Astronomical Magnitudes and

Photometry

Magnitudes

- Introduced by Greek astronomers (probably first Hipparchus); used by Ptolemy in the Almagest around I50 A.D.
- Scale from I-6, where 6 is the faintest (visible to the naked eye)
- Extension to fainter stars required more precise definition:
- N. Pogson (I856, MNRAS I7, I2) proposed to use a "light ratio" of 2.5 I 2 between successive magnitude steps - still used today ($5 \mathrm{mag}=$ factor 100 in flux)
- Absolute magnitude (Kapteyn 1902; Publ. Gron. II, I): Apparent magnitude a star would have for a parallax of $0.1 "(D=10 \mathrm{pc})$

Magnitudes

- The fluxes $\left(F_{1}\right.$ and F_{2}) and apparent magnitudes (m_{1} and m_{2}) of two objects are related as:

$$
m_{1}-m_{2}=-2.5 \log _{10}\left(\frac{F_{1}}{F_{2}}\right)
$$

- If the zero-point (zp) of the scale is known, then

$$
m=-2.5 \log _{10} F+\mathrm{zp}
$$

- The star Vega is often used as a reference: $m($ Vega $) \equiv 0$
- Sun:V = -26.7
- Full moon:V = - 12.6
- Venus:V = -4.7
- Brightest star (Sirius):V = - 1.47
- Faintest stars visible to naked eye: $\mathrm{V}=6$
- Faintest objects detected in Hubble Ultra Deep Field: V ~ 29.5

Photometric Systems

- Magnitude systems:

Defined by sets of standard stars. E.g. UBVRI, roughly normalised to Vega.

- Observations must be transformed from the instrumental system of the observer to the standard system.

Bessell 2005

UBV system

Filter \quad Definition $\quad \lambda_{\text {eff }}[\mathrm{nm}] \quad \Delta \lambda[\mathrm{nm}]$

U Corning $9863 \quad 365 \quad 70$
 B Corning $5030+440 \quad 100$ Schott GG 13 V Corning $3384550 \quad 90$

Defined by Johnson \& Morgan (1953), using telescope with aluminised mirrors and RCA IP2 I photomultiplier tube.
U-band filter blue cut-off defined by atmosphere! Difficult to reproduce.

UBV Filter system

Fig. 1.-Response of the photometer to equal energy at all wave lengths Johnson \& Morgan 195 I

Sensitivity of human eye

Colours

- Colours defined analagously to magnitudes, e.g.

$$
\begin{aligned}
& B-V=-2.5 \log _{10}\left(\frac{F_{B}}{F_{V}}\right)+\mathrm{zp}_{\mathrm{B}-\mathrm{V}} \\
& U-B=-2.5 \log _{10}\left(\frac{F_{U}}{F_{B}}\right)+\mathrm{zp}_{\mathrm{U}-\mathrm{B}}
\end{aligned}
$$

Atmospheric extinction

$z=$ zenith distance
$\mathrm{X}=\operatorname{airmass}(\hat{=} \mathrm{I}$ at $\mathrm{z}=0)=\mathrm{I} / \cos \mathrm{z}=\sec \mathrm{z}$ (for $\mathrm{z}<60^{\circ}$)
Observed flux: $F_{\text {obs }}=F_{0} \exp \left(-\tau_{0} X\right)$
$\mathrm{T}_{0}=$ optical depth of atmosphere at $\mathbf{z = 0}$
$\mathrm{F}_{0}=$ Flux outside atmosphere
Observed mag.: $m_{\text {obs }}=-2.5 \log _{10}\left[F_{0} \exp \left(-\tau_{0} X\right)\right]+$ const

$$
\begin{aligned}
& =m_{0}-2.5 \log _{10}\left[\exp \left(-\tau_{0} X\right)\right] \\
& =m_{0}+\frac{2.5}{\ln 10} \tau_{0} X \quad=m_{0}+k X
\end{aligned}
$$

$$
\begin{aligned}
& m_{0}=m_{\mathrm{obs}}-k X \\
& \mathrm{k}=\text { extinction coefficient }
\end{aligned}
$$

How to determine k:

- Since $m_{\text {obs }}=m_{0}+k X$, the extinction coefficient k can be measured by observing a star at different airmass values and plotting $m_{\text {obs }}$ versus X .

