotopes are given in Table 6.1. The energy releagadnction is related to the
so-calledmass defeadf nuclei, defined as

AM; = (m — Amy) ¢, (6.5)
Since nucleon number is conserved during a reaction, we can write §5.4) a
QIAMx+AMa—AMy—AMb. (66)

Nuclear binding energies and reactiQavalues are usually expressed in MeV. Published tables of
atomic masses often list the mass defects in MeV, rather than the masses thentdetwember that
my, is defined as/IL2 times the mass of tH€C atom; a useful identity igy,c? = 931494 MeV.

When comparing dierent nuclei, théinding energy per nucleongfA is a more informative
quantity tharEg itself. In Fig. 6.1 this quantity is plotted against mass nun#oaivith the exception
of the lightest nuclei, typical values are around 8 MeV. This reflects tbet shAnge of the strong
nuclear force: a nucleon only ‘feels’ the attraction of the nucleons in its imatesgicinity, so that
Eg/A quickly saturates with increasiny There is a slow increase withup to a maximum at®Fe,

Table 6.1. Atomic masses of several important isotopes.

element Z A M/my, element Z A M/my, element Z A M/my
n 0 1 1.008665 C 6 12 12.000000 Ne 10 20 19.992441
H 1 1 1.007825 6 13 13.003354 Mg 12 24 23.985043
1 2 2.014101 N 7 13 13.005738 Si 14 28 27.976930
He 2 3 3.016029 7 14 14.003074 Fe 26 56 55.934940
2 4 4.002603 7 15 15.000108 Ni 28 56 55.942139
Li 3 6 6.015124 (0] 8 15 15.003070
3 7 7.016003 8 16 15.994915
Be 4 7 7.016928 8 17 16.999133
4 8 8.005308 8 18 17.999160
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which hasEg/A = 8.79 MeV, beyond which the binding energy per nucleon decreasesds\ager
A. This decrease is due to the increase in the number of pr@avith A: the protons inside the
nucleus experience a repulsive Coulomb force, which has a long eardjdoes not saturate with
increasingZ. There is additional structure in the curve, caused by the shell struzftumeclei and
pairing dfects.

The most tightly bound nuclei occur around the maximur@®&e. Energy can be gained from
the fusion of light nuclei into heavier ones as longeagA increases; this is the main energy source
in stars. Fusion of nuclei heavier thafFe would be endothermic and does not occur in nature (but
energy can be released by fission reactions that break up heavy intléghter ones).>Fe thus
forms the natural endpoint of the stellar nuclear reaction cycles. In éngially consisting mostly
of hydrogen, each step in the transformation of H into Fe releases ereigyal of 8.8 MeV per
nucleon, of which 7.0 MeV are already used up in the first step, the fasiblinto He.

6.2 Thermonuclear reaction rates

Consider again a reaction of the typéa, b)Y. Let us first suppose that particl¥sare bombarded
by particlesa with a particular velocitys. The rate at which they react then depends onctbes-
sectioni.e. the dfective surface area of the partictdor interacting with particle. The cross-section
is defined as

_ number of reactionX(a, b)Y per second

7= flux of incident particles

’

which indeed has a unit of area (m We denote the reacting particl¥sanda by indicesi and j
and their number densities asandnj, respectively. The incident flux of particless thenn; v, so
that the number of reactions with a certain partXleaking place per second iig v o. The number
of reactions per second in a unit volume is therefore

Fij =hninjvo,

which defines the reaction rate at a particular relative velagityrhis expression applies X and
a are of a diferent kind. If the reacting particles are identical, then the number of pessicting
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pairs is notn; but%ni(ni -1 = %nlz for large particle numbers. Thus we can write more generally

1
1= T, Ve (6.7)
sincesj; = 0ifi # jandsj; = Lifi = j.
In general,c = o(v) depends on the relative velocity. In a stellar gas there is a distribution of
velocities¢(v), normalized such tha}goo ¢(v)dv = 1. The overall reaction rate, i.e the number of
reactions taking place per second and per unit volume, is therefore

1 o 1
rj = :L_'_—(Sijn,nj\f0 ¢() o(wvdv = 1+—6”

In an ideal gas in LTE, the particle velocities are given by the Maxwell-Boltzrmdistribution,
eg. (3.13). If each patrticle velocity distribution is Maxwellian, then so is ttedative velocity distri-
bution,

ninj{ov). (6.8)

,( M \3/2 2
¢(U) = 4dnv (m) eXp(—%) , (69)
wheremis the reduced mass in the centre-of-mass frame of the patrticles,
mm;
- ) (6.10)
m + m;

We replace the relative velocityby the kinetic energy in the centre-of-mass fraie; %mvz. Using
the fact thatp(v) dv = ¢(E) dE, we can write the average over in eq. (6.8) as

8\ L, E
<au>=(77n) (KT)"3/2 fo o-(E)Eexp(—ﬁ) dE. (6.11)

This depends only on temperature, i.e. the dependence on velocity in®du¢®s into a dependence

on thetemperaturen the overall reaction rate. The temperature dependence of a nudetioneis

thus expressed by the fact@rv). To understand this temperature dependence, we must consider in
more detail the reaction cross sections and their dependence on energy.

6.2.1 Nuclear cross-sections

The cross-sectioor appearing in the reaction rate equation (6.8) is a measure of the probability tha
a nuclear reaction occurs, given the number densities of the reactifgj. ndthile the energy gain
from a reaction can be simply calculated from the mass deficits of the nucleiydhs-section is
much more diicult to obtain. Classically, the geometrical cross-section for a reactiorebatnuclei

i andj with radii R andR;j is o = (R + Rj)z. A good approximation to the nuclear ‘radius’, or rather
for the range of the nuclear force, is

R ~RA”?  with Ry=144x10"cm (6.12)

This would yield typical cross-sections of the order 0f¥0-10-24 cn?. On the other hand, quantum-
mechanically the particles ‘see’ each other as smeared out over a lengthteghe de Broglie
wavelength associated with their relative momenfum

_h h
P (2mBpYZ
with mandE the reduced mass and relative kinetic energy as defined before. Taquasity assumes
non-relativistic particles. A better estimate of the geometrical cross-sectibariforeo = 712, At
typical conditions in the stellar gas, this is (much) larger than the classical éstmael > R +R;.
The real situation is much more complicated owing to a numbeffetts:

(6.13)
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e Charged nuclei experience a repulsive Coulomb force which, althoeghev than the strong
nuclear force, has a much longer range. This Coulomb barrier wowerany reaction to
occur under stellar condition, were it not for the quantum-mechanicalel gfect

e The nature of the force involved in the reaction determines the strength witénaction. For
a reactionX(a, b)Y, the emitted particle may be either another nucleuspaoton, or an &
or €'y pair. In the first case, only the strong force is involved and the cresises may be
close to the geometrical one. The second case also involves the electatimégte, which
is weaker and gives a lower reaction probability, i.e. a smaller cross-setiithe last case, a
weak interaction must occur which has an even lower probability and smed&s-section.

