Werkcollege, Cosmology 2016/2017, Week 5

These are the exercises and hand-in assignment for the 5th week of the course *Cosmology*. Every week, one of the problems provides credit towards the final exam. If at least **10** of these problems are handed in and approved, one problem on the final exam may be skipped. The hand-in assignment for this week is **Problem 5.5** below.

5.1 Distance and distance modulus

Show that an error or uncertainty of 0.1 magnitudes in the distance modulus, m - M, is roughly equivalent to a 5% error in the distance, D

5.2 Moving cluster method

Fig. 1: The star cluster discussed in Problem 5.2.

A star cluster is observed to have a proper motion $\mu = 0.110^{\prime\prime} \text{ yr}^{-1}$ and radial velocity $v_r = 40 \text{ km s}^{-1}$. The proper motions of stars in the cluster appear to be converging towards the point P_{conv} , located at an angle of $\theta = 30^{\circ}$ from the centre of the cluster on the sky.

- 1. Calculate the distance to the cluster
- **2.** What was the smallest distance between the Sun and the cluster, relative to the current distance?
- **3.** When did the closest passage occur? Show that this can be calculated without knowing the distance of the cluster!
- **4.** Assuming effects of stellar evolution and extinction are negligible, when will the apparent brightness of the cluster have decreased by 1 magnitude?

5.3 Cepheids

The relation between the mean apparent visual magnitude m_V and the period P (in days) for Cepheids in the Large Magellanic Cloud (LMC) is observed to be

$$m_V = -2.5 \log_{10} P + 17.0 \tag{5.3.1}$$

For the Galactic Cepheid δ Cep, a trigonometric parallax of 3.8×10^{-3} arcseconds is observed. δ Cep has $\log_{10} P = 0.73$ and a mean apparent magnitude $m_V = 3.8$.

In the following, assume that Cepheids everywhere follow a universal period-luminosity relation. You can ignore the effects of interstellar extinction (or, to put it differently, assume that all measurements have been corrected for this effect).

- **1.** Find the distance to the LMC.
- **2.** A Cepheid in the galaxy M100 has apparent mean magnitude $m_V = 27.1$ and period P = 10 days. Find the distance to M100.

5.4 Baade-Wesselink method

This exercise is taken from the book "Galactic Dynamics", J. Binney & M. Merrifield

A star expands in a spherically-symmetric manner with radial velocity v_r . Defining a spherical coordinate system on the surface of the star with the polar axis aligned along the line of sight, show that the measurable flux-weighted mean line-of-sight velocity will be

$$v_{\rm los} = v_r \frac{\int_0^{\pi/2} I(\theta) \cos^2 \theta \sin \theta \, d\theta}{\int_0^{\pi/2} I(\theta) \cos \theta \sin \theta \, d\theta}$$
(5.4.1)

Hence show that, for a star of uniform brightness, $p = v_r/v_{los} = 1.5$. In reality, a star will not appear uniformly bright: its opacity means that near the edge of the star (its "limb") one cannot peer so far into its atmosphere, so one sees the less bright outer layers. A reasonable analytic approximation to this **limb darkening** is given by $I(\theta) = I(0)(0.4 + 0.6 \cos \theta)$. In this approximation, show that p = 24/17.

5.5 *K*-corrections

The *K*-correction is the difference between the observed magnitude $m_{obs}(z)$ for a source at redshift *z* and the magnitude that would be observed if the source were at rest, m_{rest} :

$$m_{\text{rest}} = -2.5 \log_{10} \int f(\lambda) S(\lambda) \, d\lambda + \text{const}$$
 (5.5.1)

$$m_{\rm obs}(z) = -2.5 \log_{10} \int f(\lambda') S[\lambda'(1+z)] d\lambda' + \text{const}$$
 (5.5.2)

(5.5.3)

In addition to the redshift z, the K-correction depends on the spectrum of the source (here expressed as a function of wavelength, $f[\lambda]$) and the spectral response of the system used for the observations, $S(\lambda)$. The K-correction is a purely instrumental effect that simply accounts for the fact that light emitted at wavelength λ' is observed at wavelength λ . It does *not* take into account the cosmological effects of the redshift due to the expansion of the Universe.

1. Show that (5.5.2) and (5.5.1) lead to the following expression for the *K*-correction:

$$K = m_{\rm obs} - m_{\rm rest} \tag{5.5.4}$$

$$= 2.5 \log_{10} \frac{\int f(\lambda) S(\lambda) d\lambda}{\int f[\lambda/(1+z)] S(\lambda) d\lambda} + 2.5 \log_{10}(1+z)$$
(5.5.5)

- 2. Find and write down the equivalent expression for the *K*-correction in terms of the spectrum as a function of *frequency*, f(v)
- **3.** Calculate the *K*-correction for a source with a power-law spectrum, $f(\lambda) \propto \lambda^{\beta}$. To simplify the calculations, you can approximate the bandpass transmission curve $S(\lambda)$ as a box function, i.e., assume that $S(\lambda)$ is a (positive) constant for $\lambda_1 < \lambda < \lambda_2$ and zero elsewhere.

Formulae and constants

Distance modulus (*D* in pc):

$$m - M = 5 \log_{10} D - 5$$

Black-body radiation:

$$I_{\nu} = \frac{2h\nu^{3}}{c^{2}} \frac{1}{e^{h\nu/kT} - 1}$$

$$I_{\lambda} = \frac{2hc^2}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$$

Radius of the Sun: $R_{\odot} = 7 \times 10^8 \text{ m}$

$$1 \text{ pc} = 3.09 \times 10^{16} \text{ m}$$

Planck's constant: $h = 6.626 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}$

Boltzmann's constant: $k = 1.38 \times 10^{-23} \text{ m}^2 \text{ kg s}^{-2} \text{ K}^{-1}$