Atmospheric extinction

Extinction is
wavelength-dependent.
Typical values:
$\mathrm{ku}^{\prime}=0.4 \mathrm{mag}$ airmass $^{-1}$
$\mathrm{k}_{\mathrm{B}}=0.2 \mathrm{mag}_{\mathrm{airmass}}{ }^{-1}$
$\mathrm{kv}=0.1 \mathrm{mag}_{\mathrm{airmass}}{ }^{-1}$
k_{λ} increases strongly
below ~3400 Å
(atmospheric cut-off)

Near-IR extensions to the UBV system must take into account atmospheric transmission.

Extensions to UBV

Filter	R	I	J	K	L	M	N	Q
$\lambda_{\text {eff }}[\mathrm{nm}]$	700	900	1250	2200	3400	4900	10200	20000
$\Delta \lambda[\mathrm{~nm}]$	220	240	380	480	700	300	5000	5000

Extensions to original UBV system defined by Johnson in I960s

Filter	R	I	Z	J	H	K	L	M
$\lambda_{\text {eff }}[\mathrm{nm}]$	638	797	908	1220	1630	2190	3450	4750
$\Delta \lambda[\mathrm{~nm}]$	160	149	96	213	307	390	472	460

Johnson-Cousins-Glass filters, optimised for modern detectors
Beware of different filter definitions - most people now use the Johnson-Cousins-Glass system.

Defining the zero-points

I. Normalise to flux of a particular star (or stellar type). Typically A0 star (Vega), e.g. UBV system:

- $V_{V_{\text {ega }}}=0$ and $\mathrm{B}_{\mathrm{Vega}}=0, \mathrm{U}_{\mathrm{Vega}}=0$
(actually:V = 0.03 for Vega; Bessell et al. 1998)

2. Normalise to flat spectral energy distribution, either as a function of frequency or wavelength.

- E.g.ABmag system (used by Sloan, HST):

$$
\begin{aligned}
& \text { ABmag }=-2.5 \log _{10} f_{v}-48.60 \\
& m_{u}=-2.5 \log _{10} f_{u}-48.6, \\
& m_{g}=-2.5 \log _{10} f_{g}-48.6, \text { etc.. }
\end{aligned}
$$

$$
\left[\mathrm{ff}_{\mathrm{v}}\right]=\left[\mathrm{ergs} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{~Hz}^{-1}\right]
$$

- STmag system (used by HST):

STmag $=-2.5 \log _{10} f_{\lambda}-21.10$

$$
\left[\mathrm{f}_{\lambda}\right]=\left[\text { ergs cm }{ }^{-2} \mathrm{~s}^{-1} \AA^{-1}\right]
$$

$F(\lambda)$ versus $F(v)$

$$
\begin{aligned}
f & =f_{\nu} d \nu \quad f_{\nu} d \nu=f_{\lambda} d \lambda \\
f & =f_{\lambda} d \lambda \\
\frac{f_{\nu}}{f_{\lambda}} & =\frac{d \lambda}{d \nu} \\
\lambda & =c / \nu \\
d \lambda / d \nu & =-c / \nu^{2} \\
\frac{f_{\nu}}{f_{\lambda}} & =c / \nu^{2}=\lambda^{2} / c
\end{aligned}
$$

All magnitude systems normalised to same flux at V-band (550 nm)

Detectors for photometry

- Eye (Cheap, but relative accuracy only $\sim 0.1-0.5 \mathrm{mag}$; no permanent record of "data")
- Photographic plates (relative accuracy ~ 0.01 mag; can be exposed for a long time to record faint objects; provide permanent record of data; basically no limit on size. However, response is nonlinear, calibration difficult, not very sensitive (Q.E.~|\%))
- Photomultipliers (photon-counting, linear, moderate Q.E. ($\sim 25 \%$), but can only measure one object at the time.)
- Charge-Coupled Devices (CCDs) (linear, high Q.E. (up to $\sim 90 \%$), now available in large formats and can be mosaic'ed. Detector of choice in the UV/optical for most applications)
- Infrared detectors (various semiconductors; behaviour similar to CCDs although smaller and linearity / noise characteristics not generally as good)

The CCD detector

INCIDENT LIGHT

Electron-hole pairs generated via photoelectric effect during integration.