¢ Nuclear structureféects can have a strong influence on the cross-section. This is particularly
true in the case aksonant interactions

Coulomb barrier and the tunnel effect

At distances larger than the range of the nuclear force, two nuclei with chaZgasdZ; experience
a repulsive Coulomb potential

ZiZj82 ZiZ

V(r) = —— =144——— MeV, (6.14)
r r [fm]

with r expressed in fre= 1023 cm in the last equality. To experience the attractive nuclear force the
particles have to approach each other within a typical distanee A3 Ry as given by eq. (6.12).
Forr < ry the nuclear attraction gives a potential drop to rougfyy: —30 MeV. The particles must
therefore overcome a typical Coulomb bartigy = V() ~ Z1Z», MeV, see Fig. 6.2.

If an incoming particle has a kinetic ener@yat infinity in the reference frame of the nucleus,
it can classically only come within a distancggiven byE = V(r¢). In stellar interiors the kinetic
energies of nuclei have a Maxwellian distribution, with an average vdje= %kT ~ 1.3keV at
10’ K, which is typical of the centre of the Sun and other main-sequence $taissfalls short of the
Coulomb barrier by a factor of about 1000. Even considering the highgg tail of the Maxwell-
Boltzmann distribution, the fraction of particles with > Ec is vanishingly small. With purely
classical considerations nuclear reactions have no chance of liagpésuch temperatures.

We need to turn to quantum mechanics to see how nuclear reactions at#epatstellar tem-
peratures. As was discovered by G. Gamow, there is a finite probabilitjhiinarojectile penetrates
the repulsive Coulomb barrier everif« Ec. The tunnelling probability can be estimated as

e 2m[V(r) = E]

P~ exp( — f M dr)

n h
where
2z

‘T E

is the classical distance of closest approach. The result is
2.2, (m\"?
P=PoexphE YY)  with b= zn%(g) = 31297,Z;AY? [keV]¥2.  (6.15)

HereA = A/Aj/(A + A)) is the reduced mass in unitsiof, andPy is a constantP increases steeply
with E and decreases witfiZj, i.e., with the height of the Coulomb barrier. Therefore, at relative
low temperatures only the lightest nuclei (with the small&&) have a non-negligible chance to
react. Reactions with heavier nuclei, with larggrZ;, require larger energies and therefore higher
temperatures to have a comparable penetration probability.

79



Nuclear structure effects on the cross-section

A typical thermonuclear reaction proceeds as follows. After penetrated@tiulomb barrier, the
two nuclei can from an unstable, excitedmpound nucleushich after a short time decays into the
product particles, e.g.

X+a—-C">Y+bh.

Although the lifetime of the compound nucleGs is very short, it is much longer than the crossing
time of the nucleus at the speed of light {021s). Therefore by the time it decays, the compound
nucleus has no ‘memory’ of how it was formed, and the decay deperygsmihe energy.

The decay can proceed vididrent channels, e.g* - X+a, — Y1+by, — Yo+by, ..., —

C +v. In the first case the original particles are reproduced, the last castersay to a stable energy
level of C with y-emission. In the other cases the partidiesh,, etc. may be protons, neutrons

or a-particles. (Reactions involving electron and neutrino emission do noepdozia a compound
intermediate state, since the necesgadecays would be prohibitively slow.) In order for a certain
energy level ofC* to decay via a certain channel, the conservations laws of energy, momentum,
angular momentum and nuclear symmetries must be fulfilled. The outgoing padixtken a certain
kinetic energy, which — with the exception of neutrinos that escape withteriaiction — is quickly
thermalised, i.e. shared among the other gas particles owing to the shom gimatgarticle mean

free paths in the stellar gas.

The energy levels of the compound nucleus play a crucial role in deterntiméngaction cross-
section, see Fig. 6.2. L&y, be the minimum energy required to remove a nucleon from the ground
state ofC to infinity, analogous to the ionization energy of an atom. Energy levels biglgycorre-
spond to bound states in an atom; these can only decgyeyission which is relatively improbable.
These ‘stationary’ energy levels have long lifetimeand correspondingly small widtHg since
according to Heisenberg's uncertainty relation

r=-. (6.16)

I'n e r

energy
o

Figure 6.2. Schematic depiction of the combined nuclear and Coulomb po-

tential, shown as a thick line. The potential is dominatedCloylomb repul-

sion at distances > r,, and by nuclear attraction far < r,. An incoming

particle with kinetic energig at infinity can classically approach to a distance
Emin rc. The horizontal lines for & r < ry indicate energy levels in the compound
-\5 —J nucleus formed during the reaction. The ground state iseggr-Enin; the
quasi-stationary levels witk > 0 are broadened due to their very short life-
times. If the incoming particles have energycorresponding to such a level
they can find a resonance in the compound nucleus (see text).
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Energy levels abov&, can also expel particles, which is much more probable tramission.
These levels also have finite lifetimes because of the sharp potential rizedrgybut eventually the
particles can escape by the tunnfeet. These ‘quasi-stationary’ levels have much shorter lifetimes
and correspondingly larger widths. The probability of escape incseaitk energy and so does the
level width, until eventuallyl" is larger than the distance between levels resulting in a continuum of
energy states above a cert&ifax.

