
Werkcollege, Cosmology 2016/2017, Week 14
These are the exercises and hand-in assignment for the 14th week of the course Cosmology.
The hand-in assignment for this week is Problem 14.4 below.

14.1 Decaying potentials
We have seen in earlier lectures that small density perturbations in a Universe dominated by
pressure-less dark matter grow linearly with the scale factor, i.e.,

δρ

ρ
∝ a (14.1.1)

Here we examine the evolution of perturbations of the underlying potential, Ψ. Let us assume
for simplicity that the perturbations are spherically symmetric.

• Suppose that a test particle is located at the outer “boundary” of a perturbation with co-
moving radius r. Use the classical definition of the gravitational potential to show that, in
the linear regime, the perturbation of the potential δΨ remains constant as the scale factor
increases.

• Also show that, if the perturbations grow more slowly than a, the perturbation of the
potential will decay as the scale factor increases.

14.2 Newtonian equivalence of metric perturbations
(From Dodelson, Exercise 3, Chapter 4)

The metric for a particle travelling in the presence of a gravitational field is gµν = ηµν + hµν
where h00 = −2φ where φ is the Newtonian gravitational potential; hi0 = 0 and hi j = −2φδi j:

gµν =


−1 − 2φ 0 0 0

0 1 − 2φ 0 0
0 0 1 − 2φ 0
0 0 0 1 − 2φ

 (14.2.1)

• Show that Γi
00 = δi j∂φ/∂x j

• Show that the space components of the geodesic equation lead to d2xi/dt2 = −δi jdφ/dx j

in agreement with Newtonian theory. Use the fact that the particle is non-relativistic so
P0 � Pi.
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14.3 Four-momentum of photons in perturbed FRW metric
We adopt the perturbed version of the FRW metric as follows:

gµν =


−1 − 2Ψ(x, t) 0 0 0

0 a2[1 + 2Φ(x, t)] 0 0
0 0 a2[1 + 2Φ(x, t)] 0
0 0 0 a2[1 + 2Φ(x, t)]

 (14.3.1)

In the lecture we found that, to first order, the 0th component of the energy-momentum four-
vector can be written as

P0 ' p(1 − Ψ) (14.3.2)

where
p ≡ gi jPiP j (14.3.3)

• Now show that the other components of the momentum four-vector can be written as

Pi ' pp̂i 1 − Φ

a
(14.3.4)

where p̂ is the unit vector parallel to p.
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14.4 The momentum time derivative
We have expanded the left-hand side of the Boltzmann equation in terms of the partial deriva-
tives with respect to t, x and p as

d f
dt

=
∂ f
∂t

+
∂ f
∂xi ·

dxi

dt
+
∂ f
∂p

dp
dt

+
∂ f
∂p̂i ·

dp̂i

dt
(14.4.1)

Using the definitions of p and p̂, and keeping only first-order terms, we saw how this reduces to

d f
dt

=
∂ f
∂t

+
p̂i

a
·
∂ f
∂xi +

∂ f
∂p

dp
dt

(14.4.2)

The momentum term is non-trivial and requires a bit more work. So let’s get started! First, we
use the 0th component of the geodesic equation:

d2x0

dλ2 = −Γ0
αβ

dxα

dλ
dxβ

dλ
(14.4.3)

• Show that, in first instance, Eq. (14.4.3) can be written as

d
dt

[
p(1 − Ψ)

]
= −Γ0

αβ

PαPβ

p
(1 + Ψ) (14.4.4)

(i.e., Eq. 4.23 in Dodelson’s book). Hint: as usual, keep only first order terms (linear in
Ψ)!