Kept in place by positive charge at "A" and negative charge at " B ".

Schematic illustration of a single CCD pixel

CCD Primer, Eastman Kodak (200I)

At the end of the exposure, the charges are shifted across the CCD by cycling the voltages on electrodes.

CCD "read out" one column at the time, pixel by pixel. Charges converted to a voltage and then to 16 -bit "Digital Numbers" via an analogue-to-digital converter.

CCD Characteristics -

- Typical CCD: 2048x2048 pixels, i.e. 4096 transfers needed. Very high pixel-to-pixel Charge Transfer Efficiency (CTE) required!
- If CTE $=99.9 \%$: Only $0.999 \wedge 4098<2 \%$ of charge left after read-out!
- CTE $>99.9999 \%$ required to preserve $>99 \%$ of charge
- Can be an issue for space-based detectors: CTE degrades over time due to radiation damage.

Radiation damage in HST image

CCD Characteristics - II

- High quantum efficiency: $>90 \%$ of photons create electron-hole pairs.
- Large dynamic range - "full well capacity" typically $\sim 10^{5}$ electrons
- Linear response - simple conversion between "counts" and flux/intensity
- Spectral range $\sim 300 \mathrm{~nm}$ - I $\mu \mathrm{m}$
- Largest current sizes used in astronomy typically ~2048x4096 pixels, but several CCDs can be mounted together in mosaic cameras.

CCD Characteristics - III

- Images typically stored as "FITS" files with I6-bit "Digital Number" data values (0-65535)
- To convert DN to actual electrons per pixel:
- Subtract"Bias" level
- Multiply by "Gain" factor
- All CCD images suffer from a (typically small) random "read-out noise". For modern CCDs this is usually only a few electrons per pixel.
- Dark current also present - can usually be reduced to negligible levels by cooling CCD with liquid Nitrogen
- CCDs are also sensitive to cosmic rays - can be filtered out if multiple exposures are taken.

Left: raw exposures (220 s each) from HST.

Below: combination of 3 exposures. Note that cosmic rays have disappeared.

Combined exposure

Flat-fielding of CCD images

- Not all pixels have the same sensitivity. Correct by dividing with a uniformly illuminated image - flatfield e.g. of the twilight sky.

Counting Digital Numbers

Science CCD image (e.g. Johnson V)

Measure:
DN ${ }_{\text {ap }}$ counts in aperture
DN ${ }_{\text {bkg }}$ counts in background
Counts from star:

$$
D N_{\text {star }}=D N_{a p}-D N_{\text {bkg }} * R_{a p}^{2} /\left(R_{b o}^{2}-R_{b i}^{2}\right)
$$

Instrumental magnitude:

$$
\mathrm{m}_{\mathrm{v}, \mathrm{i}}=-2.5 \log \mathrm{DN} N_{\text {star }} / T_{\text {exp }}-\mathrm{kv}^{*} *
$$

Standard magnitude:

$$
\begin{aligned}
& m v=m v_{\mathrm{i}}+\mathrm{zv} \\
& \mathrm{~T}_{\exp }=\text { exposure time } \\
& z \mathrm{v}=\text { zero-point }
\end{aligned}
$$

Standard star

To determine zv , observe standard star with known magnitude mv,std:

Instrumental magnitude: $\mathrm{mv}_{\mathrm{v}, \mathrm{i}}=-2.5 \log \mathrm{D} \mathrm{N}_{\mathrm{star}} / \mathrm{T}_{\text {exp }}-\mathrm{kv}{ }^{*} \mathrm{X}$

Zero-point:

$$
z v=m v, s t d-m v, i
$$

Complications..