The possible existence of discrete energy levels aBgyecan give rise to so-called ‘resonances’
with much increased reaction probabilities. Suppose wi l@bda react with gradually increasing
relative energye (measured at large distance). As londeds in a region without or in between quasi-
stationary levels, the reaction probability will simply increase with the penetrptmvability (6.15).
However, ifE coincides with such a level (e.g. enelfgyin Fig. 6.2), then the reaction probability can
be enhanced by several orders of magnitude. For energies closehta fvelE.sthe cross-section
has an energy dependence with a typical resonance form,

1

B« EoErr 2

(6.17)

At E = Eesthe cross-section can be close to the geometrical cross-secinyhere is the de
Broglie wavelength (6.13). We can thus expect the cross-section tod@epesnergy as

o (E) o 7112 P(E) £(E). (6.18)

The astrophysical cross-section factor

Since? « 1/E andP(E) « exp(b E~¥/?), one usually writes

explb E"1/?)

o(E) = S(E) S

(6.19)

This equation defines the ‘astrophysiGafactor’ S(E), which contains all remainingfiects, i.e. the
intrinsic nuclear properties of the reaction including possible resonances
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Figure 6.4. Example of the Gamow peak for théC(p, ¥)1°N reaction. The left panel shows as dash-dotted
lines the tunnelling probability factor, explo/EY?), and as dashed lines the tail of the Maxwell distribution,
exp(E/KT), for three values of temperatur®:= 2.0x10’ K (lower curve), 25x10’ K (middle) and 30x10’ K
(upper). The solid lines show the product of these two faGtiiE) as in eq. (6.21), labelled b, = T/10” K.
Note the enormous range of the vertical log-scale. To ajgeethe sharpness of the Gamow peak, and the
enormous sensitivity to temperature, the right panel shidi&$ on a linear scale fof; = 2.4, 2.5 and 2.6. The
dashed line is the Gamow peak for tHal(p, y)1°0 reaction forT; = 2.4, multiplied by a factor 200.

TheS-factor can in principle be calculated, but in practice one relies on labgnateasurements
of the cross-section to obtal®(E). The dificulty is that such measurements are only feasible at
large E, typically > 0.1 MeV, because cross-sections quickly become unmeasurably smalleat low
energies. This lowest energy is still an order of magnitude larger tham#rgies at which reactions
typically take place under stellar conditions. One therefore has to extte{&) down over quite
a large range oE to the relevant energies. In many caS%g) is nearly constant or varies slowly
with E — unlike o(E)! — and this procedure can be quite reliable (e.g. see Fig. 6.3). Howelien
resonances occur in the range of energies over which to extrapoktestits can be very uncertain.

6.2.2 Temperature dependence of reaction rates

Combining egs. (6.11) and (6.19), the cross-section fgeotoy can be written as

(ov)y = (8/am)Y?(kT)32 fo S(E) exp(— % - %)da (6.20)
We will look at the case ohon-resonanteactions, where we can assume t8éE) varies slowly
with E. The integrand is then dominated by the product of two exponential faeop$-E/KT), the
tail of the Maxwell-Boltzmann distribution which decreases rapidly viithand expcbE=1/2), the
penetration probability due to the tunndlext which increases rapidly with. The product of these
two exponentials,

b
f(E) = exp( - % - m), (621)
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is a sharply peaked function called tlBamow peakwhich has appreciable values only around a
maximum at energ¥o. Fig. 6.4 shows an example for the reactl8@ + p — N + y. Since by
assumptiors(E) varies slowly withE, we can také&(E) ~ S(Ep) out of the integral (6.20) and obtain

o0 E b
(ovy ~ (8/mm)Y?(kT)~/? S(Ep) fo exp(— e m)dE. (6.22)

The reaction rate then only depends on the inteﬁf’al‘(E) dE.

Properties of the Gamow peak

The value of the Gamow peak eneif§y can be found by takingfydE = 0, which gives
Eo = (3bkT)?® = 5,665 Z7Z*AT)° keV. (6.23)

To obtain the last equality we have substituteds given by eq. (6.15) and we use the notation
Tn = T/(10"K), while A is the reduced mass m, as before. For reactions between light nuclei
at temperature¥ ~ 1-2x 10’ K, Eg ~ 10-30keV, while the average kinetic energies are 1-2 keV.
The peak is quite narrow, having a widM at half maximum that is always smaller th&p. Thus,
the nuclei that contribute to the reaction rate have energies in a narrowainaeound 10 times the
thermal energy, but about 2 orders of magnitude below the Coulombbarrie

The right panel of Fig. 6.4 illustrates the strong dependence of the maxiralua f\(Ep) of the
Gamow peak on the temperature. In the case of46€p, y)13N reaction, an increase in temperature
by 4% (fromT7; = 2.4 to 2.5, or from 2.5 to 2.6) almost doubles the maximum valué(&). The
width of the peak also increases modestly, such that the area underke-awhich is the integral
that appears in eq. (6.22) — increases enormously with increasing teorperghis is the reason why
thermonuclear reaction rates are extremely sensitive to the temperature.

When we compare fferent reactions, the factdr o« Z;Z,AY2 changes and thereby the pene-
tration probability at a certain energy. A reaction between heavier nweii [arger A andZ) will
therefore have a much lower rate at certain fixed temperature. This is iledirathe right panel
of Fig. 6.4 by the dashed curve, showing the Gamow peak foFtkp, y)1°0 reaction afl; = 2.4,
multiplied by a factor 200. Hence, the probability of this reaction is 200 times sntiafinrthat of the
12C(p, v)*N reaction at the same temperature. In other words, reactions betweéer meelei will
need a higher temperature to occur at an appreciable rate.

To summarize, the properties of the Gamow peak imply that
o the reaction ratéov) increasevery strongly with temperature

e (ov) decreases strongly with increasing Coulomb batrrier.

Analytic expressions for the temperature dependence

We can find an analytical expression for the reaction rate if we approxithatmtegrandf (E) in
eg. (6.22) by a Gaussian centredgat i.e.,

2
E - Eq
—( E )] (6.24)

Considering the shapes of the curves in Fig. 6.4, this is not a bad apptmamarom eq. (6.21) we
find f(Eg) = exp3Eq/KT) = explr), which defines the often used quantity

ZiZZjZA)m

f(E) ~ f(Eo) exp

(6.25)
83



The widthAE of the Gaussian can be obtained by expanding eq. (6.21)(fy in a Taylor series
aroundEp,

f(E) = f(Eo) + f'(Eo) (E - Eo) + 3f"(Eo) (E—~ Eo)’ + ...,

in which the second term equals zero becali$ggy) = 0. Comparing this with a similar expansion
of the Gaussian approximation f¢E) yields the same expression, to second order, if

1/2 1/2
AE = (_2,,':) = (4E°kT) (6.26)
7 Jecg, 3
We can then approximate the integral in eq. (6.22) by
f f(E)dE ~ e—ff exp| - %) |dE ~ e VT AE. (6.27)

In the last step we have extended the integral fres to oo to obtain the resultyr AE, which
introduces only a very small error because the exponential is negligibly fam& < 0. When we
substitute (6.27) with the expression (6.26) Adt into (6.22), and we eliminatBy andkT in favour
of r andb using (6.23) and (6.25), then we find after some manipulation

8( 2
e

1/2

S(Eo) v _ 7-21“05( S(Eo) )Tze—f. (6.28)

b '~ T zzA \keven?