• Next, expand out the time derivative on the left-hand side and show that this leads to

dp
dt

(1 − Ψ) = p
dΨ

dt
− Γ0

αβ

PαPβ

p
(1 + Ψ) (14.4.5)

(i.e. Eq. 4.24 in the book)

• Now, multiply by (1 + Ψ) to find Eq. (4.25):

dp
dt

= p
(
∂Ψ

∂t
+

p̂i

a
∂Ψ

∂xi

)
− Γ0

αβ

PαPβ

p
(1 + 2Ψ) (14.4.6)

• Finally, evaluate the Christoffel symbol and show that

dp
dt

= −p
(
H +

∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

)
(14.4.7)

Hint: See p. 91–92 in Dodelson’s book.

We have now finished manipulating the left-hand side of the Boltzmann equation for photons:

d f
dt

=
∂ f
∂t

+
p̂i

a
·
∂ f
∂xi − p

∂ f
∂p

(
H +

∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

)
(14.4.8)
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14.5 First order terms of the Boltzmann equation for photons
• Demonstrate that the first-order terms in the left-hand side of the Boltzmann equation for

photons (Equation (4.40) in Dodelson’s book),

d f
dt

∣∣∣∣∣
1

= −p
∂

∂t

(
∂ f (0)

∂p
Θ

)
− p

p̂i

a
∂Θ

∂xi

(
∂ f (0)

∂p

)
+ HpΘ

∂

∂p

(
p
∂ f (0)

∂p

)
− p

∂ f (0)

∂p

[
∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

]
(14.5.1)

follow from expression (14.4.8), combined with the perturbed expansion of the photon
distribution,

f = f (0) − p
∂ f (0)

∂p
Θ (14.5.2)

• The next equation in the book, (4.41), says that the first of these terms can be written as

−p
∂

∂t

(
∂ f (0)

∂p
Θ

)
= −p

∂ f (0)

∂p
∂Θ

∂t
− pΘ

dT
dt
∂2 f (0)

∂T∂p
(14.5.3)

= −p
∂ f (0)

∂p
∂Θ

∂t
+ pΘ

dT/dt
T

∂

∂p

(
p
∂ f (0)

∂p

)
(14.5.4)

Show that the second term in Eq. (14.5.4) does indeed cancel the third term in Eq. (14.5.1)
so that the first-order terms of the left-hand side of the Boltzmann equation for photons
become

d f
dt

∣∣∣∣∣
1

= −p
∂ f (0)

∂p

[
∂Θ

∂t
+

p̂i

a
∂Θ

∂xi +
∂Φ

∂t
+

p̂i

a
∂Ψ

∂xi

]
(14.5.5)

14.6 Exercise 5, Chapter 4
Suppose we started chapter 4 by writing

d f
dλ

= C′ (14.6.1)

Change from this form to the one in Eq. (4.1) (with d f /dt on the left). How is the collision
term here, C′ related to C in Eq. (4.1)? Argue that the first-order perturbations in the factor re-
lating the two collision terms can be dropped since the collision terms themselves are first-order.
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14.7 The Einstein tensor in the perturbed FRW metric
To calculate the perturbations of the metric, Ψ and Φ, given the inhomogeneities in the distri-
bution of matter and radiation, we need Einstein’s field equations:

Gµν = 8πGTµν (14.7.1)

with the Einstein tensor given by

Gµν ≡ Rµν −
1
2

gµνR (14.7.2)

Specifically, we choose the (0, 0) component, with

G0
0 = g0iGi0 = (−1 + 2Ψ)R00 −

R

2
(14.7.3)

for Ricci tensor
Rµν = Γαµν,α − Γαµα,ν + ΓαβαΓ

β
µν − ΓαβνΓ

β
µα (14.7.4)

and Ricci scalar R = gµνRµν.
To calculate R, we need all elements of Rµν and thus the complete set of Christoffel symbols.

Here, we calculate a few of them.

• Show the following relations (as usual, to first order in the perturbations of the metric):

Γ0
00 ' Ψ,0 (14.7.5)

Γ0
i0 ' ikiΨ̃ (14.7.6)

Γ0
i j ' δi ja2 [

H + 2H(Φ − Ψ) + Φ,0
]

(14.7.7)

where the tilde denotes the transformation to Fourier space.
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