
ASSIGNMENTS Week 9 (F. Saueressig)

Cosmology 16/17 (NWI-NM026C)

Dr. S. Larsen and Dr. F. Saueressig

Exercise 1 is a hand-in assignment. Please submit your solution to your teaching assistant before

the tutorial on Wendsday, 16th November. Present your solution in a readable way.

Exercise 1: Derive the Friedmann equations from Einstein’s equations (hand-in)

Einstein’s equations are given by

Rµν − 1
2 gµν R = 8πGTµν (1)

with the Ricci tensor given by

Rµν ≡ ∂λ Γλµν − ∂ν Γλλµ + ΓλσλΓσµν − ΓλσνΓσλµ (2)

and R ≡ gµνRµν denoting the Ricci scalar. The matter contribution is encoded in the stress-

energy tensor Tµν . The most general ansatz for a homogeneous and isotropic universe is given by

the Friedmann-Robertson-Walker (FRW) metric, encoded in the line element

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
. (3)

Here k is a numerical constant determining weather the universe is closed (k = +1), flat (k = 0),

or open (k = −1) and all the dynamics of the model is captured by the time-dependence of the

scale factor a(t). The stress-energy tensor is modeled by a perfect fluid with energy density ρ(t)

and pressure p(t) which is at rest with respect to the cosmic coordinates

Tµ
ν = diag [−ρ(t) , p(t) , p(t) , p(t) ] . (4)

a) Evaluate Einstein’s equations for the FRW metric (3) and the homogeneous and isotropic

stress-energy tensor (4). Defining the Hubble parameter H ≡ ȧ
a where the dot denotes a

derivative with respect to cosmic time t, show that the dynamics of a(t) is governed by the

Friedmann equations

H2 =
8πG

3
ρ− k

a2
,

ä

a
=− 4

3
πG (ρ+ 3p) .

(5)

Hint: The first equation results from the tt-part of Einstein’s equations while the second

one stems from the spatial components of Einstein’s equations, e.g., the rr-part.



b) Show that the conservation of the stress-energy tensor (4), DµT
µν = 0 entails

d

dt

[
ρ(t) a(t)3

]
= −p(t) d

dt

[
a(t)3

]
. (6)

c) Show that the three equations (5) and (6) are not independent. Combine the first equation

in (5) and (6) to derive the second equation in (5).

Exercise 2: Singularities in the Friedman-Robertson-Walker (FRW) universe

The Big Bang singularity corresponds to a situation where the scale factor a(t) goes to zero and

the universe is at infinite density. Consider the flat FRW universe where k = 0:

a) Given that the cosmic fluid satisfies the equation of state p(t) = wρ(t), determine the con-

dition on w so that the universe has a Big Bang singularity in the past.

b) Find the de Sitter solution of the Friedman equation by determining the scale factor as a

function of time for the case that there is only vacuum energy ρv > 0 with w = −1. Does

the model have an initial Big Bang singularity?

Exercise 3: A simplified model of our universe

Study the flat FRW universe for the case when there is no radiation, ρr = 0, but both vacuum

energy and matter.

a) Defining the Hubble constant H0 ≡ ȧ(t0)/a(t0) show that the Friedman equation (evaluated

today at time t0) requires that the total energy density is ρcrit =
3H2

0
8π .

b) Use the critical energy density to introduce the relative fractions for the matter density

Ωm ≡ ρm(t0)/ρcrit and Ωv ≡ ρv(t0)/ρcrit. Fixing the scale factor today a(t0) = 1 use the

energy conservation law to express the total energy density in terms of the relative fractions

and the scale factor a(t).

c) Use this expression to cast the Friedman equation into the form

1

2H2
0

ȧ2 + Ueff(a) = 0 . (7)

What is the explicit form of Ueff(a) appearing in this model? Try to find an implicit expres-

sion for a(t) in terms of H0, Ωm and Ωv = 1− Ωm.

d) How large would Ωv have to be for the universe to be accelerating (ä > 0) at the present

time?
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Exercise 4: Light from distant galaxies

Consider a galaxy whose light we see today at time t0 that was emitted at time te. Show that the

present proper distance to the galaxy (along a curve of constant t0) is

d = a(t0)

∫ t0

te

dt

a(t)
. (8)

Exercise 5: Vacuum energy from quantum gravity?

Could the vacuum mass-energy density of the universe be a consequence of quantum gravity?

While this seems intuitively natural, this explanation suffers from the great difference between

the observed vacuum density ρv and the Planck mass density ρPl = c5/(~G2) which sets the

natural scale associated with quantum gravity phenomena.

a) Show that ρPl is the correct combination of ~, G and c with the dimensions of mass density.

b) Estimate the ratio ρv/ρPl. Use that ΩΛ ≡ ρv/ρc ' 0.7 where ρc is the critical density of the

flat universe.

Remark: finding an explanation for the smallness of ρv is one of the greatest puzzles in theoretical

physics today!
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