In the last equality we have substituted the explicit expression (6.156) Bincer o« T~/3 this gives
a temperature dependence of the form

1 C
e exp( - m) (6.29)

where the constar@ in the exponential factor depends @;7;, i.e. on the height of the Coulomb
barrier. This is indeed a strongly increasing function of temperature.
If we consider a small range of temperatures around some Vg|wee can write

dloglov)y 7-2
dlogT ~ 3 °

{ov) = (o-v)o(l) with y (6.30)
To
The last equality follows from (6.28) and (6.25). Therefore the expbnds not a constant but
depends off itself — in facty decreases witf roughly asT~%3. In general, however, any particular
reaction is only important in quite a limited range of temperatures, so that takasgconstant in
(6.30) is approximately correct. Values of the exponemtre in all cases> 1. For example, at
T7; = 1.5 we find(cv) « T3 for the p+ p reaction for hydrogen fusion ardv) o« T20 for the
14N(p, v) reaction in the CNO cycle (see Sec. 6.4.1). Thus thermonuclear reaatésnare about the
most strongly varying functions found in physics. This temperature séhshias a strong influence
on stellar models, as we shall see.

6.2.3 Electron screening

We found that the repulsive Coulomb force between nuclei plays a trotgdn determining the rate
of a thermonuclear reaction. In our derivation of the cross section weigaored the influence of
the surrounding free electrons, which provide overall charge dauirathe gas. In a dense medium,
the attractive Coulomb interactions between atomic nuclei and free elecaes each nucleus to
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be dfectively surrounded by a cloud of electrons. This electron cloud el Coulomb repulsion
between the nuclei at large distances, and may thus increase the proludhilityeling through the
Coulomb barrier. Thisféect is know aglectron screeningr electron shielding

We simply give the main results, the derivation of which can be found ispkk Sec. 9.4 or
KiprentauN Sec. 18.4. The repulsive Coulomb potential (eq. 6.14) is reduced laya &xpEr/rp),
whererp, the so-called Debye-lttkel radius, represents théextive radius of the electron cloud.
The stronger the Coulomb interactions between nuclei and electrons, thersmaWe have found
(Sec. 3.6.1) that Coulomb interactions increase in strength with increasisifydand decreasing
temperature, and so does the magnitude of the electron scredif@og # turns out that the reaction
rate(ov) is enhanced by a factor

E
f= exp(k—_ID_), (6.31)
where, for small values dfp /KT < 1,
Eb  Z17Z,€ p*?
T FokT ~ 0.0062,7Z, T (6.32)

This is theweak screeningpproximation, which applies to relatively low densities and high temper-
atures such as found in the centre of the Sun and other main-sequascéJsider these conditions,
reaction rates are enhanced only by modest facfofs].1.

The description of electron screening becomes complicated at high deasitigglatively low
temperatures, where the weak screening approximation is no longer vajeheXal result is that with
increasing strength of electron screening, the temperature sensitivitg oddlation rate diminishes
and the density dependence becomes stronger. At very high densities) g/cm?, the screening
effect is so large that it becomes the dominating factor in the reaction rate. Teidirsip of the
Coulomb barrier can be sdfective that the reaction rate depends mainly on the density and no
longer on temperature. Reactions between charged nuclei becomdegessib at low temperature,
if the density exceeds a certain threshold. One then spegyEnbnuclear reactionsvhich can play
an important role in late stages of stellar evolution. In a very cool and deed@&im one must also
take into account thefiect of crystallization, which decreases the mobility of the nuclei and thus the
probability of collisions.

6.3 Energy generation rates and composition changes

Having obtained an expression for the cross-section faetoy, the reaction rate;; follows from
eg. (6.8). We can then easily obtain the energy generation rate. Eatlomeleases an amount
of energyQ;; according to eq. (6.4), so th&; rjj is the energy generated per unit volume and per
second. The energy generation rate ysit massfrom the reaction between nuclei of typandj is
then

6j = Qi i (6.33)

P

We can express the energy generation rate in terms of the mass fra¢tams$X; and the density
using eq. (6.8). Replacing the number densityy the mass fractioi; according tay, = X o/(Amy),
eg. (6.33) can be written as

o= Qi
' @) AAE

Gij

|
p XiXj{ov)ij = m

p XiXj (ov)ij, (6.34)
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In the last identityA = A/A;/(Ai + A)) is the reduced mass in units f;, and we have replaceq;
by the energy released per unit mass by this reaction

Qij Qij

- ~ , 6.35
m+m (A +A)My (6-35)

0ij

Remember thatov) contains the temperature dependence of the reaction rate. If we usenée po
law approximation (6.30) we can write the energy generation rate of a reasio

&j = €0,j XiXjpT". (6.36)

The total nuclear energy generation rate results from all reactions takicg in a certain mass
element in the star, i.e.

€nuc = Z E|] . (637)
i
This is the quantity,c that appears in the stellar structure equation for the luminosity, eq. (5.4).

Composition changes

The reaction rates also determine the rate at which the composition charigesatd of change in
the number density; of nuclei of typei owing to reactions with nuclei of typgis

dn;
(d—r:)J =—(1+ (5”') rij = —ninj {ov)ij. (6.38)

The factor 1+6jj takes into account that a reaction between identical nuclei conswossch nuclei.
One can define theuclear lifetimeof a specie$ owing to reactions witlj as
_ N; _ 1

|(dni/dt)jl  nj{ovij’

Ti.j (6.39)
which is the timescale on which the abundanceafanges as a result of this reaction.

The overall change in the numbgrof nuclei of typei in a unit volume can generally be the result
of different nuclear reactions. Some reactions (with ratas defined above) consurmehile other
reactions, e.g. between nucleandl, may produce. If we denote the rate of reactions of the latter
type asry i, we can write for the total rate of changergf

dn;
d—tl :—Z(1+6ij)rij +Z Mkl (6.40)
f K

The number density; is related to the mass fractiofy by n; = X; p/(Aimy), so that we can write the
rate of change of the mass fraction due to nuclear reactions as

dX; my
d—'[':Ai?(—;(l+6ij)rij+%rk|,i) (6.41)
For each nuclear speciésne can write such an equation, describing the composition change at
a particular mass shell inside the star (with dengitgind temperaturd) resulting from nuclear

reactions. In the presence of internal mixing (in particulasaivectionSec. 5.5.3) the redistribution
of composition between flerent mass shells should also be taken into account.
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Note the similarity between the expressions for the nuclear energy genenatto(6.37) and the
equation for composition changes (6.41), both of which are proporttorrgl. Using eq. (6.35) for
the energy released per gram, we can write the reaction rate as
_ Gj P

i (A + Aj) my
If we substitute this expression into eq. (6.41) the fagfon, drops out. We obtain a useful expression
in simple cases where onbnereaction occurs, or a reaction chain in which one reaction determines

the overall rate. An example is the fusion ofH into “He, which is the net result of a chain of
reactions (see Sec. 6.4.1). In that case you may verify that (6.416a422) ¢educe to

v __dX_ e

d dt  on’
whereey is the energy generation rate by the complete chain of H-burning readiwig, is amount
of energy produced by converting 1 gramtef into “He.