- Generally, the filter system used by the observer is not a perfect match to the standard system.
- The zero-point will depend on the spectrum of the star in question.

StandardV filter

Some Observer's V filter

A simple offset is not enough to transform from observer's to standard system.

$$
V_{\text {std }}=V_{i}+F(S E D)
$$

SED = Spectral Energy Distribution

$$
\text { E.g. } \begin{aligned}
V_{\text {std }} & =V_{i}+z v+c v(B-V) \\
B_{\text {std }} & =B_{i}+z_{B}+c_{B}(B-V)
\end{aligned}
$$

etc..

Real examples -WFPC2

HST/WFPC2 F439W

$$
\begin{aligned}
& B=m_{\mathrm{F} 439 \mathrm{~W}}+20.070+0.003 \times(B-V)-0.088 \times(B-V)^{2} \\
& V=m_{\mathrm{F} 555 \mathrm{~W}}+21.725-0.060 \times(B-V)+0.033 \times(B-V)^{2}
\end{aligned}
$$

Holtzman et al. (1995)

Error estimation, S / N, limiting magnitudes

Error on magnitude

$$
\begin{aligned}
(\sigma m)^{2} & =\left(\frac{\partial m}{\partial F}\right)^{2}(\sigma F)^{2} \quad \mathrm{~F}=\text { flux } \\
m & =-2.5 \log F+Z \\
\frac{\partial m}{\partial F} & =-2.5 \frac{\partial \log F}{\partial F}=-\frac{2.5}{\ln 10} \frac{1}{F} \\
\sigma m & =\frac{2.5}{\ln 10} \frac{\sigma F}{F} \approx 1.09 \frac{\sigma F}{F}
\end{aligned}
$$

Good approximation:

Error on magnitude is about equal to relative error on linear measured quantity (Flux, counts, etc.)

DN ("Digital Numbers") from star:

$$
\mathrm{DN}_{\mathrm{star}}=\mathrm{DN}_{\mathrm{ap}}-\mathrm{DN}_{\mathrm{bkg}} \times A_{\mathrm{ap}} / A_{\mathrm{bkg}}
$$

A_{ap} and $\mathrm{A}_{\mathrm{bkg}}=$ Area of aperture and background

$$
\begin{aligned}
\mathrm{S} / \mathrm{N} & =(\text { Signal }) /(\text { Noise }) \\
& =\mathrm{DN}_{\text {star }} / \sigma\left(\mathrm{DN}_{\text {star }}\right)
\end{aligned}
$$

Including Poisson noise from background: $\begin{aligned} {\left[\sigma\left(\mathrm{DN}_{\mathrm{star}}\right)\right]^{2} } & =\left[\sigma\left(\mathrm{DN}_{\mathrm{ap}}\right)\right]^{2}+\left[\sigma\left(\mathrm{DN}_{\mathrm{bkg}} \times A_{\mathrm{ap}} / A_{\mathrm{bkg}}\right)\right]^{2} \\ & =\left[\sigma\left(\mathrm{DN}_{\mathrm{ap}}\right)\right]^{2}+\left[\sigma\left(\mathrm{DN}_{\mathrm{bkg}}\right) \times A_{\mathrm{ap}} / A_{\mathrm{bkg}}\right]^{2}\end{aligned}$
$\mathrm{DN}_{\mathrm{bkg}} \propto A_{\mathrm{bkg}} \Rightarrow \sigma\left(\mathrm{DN}_{\mathrm{bkg}}\right) \propto \sqrt{A_{\mathrm{bkg}}}$
Random error on background can be minimised by using large background annulus.