Fij (6.42)

(6.43)

6.4 The main nuclear burning cycles

In principle, many dfferent nuclear reactions can occur simultaneously in a stellar interiorelison
interested in following the detailed isotopic abundances produced by albastions, or if structural
changes occur on a very short timescale, a large network of reactisrie be calculated (as implied
by eq. 6.41). However, for the calculation of the structure and evolutianstar usually a much
simpler procedure is siicient, for the following reasons:

e The very strong dependence of nuclear reaction rates on the tempembined with the
sensitivity to the Coulomb barriet; Z,, implies that nuclear fusions offtierent possible fuels
— hydrogen, helium, carbon, etc. — are well separated by substantiatrizime diferences.
The evolution of a star therefore proceeds through several distirod¢ar burning cycles

e For each nuclear burning cycle, only a handful of reactions contriigtéficantly to energy
production anfbr cause major changes to the overall composition.

¢ In a chain of subsequent reactions, often one reaction is by far thesi@nd determines the
rate of the whole chain. Then only the rate of this bottleneck reaction nedmstaken into
account.

6.4.1 Hydrogen burning

The net result of hydrogen burning is the fusion of fédrnuclei into a*He nucleus,
4'H - *He+2¢e" +2v. (6.44)

You may verify using Sec. 6.1.1 that the total energy release.#32/eV. In order to create e
nucleus two protons have to be converted into neutrons. Thereforestuminos are released by weak
interactions (p— n+ et +v), which escape without interacting with the stellar matter. It is customary
not to include the neutrino energies into the overall energy rel@asrit to take into account only
the energy that is used to heat the stellar gas. This includes energyetklaate form ofy-rays
(including they-rays resulting from pair annihilation after @mission) and in the form of kinetic
energies of the resulting nuclei. Th&extive Q-value of hydrogen burning is therefore somewhat
smaller than 26.734 MeV and depends on the reaction in which the neutrenemited.
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Since a simultaneous reaction between four protons is extremely unlikelgjrmaafireactions is
always necessary for hydrogen burning. This can take place in twnaligays: either direct fusion
of protons via the-p chain or by using already present CNO-nuclei as catalysts irCiR® cycle
Hydrogen burning in stars takes place at temperatures ranging betwe&f& and 50 x 10 K,
depending on stellar mass and evolution stage.

The p-p chains
The first reaction is the so-called p-p reaction:
H+™H >2H+e"+y or p+p-oD+e+v. (6.45)

This involves the simultaneoysdecay of one of the protons during the strong nuclear interaction.
This is very unlikely and the p-p reaction therefore has an extremely smaB-section, about 18
times that of a typical reaction involving only strong interactions. The reactitncannot be mea-
sured in the laboratory and is only known from theory.

After some deuterium is produced, it rapidly reacts with another protorota #He. Subse-
quently three dferent branches are possible to complete the chain tokiets

IH+H 5 2H + et +v

?H+1H - 3He+y

T

SHe + 3He — “He+ 21H SHe + *He — "Be+y
‘Be+e — "Li+v ‘Be+H -8B +y
Li +H - *He+ *He 88 — 8Be+et +v

8Be — “He + “He

pp2

Pp3 (6.46)

The pp1 branch requires twiHe nuclei, so the first two reactions in the chain have to take place
twice. The alternative pp2 and pp3 branches require onlyHeaucleus and an already existitige
nucleus (either present primordially, or produced previously by lyemdourning). The resultintBe
nucleus can either capture an electron or fuse with another protong gisento the second branching
into pp2 and pp3. Three of the reactions in the chains are accompanieditsjno emission, and the
(average) neutrino energy ididirent in each caseéE,) = 0.265 MeV for the p-p reaction, 0.814 MeV
for electron capture ofBe and 6.71 MeV for thg-decay offB. Therefore the total energy release
Qu for the production of onéHe nucleus is dferent for each chain: 26.20 MeV (ppl), 25.66 MeV
(pp2) and only 19.76 MeV for pp3.

The relative frequency of the three chains depends on temperaturehandcal composition.
Because théHe + *He reaction is slightly more sensitive to temperature tharltee+ 3He reaction
(it has a somewhat higher reduced mass and largay. 6.25), the ppl chain dominates over the other
two at relatively low temperaturel{ < 1.5). The ppl chain is the main energy-producing reaction
chain in the Sun. At increasing, first the pp2 chain and then the pp3 chain become increasingly
important.
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At low temperaturesT < 8 x 10° K) the rates of all reactions should be calculated separately to
obtain the energy generation rate and the changes in abundancesicugrathe3He+ 3He reaction
is quite slow and a substantial abundancékéé can accumulate before further reactions occur. For
T > 8 x 10°K all reactions in the chain are fast enough that they reach a steadyveate, once a
D nucleus is produced by the first, very slow reaction, all successaeions proceed very quickly
until “He is formed. The nuclear lifetimes (eq. 6.39) of the intermediate nucléHg, ’Li, etc,
are very short compared to the overall nuclear timescale, and their afcexlare very small. The
overall rate of the whole reaction chain is then set by the rate of the bottiapeeactionypp. In
this steady-state or ‘equilibrium’ situation the rate of each subsequenioreadapts itself to the pp
rate! The energy generation rate (given by the sum of energies releassathyeaction, eq. 6.37)
can then be expressed in a single term of the form (6.33)ne= Qnrpp/p WhereQy is the total
energy released in the whole chain (6.44). The above expressionsjptiee pp2 and pp3 chains,
which each require one p-p reaction to complete. For the ppl chain tweg@epans are needed and
therefore in that cas@uc = 3Qurpp/p- EXpressingpp in terms of the cross section fact@rv)pp and
the hydrogen abundanég€ we can compute the energy generation rate for hydrogen burning by the
combination of pp chains as

0
€pp =Y QHXZE (oV)pps (6.47)

whereqy = Qu/4my is the total energy release per gram of hydrogen burning/aisda factor be-
tween 1 (for the ppl chain) and 2 (for the pp2 and pp3 chains), depead the relative frequency of
the chains. Botly andqy therefore depend on the temperature, because the three chainsffeve di
ent neutrino losses. The overall temperature dependengg isfdominated by th@ -dependence of
(ov)pp and is shown in Fig. 6.5. The pp chain is the least temperature-sensitif@otkear burning
cycles with a power-law exponenteq. 6.30) varying between about 6Tat~ 5 and 3.5 affg ~ 20.

The CNO cycle

If some C, N, and O is already present in the gas out of which a star famaisif the temperature
is suficiently high, hydrogen fusion can take place via the so-callsiD cycle This is a cyclical
sequence of reactions that typically starts with a proton captures9 aucleus, as follows:

!

2C+1H - BN +y
BN BC+et+v
BC+IH - ¥UN+y
T UN+H - 0 +y
Bo->BN+et+y

5N + 1H — 12C 4+ 4He
L

— 160 + y
160 +1H - 1F+y
YF>10+et +v
0 +1H - N + “He
| (6.48)

1For example, if we denote hyp the rate ofH + H, one hasyp = ryp, etc. Note that describing the p-p reaction as
‘slow’ and the?H + 'H as ‘fast’ refers to the dierence in cross-section factdrsvy and not to the number of reactions per
second given by eq. (6.8).
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The 12C nucleus is reproduced after the first six reactions, and thus only sesatalyst for the
net hydrogen burning reaction (6.44). This set of six reactions formathin cycle, also called the
CN cycle. The!N + H reaction has a small probability (somewnhat less tharf)1® producet®O
instead oft?C + *He. This opens up a branching into the second cycle indicated in (6.48)lash
three reactions have théect of transforming®0, which is initially very abundant, intN and thus
bringing it into the main CN cycle. The relative proportions of C, N and O nuclie cycles change
according to the dierent speeds of the reactions involved, but the total number of CN@irisic
always conserved. The thrgedecay reactions have neutrino energies between 0.71 and 1.00 MeV
and decay times between?8nd 1§ sec. Unless very rapid changes are considered, thdseays
are so fast that one can ignore their detailed rates and the small resuliimdpaices ofN, 1°0 and
17F.

At high enough temperatureB,> 1.5 x 10’ K, all reactions in the cycle come into a steady state
or ‘equilibrium’ where the rate of production of each nucleus equals itsofatensumption. In this
situation, as was the case with the p-p chain, the speed of the whole CNQscgol&trolled by the
slowest reaction (the one with the smallest cross-section) whitiNig, )1°0. This reaction acts
like a bottleneck that congests the nuclei in their flow through the cycle#hdhus becomes by
far the most abundant of all the CNO nuclei. Looking at this in a bit more déteispeed of the
different reactions in the cycle can be expressed in terms of the nuclear lifetiragginst proton
captures, as defined in eq. (6.39). In equilibrium one ME5’@)/dt = dn(*3C)/dt, etc., so that

12
[n(lZC)] _(ovs _w(C) (6.49)
€q

N13C) og (W12 7p(13C)°
For the reactions in the CN cycle one typically has
p(*°N) < 7(13C) < 7p(*2C) < 1p(**N) < Tnuc -

Thus nearly all initially present CNO nuclei are transformed ité by the CNO cycle. Therefore,
apart from*He, the second-most important product of the CNO-cycléNs— especially because the
gas out of which stars form is typically more abundant in carbon andesxtftan in nitrogen.

The energy generation rate of the CNO cycle in equilibrium can be written as

P
€cNO = OH X X14 — (T U)pN, (6.50)
my
lgey
A
5 =
0 -
i Figure 6.5. Total energy generation ratg; (in
[~ erggts?) for hydrogen burning as a function of
_ temperature, fop = 1 g/cn?® and abundances = 1
andXcno = 0.01. The dashed curves show the con-
i tributions of the pp chain and the CNO cycle. Figure
- | .
56 8 IaT from KipPENHAHN
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where(cv)pn is the cross-section factor of tHéN(p, )1°0 reaction which controls the rate of the
whole cycle. X14 is the*N mass fraction in the energy-generating zone of the star, which is close
to the total abundancécno of CNO nuclei once equilibrium is reached in the full CNO cycle. The
energy release per unit mags = Qu/4m, takes into account the neutrino losses, which for the CNO
cycle in equilibrium amounts tQy = 24.97 MeV. The temperature sensitivity of the CNO cycle is
much higher than for the pp chain, withvarying between 23 and 13 fdr ranging from 1.0 to 5.0.
This is illustrated in Fig. 6.5 where the temperature dependenegnefis compared to that odyp.

For the purpose of very simple approximations one can take

epox X2pT*  and  ecno o XXqap T8, (6.51)

The strong dierence in temperature sensitivity has the consequence that the pp cimairatis at
low temperaturesl; < 1.5, while the CNO cycle is dominant at higher temperatures.

6.4.2 Helium burning

Helium burning consists of the fusion 8He into a mixture of-2C and'®0, which takes place at
temperature§ > 10°K. Such high temperatures are needed because (1) the Coulomb barrier f
He fusion is higher than that of the H-burning reactions consideredeatamd (2) fusion ofHe is
hindered by the fact that no stable nucleus exists with mass nuinbed. Therefore helium burning
must occur in two steps:

4He + “He & ®Be

% 6.52
8Be+4He > 12C" - 12C+y (6.52)

The®Be nucleus temporarily formed in the first reaction has a ground state thake/Shigher in
energy than that of two separdtde nuclei. It therefore decays back into twaarticles after a few
time 1016s. While extremely short, this time is long enough to build up a very small equilibrium
concentration ofBe, which increases with temperature and reaches abobitaiT ~ 1B K. Then
the second reactiofBe(e, y)12C starts to occur at a significant rate, because of a resonance at just
the Gamow peak energy. The result is an excited compound ndé@ug/hich subsequently decays
to the ground state dPC with emission of a photon. The corresponding energy level in R€
nucleus was predicted by Fred Hoyle in 1954, because he could nowviteexplain the existence
of large amounts of carbon in the Universe. This excited stat€é®fwas subsequently found in
laboratory experiments.