$\left(\sigma D N_{s t a r}\right)^{2}=\left(\sigma D N_{a p}\right)^{2}+\left(A_{a p} / A_{b k g} \sigma D N_{\text {bkg }}\right)^{2}$

First term:

$$
\begin{array}{rl}
\left(\sigma D N_{\mathrm{ap}}\right)^{2}=\left(\sigma D N_{\text {sky }}\right)^{2}+\left(\sigma D N_{\text {star }}\right)^{2} & \mathrm{D} \mathrm{~N}_{\text {sky }}=\text { sky counts within aperture } \\
\sigma\left(D N_{\text {sky }}\right) & =\sigma(\mathrm{bkg}) \sqrt{A_{\mathrm{ap}}} \quad \quad \sigma(\mathrm{bkg})=\text { std dev of background } \\
D N_{\text {star }} & =N_{\text {star }} / \text { Gain } \Rightarrow \quad \mathrm{N}_{\text {star }}=\text { Number of photons from star } \\
\sigma\left(D N_{\text {star }}\right)=\sqrt{N_{\text {star }}} / \text { Gain }=\sqrt{D N_{\text {star }} / \text { Gain }} \quad \text { Poisson stat. } \\
\left(\sigma D N_{\mathrm{ap}}\right)^{2}=A_{\mathrm{ap}}(\sigma(\mathrm{bkg}))^{2}+D N_{\text {star }} / \text { Gain }
\end{array}
$$

Second term:

$D N_{\mathrm{bkg}}=A_{\mathrm{bkg}}\langle\mathrm{bkg}\rangle$
<bkg> = mean background level
$\sigma\left(D N_{\mathrm{bkg}}\right)=A_{\mathrm{bkg}} \sigma(\langle\mathrm{bkg}\rangle)=A_{\mathrm{bkg}} \frac{\sigma(\mathrm{bkg})}{\sqrt{A_{\mathrm{bkg}}}}=\sigma(\mathrm{bkg}) \sqrt{A_{\mathrm{bkg}}}$

Uncertainty on mean
sky level due to
noise in sky annulus
$\sigma m=1.09 \frac{\sqrt{D N_{\mathrm{star}} / \text { Gain }+(\sigma(\mathrm{bkg}))^{2} A_{\mathrm{ap}}+(\sigma(\mathrm{bkg}))^{2} A_{\mathrm{ap}}^{2} / A_{\mathrm{bkg}}}}{D N_{\mathrm{star}}}$

Trade-offs:

- Smaller aperture -> less background noise. If aperture too small, some fraction of signal from star will be lost and it becomes increasingly critical to have star exactly centered in aperture
- Larger background annulus -> better determined background. However, if background annulus too large then nonuniform background may cause problems.

Exposure time estimation

Exposure time estimation

- Goal: to estimate for a given telescope+instrument I. the limiting magnitude (for a given S / N) in a given amount of integration time

2. The integration time required to reach a given limiting magnitude

- Requires estimates of expected counts (from source) and background noise

Assuming no uncertainty on mean sky level:

$$
\begin{aligned}
S / N & =\frac{N_{\text {star }}}{\sqrt{N_{\text {star }}+N_{\text {sky }}+\sigma_{\text {instr }}^{2}}} \\
\mathrm{~N}_{\text {star }}= & \text { photons detected from star } \\
\mathrm{N}_{\text {sky }}= & \text { photons from sky background in aperture } \\
\sigma_{\text {instr }}= & \text { instrumental noise (e.g. read-out noise, }, \\
& \text { dark current) }
\end{aligned}
$$

Flux to counts:

Photon energy:
Flux density to [photons $\mathrm{m}^{-2} \AA^{-1} \mathrm{~s}^{-1}$]: $\quad N_{p}=f_{\lambda} \frac{\lambda}{h c}$

Number of photons in bandpass
(where T_{λ} is the transmission of bandpass) $\quad N_{p, b p}=\frac{1}{h c} \int_{\lambda_{1}}^{\lambda_{2}} T_{\lambda} f_{\lambda} \lambda d \lambda$

Can be approximated by

$$
N_{p, b p} \approx \frac{f_{\lambda} \lambda_{\mathrm{eff}}}{h c} T_{\mathrm{sys}} \Delta \lambda=\frac{\Delta \lambda}{\lambda_{\mathrm{eff}}} \frac{f_{\nu}}{h} T_{\mathrm{sys}}
$$

For $T_{\text {sys }}=$ system throughput, $\Delta \lambda=$ width of filter, $\lambda_{\text {eff }}=$ effective wavelength