The net #ect of the two reactions (6.52) is called tingle-a reaction,

3%He - 12C + 4, (6.53)

which hasQ = 7.275MeV. The energy release per unit massgis= Q/m(*°C) = 5.9 x 10" ergg,
which is about 110 smaller than for H-burning. Since the two reactions need to occur alinugt s
taneously, the @ reaction behaves as if it were a three-particle reaction and its rate isrponadto
n3. The energy-generation rate can be written as

€3¢ = (3¢ XZ’PZ A3, (6.54)

where the temperature dependence is described by the fagtowhich depends on the combined
cross-sections of the two reactions (6.5 ~ Y is the mass fraction ofHe. The temperature
sensitivity of the & rate is extremely high, with ~ 40 atTg ~ 1.0.

When a sfficient amount of2C has been created by the Beaction, it can capture a further
particle to form*0,

12C + *He - %0 + y, (6.55)
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which hasQ = 7.162 MeV, org,c = 4.32x 10" erg per gram of produce®O. In principle further
« captures oR®0 are possible, forming’Ne, but during normal helium burning conditions these are
very rare. Thé®C(a, v)'®0 reaction is stronglyféected by resonances and its rate is quite uncertain.
This is important because this reaction competes with thee@ction for availabléHe nuclei, as

illustrated by Fig. 6.6. The finai?C/*%0 ratio reached at the end of He-burning is therefore also
uncertain.

6.4.3 Carbon burning and beyond

In the mixture of mainly*?C and'®O that is left after helium burning, further fusion reactions can
occur if the temperature risesfBaiently. In order of increasing temperature, the nuclear burning
cycles that may follow are the following.

Carbon burning When the temperature exceefis> 5 the large Coulomb barrier fdfC + 12C
fusion can be overcome. This is a complicated reaction, in which first atedxcompound*Mg
nucleus is formed which can then decay via marffedent channels. The most important channels
are the following:

12C 1 12C - 2%Mg" - ONe+a  Q=4.616MeV (~ 50%)

(6.56)
—28Na+p Q=2238MeV (- 50%)

The protons and particles released find themselves at extremely high temperatures compared to
those needed for hydrogen and helium burning, and will almost immediagsdy wéth other nuclei

in the mixture, fromt2C to **Mg. Examples aré®Na(p @)*°Ne, ?°Ne(e, y)**Mg and chains such as
12C(p, v)'N(e*v)13C(a, n)*®0O, where the neutron will immediately react further. The overall energy
release is obtained from the combination of all these reactions and is roQghlyl13 MeV per
12C+12C reaction. The main products after exhaustion of all carbot®@&g°Ne and?*Mg (together

95% by mass fraction). These most abundant nuclei have equal rsioflaotons and neutron, but
some of the side reactions produce neutron-rich isotope$iiéde, 22Na and®*>?5Mg, so that after

C burning the overall composition has a ‘neutron exces ¢tnl, orue > 2).
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Neon burning The next nuclear burning cycle might be expected to be oxygen fusiv@/ieady

at somewhat lower temperaturBy(~ 1.5) a process called ‘neon burning’ is initiated by the photo-
disintegration of°Ne. At this temperature a fiicient number of photons have energies in the MeV
range which is sfiicient to break up the relatively fragifNe nucleus intd®0 and*He. This is
immediately followed by the capture of theparticle by anothet°Ne nucleus, thus:

Ne+y < %0+ o Q= -473MeV

6.57
Ne+a —» **Mg+y Q=09.31MeV (657)

The first reaction is endothermic, bufectively the two reactions combine t%®Ne — 160 + 2*Mg
with a net energy releas@ > 0. The composition after neon burning is mosfi@ and®*Mg (together
95% by mass fraction).

Oxygen burning At Tg ~ 2.0 fusion of*®0 nuclei sets in, which is in many ways analogous to the
carbon fusion reaction described above. Also in this case there ambmaction channels, the most
important ones being:

160+ 160 — 325" 5 28514 Q=959MeV (~ 60%)

(6.58)
—3pip  Q=7.68MeV (~ 40%)

Similar to carbon burning, the p and particles are immediately captured by other nuclei, giving
rise to a multitude of secondary reactions that eventually lead to a compositidly massisting

of 28Si and32S (together 90% by mass fraction). The net energy releas&@er 1°0 reaction is

Q ~ 16 MeV. Since some of the side reactions invgdfedecays and electron captures, the neutron
excess of the final mixture is further increased.

Silicon burning  The lightest and most abundant nucleus in the ashes of oxygen burifigi, isut
the Coulomb barrier fof®Si + 28Sj fusion is prohibitively high. Instead silicon burning proceeds by
a series of photo-disintegration, () anda-capture &, y) reactions wheffg 2 3. Part of the silicon
‘melts’ into lighter nuclei, while another part captures the reledstlto make heavier nuclei:

28Si (y, @) Mg (7, @) *°Ne (v, @) 1°0 (v, @) °C (y, @) 2

6.59
283 (@, 7) 32S (@, ) %Ar (@, y) “°Ca @, y) **Ti(a, y) ... %°Ni ( )

Most of these reactions are in equilibrium with each other, £8i + y & 2*Mg + «, and the
abundances of the nuclei can be described by nuclear equivalghts 8&ha equation for ionization
equilibrium. ForT > 4 x 10°K a state close tauclear statistical equilibrium (NSEan be reached,
where the most abundant nuclei are those with the lowest binding ersengstrained by the total
number of neutrons and protons present. The final composition is then rPfd&tipecause/ip > 1
(due top-decays andecaptures during previous burning cycles).

6.5 Neutrino emission

Neutrinos play a special role because their cross-section for interagtibmormal matter is ex-
tremely small. The neutrinos that are released as a by-product of nuebsztions have typical
energies in the MeV range, and at such energies the interaction ed#sasiso, ~ 10**cn?.
The corresponding mean free path in matter at depsigynumy, is ¢, = 1/(no,) = umy/(oo,) ~
2 x 10%%cm/p, for u ~ 1. Even at densities as high atcn?, this givest, ~ 3000R,. Therefore
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any neutrino produced in the interior of a normal star leaves the star withi@uaction, carrying
away its energy. The energy of neutrinos therefore has to be tregiachtaly from other forms of
energy, which are transported by #@dsive process due to a temperature gradient.

As mentioned before, the energy loss by neutrinos that are produceadtl@an reactions are
conventionally taken into account by subtracting the neutrino energy thentotal energy release
of a reaction. In other words, thg,c term in the energy balance equation (5.4) is reduced and no
separate, term is needed for these neutrinos.