Estimating counts:

$N_{p, b p} \approx=\frac{\Delta \lambda}{\lambda_{\text {eff }}} \frac{f_{\nu}}{h} T_{\text {sys }}$
Number of detected photons:
$N_{\text {det }}=N_{\mathrm{p}, \mathrm{bp}} A_{\mathrm{tel}} t_{\mathrm{exp}}$
$\mathrm{A}_{\text {tel }}=$ telescope collecting area
$\mathrm{t}_{\text {exp }}=$ exposure time

Filter band	λ_{0}	Absolute flux density for mag $=0.00$ $\mathrm{~F}_{\nu}$
U	0.36μ	$1.81 \times 10^{-23} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{hz}^{-1}$
B	0.44μ	4.26×10^{-23}
V	0.55μ	3.64×10^{-23}
R_{C}	0.64μ	3.08×10^{-23}
I_{C}	0.79μ	2.55×10^{-23}
104	1.04μ	2.00×10^{-23}
K	$2.2 \mathrm{\mu}$	6.49×10^{-24}

Bessell 1979
E.g. Johnson $V\left(\lambda_{\text {eff }}=550 \mathrm{~nm}, \Delta \lambda=88 \mathrm{~nm}\right)$
$N_{V}=10^{-0.4 \mathrm{~V}} 8.8 \times 10^{9} \mathrm{~T}_{\text {sys }} \mathrm{A}_{\text {tel }} \mathrm{t}_{\text {exp }}$.
$\mathrm{T}_{\text {sys }}=\mathrm{T}_{\text {atm }} \mathrm{T}_{\text {opt }} \mathrm{QE}$
$\mathrm{T}_{\mathrm{atm}}=$ atmospheric transmission
$\mathrm{T}_{\mathrm{opt}}=$ transmission of optical system
QE = Quantum efficiency of detector

$$
\begin{aligned}
& S / N=\frac{N_{\text {star }}}{\sqrt{N_{\text {star }}+N_{\text {sky }}+\sigma_{\text {instr }}^{2}}} \\
& N_{\text {star }}=10^{-0.4 V_{\text {star }}} \times 8.8 \times 10^{9} \times T_{\text {atm }} \times T_{\text {opt }} \times \mathrm{QE} \times A_{\text {tel }} \times t_{\text {exp }} \\
& N_{\text {sky }}=\pi r_{\mathrm{ap}}^{2} 10^{-0.4 \mu_{V, \text { sky }}} \times 8.8 \times 10^{9} \times T_{\text {atm }} \times T_{\text {opt }} \times \mathrm{QE} \times A_{\text {tel }} \times t_{\text {exp }} \\
& r_{\text {ap }}=\text { aperture radius in arcsec } \\
& \mu_{\mathrm{V}, \text { sky }}=\text { sky brightness (in mag arcsec }{ }^{-2} \text {) } \\
& \sigma_{\text {instr }}^{2}=\left(\operatorname{ron}^{2}+n_{\text {dark }} t_{\text {exp }}\right) \pi r_{\text {ap }}^{2} / \operatorname{scl}^{2} \\
& \text { ron = read-out noise (in } \mathrm{e}^{-} \text {pixel }^{-1} \text {) } \\
& \mathrm{n}_{\text {dark }}=\text { dark current (in } \mathrm{e}^{-} \text {pixel } \mathrm{l}^{-1} \mathrm{~s}^{-1} \text {) } \\
& \text { scl }=\text { image scale (in arcsec pixel }{ }^{-1} \text {) }
\end{aligned}
$$

Example I (ground-based observation, 8 m telescope):
8 m telescope $\rightarrow A_{\text {tel }}=50 \mathrm{~m}^{2}$
$\mathrm{kv}=0 . \mathrm{I}, \mathrm{X}=\mathrm{I} .0 \rightarrow \mathrm{~T}_{\mathrm{atm}}=0.9 \mathrm{l}$
$t_{\text {exp }}=1000 \mathrm{~s}, \mathrm{~T}_{\text {opt }}=50 \%, \mathrm{QE}=90 \%$
Pixel scale $=0.2$ " pixel $^{-1}$
Read noise: ron=5 e- pixel ${ }^{-1}$
Sky background $=22$ mag arcsec $^{-2}$
Photometry of $\mathrm{V}=25$ star in $\mathrm{r}_{\mathrm{ap}}=$ |" aperture:
$N_{\text {star }}=18000$
$N_{\text {sky }}=286000 * \pi^{*} r_{\text {ap }}{ }^{2}=897000$
$\sigma_{\text {instr }}{ }^{2}=\operatorname{ron}^{2} * \pi * r_{a p}^{2} / 0.2^{2}=1960$
Predicted $\mathrm{S} / \mathrm{N}=19$ (noise dominated by sky)

Example 2 (Space-based observation, HST):
2.4 m telescope $\rightarrow \mathrm{A}_{\text {tel }}=18 \mathrm{~m}^{2}$
$\mathrm{T}_{\mathrm{atm}}=\mathrm{I} .00$
$\mathrm{t}_{\text {exp }}=1000 \mathrm{~s}, \mathrm{QE} * \mathrm{~T}_{\text {opt }}=40 \%$,
Pixel scale $=0.045$ " pixel $^{-1}$
Read noise: ron=5 e- pixel ${ }^{-1}$
Sky background $=22.5 \mathrm{mag}_{\mathrm{arcsec}}{ }^{-2}$
Photometry of $\mathrm{V}=25$ star in $\mathrm{r}_{\mathrm{ap}}=0.2^{\prime \prime}$ aperture:
$\mathrm{N}_{\text {star }}=1700$
$\mathrm{N}_{\text {sky }}=17000 * \pi^{*} \mathrm{r}_{\text {ap }}{ }^{2}=2170$
$\sigma_{\text {instr }}{ }^{2}=\operatorname{ron}^{2} * \pi^{*} r_{\text {ap }}{ }^{2} / 0.045^{2}=155 \mid$
Predicted $\mathrm{S} / \mathrm{N}=23$

Better spatial resolution (and darker background in space) makes HST competitive with the largest ground-based telescopes.

$$
S / N=\frac{N_{\mathrm{star}}}{\sqrt{N_{\mathrm{star}}+N_{\mathrm{sky}}+\sigma_{\mathrm{instr}}^{2}}}
$$

Typically, $\mathrm{N}_{\text {sky }}$ dominates over $\mathrm{N}_{\text {star }}$ and $\sigma_{\text {instr }}$ for faint objects observed in broad-band filters.
$N_{\text {star }} \propto F_{\text {star }} t_{\text {exp }}$
$N_{\text {sky }} \propto I_{\text {sky }} r_{\text {ap }}^{2} t_{\text {exp }}$

$$
\begin{aligned}
\mathrm{F}_{\text {star }} & =\text { flux from star } \\
\mathrm{I}_{\text {sky }} & =\text { sky intensity }
\end{aligned}
$$

For sky-dominated observations:

$$
S / N \propto \frac{F_{\text {star }} t_{\text {exp }}}{r_{\text {ap }} \sqrt{I_{\text {sky }} t_{\text {exp }}}}=\frac{F_{\text {star }}}{\sqrt{I_{\text {sky }}}} \frac{\sqrt{t_{\text {exp }}}}{r_{\text {ap }}}
$$

S / N is inversely proportional to $r_{\text {ap }}$ for sky-dominated observations.
If $r_{a p}$ increases by factor x (e.g. because of poor seeing), $t_{\text {exp }}$ must increase by x^{2} to reach same S / N !

Simulated 1000 s V-band exposures with an 8 m telescope

Seeing $=0.5$ "

Seeing $=1.0 "$

Seeing $=2.0^{\prime \prime}$

$$
V=23 \quad V=24 \quad V=25 \quad V=26
$$

Output from ESO/VLT FORSI Exposure Time Calculator ($\mathrm{V}=25,3$ days from new Moon, $\mathrm{t}_{\text {exp }}=1000 \mathrm{~s}$)