However, also in the absence of nuclear reactispsntaneous neutrino emissioan occur at
high densities and temperatures as a result of weak interaction prac@sgeg to the fundamental
coupling of the electromagnetic and weak interactions, for each electrauesgs that emits a photon,
there is a very small but finite probability of emitting a neutrino-antineutrino paiead of a photon.
The theory of weak interactions predicts this probability to be

POY) _ _18( E )“
) 3% 10 ) (6.60)

2
whereE, is the neutrino energy. These emissions represent a direct loss of energy from the stellar
interior (a positive, in eq. 5.4) and thus give rise tmolingof the stellar matter.

The following processes of this type are important in stellar interiors (seid Sec. 9.5 or
KrepeEnHAHN Sec. 18.6 for more details):

Photo-neutrinos In the process of electron scattering, discussed in Sec. 5.3.1, a phatoatdis
tered by a free electron. There is a tiny probability (6.60) that the outgdiotpp is replaced by

a neutrino-antineutrino pairy + € — € + v + v. The average neutrino energys ~ kT, and
therefore the probability of producingva pair instead of a photon is proportional T8. The rate of
neutrino emission is also proportional to the number density of photgns, T3, so thate, is a very
strong function of temperature, roughdy o« T8. The process of photo-neutrino emission results in
significant cooling of stellar matter @t> 2 x 18 K.

Pair annihilation neutrinos At temperatures] > 10° K, energetic photons can undergo pair cre-
ation (Sec. 3.6.2), quickly followed by annihilation of the electron-positi@n @ his normally yields
two photons and these processes reach an equilibsiuny (- e* + 7). Once in every 10'° cases,
however, the annihilation produces a neutrino-antineutrino pai# € — v + v, which results in a
small one-way leakage out of the equilibrium exchange. This repregeitsportant energy loss in a
very hot, but not too dense plasma ihcreases even more strongly witlthan for photo-neutrinos,
but is inversely proportional tp).

Plasma-neutrinos In a dense plasma, an electromagnetic wave can generate collective osaillatio
of the electrons. The energy of these waves is quantized and a quahthis @scillation energy is
called a ‘plasmon’. The plasmon usually decays into photons, but agamitharfinite probability
(6.60) of vv emission. This process of neutrino energy loss dominates at high denbiy, the
electron gas is degenerate.

Bremsstrahlung neutrinos Bremsstrahlung is the emission of a photon by an electron that is
slowed down in the Coulomb field of an atomic nucleus (the inverse of fe=eatosorption, Sec. 5.3.1).
The small probability of’v emission instead of a photon gives rise to significant cooling at low tem-
perature and very high density. Unlike the processes discussed, &revasstrahlung depends on
the presence of nuclei and therefore is mdfiient for heavy elements (the neutrino emission rate
is oc Z2/A).
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The Urca process This process is dlierent from the ones discussed above in that it involves nuclear
transformations. Certain nucleZ,(A) can capture an electron and subsequently undegydecay
back to the original nucleus,

ZA+e - (Z-1LA+v

(Z-1LA - @EZA+e +v. (6.61)

The net result is that the original particles are restored and two neuttirecsmitted. Only certain
nuclei are suitable for this process: the nucletis1, A) must be3-unstable and have a slightly higher
rest energy thanZ( A), and the captured electron must be energetic enough to make the fitgimea
possible. These conditions are quite restrictive and the Urca proces®mseaquential under most
conditions found in stars, but it can play a role in very late stages of evolatigery high densities.

Suggestions for further reading

The contents of this chapter are also covered by Chapter Qe and by Chapter 18 of ikpen-
HAHN.

Exercises

6.1 Conceptual questions: Gamow peak
N.B. Discuss your answers to this question with your felltmdents or with the assistant.
In the lecture (see eq. 6.22) you saw that the reaction rgm@sortional to

8\"? S(E) ™ _E/KT o~b/EY2
<O—U>:(ﬁ) K2 J, € € dE,

where the factob = 7(2m)Y/22,Z,€?/ 1, andm = mymy/(my + my) is the reduced mass.

(@) Explain in general terms the meaning of the teemékT ande?/E"*,
(b) Sketch both terms as function Bf Also sketch the product of both terms.

(c) The reaction rate is proportional to the area under tbeuymt of the two terms. Draw a similar
sketch as in question (b) but now for a higher temperaturpldiixwhy and how the reaction rate
depends on the temperature.

(d) Explain why hydrogen burning can take place at lower teragres than helium burning.
(e) Elements more massive than iron, can be produced byameaaptures. Neutron captures can
take place at low temperatures (even at terrestrial terhpes). Can you explain why?

6.2 Hydrogen burning
(a) Calculate the energy released per reaction in MeV@hlue) for the three reactions in the ppl
chain. (Hint: first calculate the equivalentmfc? in MeV.)

(b) What is the total ective Q-value for the conversion of fodH nuclei into*He by the pp1 chain?
Note that in the first reactiotd + *H — 2H + e* + v) a neutrino is released with (on average) an
energy of 0.263 MeV.

(c) Calculate the energy released by the ppl chain ifgerg

(d) Will the answer you get in (c) beftierent for the pp2 chain, the pp3 chain or the CNO cycle? If
so, why? If not, why not?
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6.3 Relative abundances for CN equilibrium

Estimate the relative abundances of the nuclei CN-eqiulibif their lifetimes against proton capture
atT = 2x 10K are: 7p(*°N) = 30 yr, 7(*3C) = 1600 yr,7p(*>C) = 6600 yr andrp(**N) = 6 x 1P yr.

6.4 Helium burning

(a) Calculate the energy released per gram for He burningéogt reaction and thé’C + « reaction,
if the final result is a mixture of 50% carbon and 50% oxygenrtiass fraction).

(b) Compare the answer to that for H-burning. How is thistezlao the duration of the He-burning
phase, compared to the main-sequence phase?

6.5 Comparing radiative and convective cores
Consider a H-burning star of mabt = 3M, with a luminosityL of 80L,, and an initial composition
X = 0.7 andZ = 0.02. The nuclear energy is generated only in the central 108heofmass, and the
energy generation rate per unit magsge, depends on the mass coordinate as

m
Enuc = €°(1_ o.1|v|)

(a) Calculate and draw the luminosity profileas a function of the mass). Express in terms of
the known quantities for the star.

(b) Assume that all the energy is transported by radiati@ic@ate the H-abundance as a function of
mass and timexX = X(m,t). What is the central value fof after 100 Myr? DrawX as a function
of m. (Hint: the energy generation per unit masQis 6.3 x 10' erg g1).

(c) Inreality,enycis so high that the inner 20% of the mass is unstable to coivedtiow, answer the
same question as in (b) and draw the néwrofile as a function ofn. By how much is the central
H-burning lifetime extended as a result of convection?
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