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Chapter 1

Introduction and summary

1.1 The evolution of single stars

Stars are formed in clouds that are predominantly found in the spiral arms of galaxies. If
such a cloud contracts, its temperature rises and it fragments into several hot cores. Such
a condensation contracts in its turn, until the circumstances in its centre allow hydrogen
fusion to take place. The condensation has become a zero-agemain-sequence star and the
mass and composition of the young star determine how it will spend the rest of its life.

The main sequence is the longest phase in the active evolution of a star (about 80%), so
that most stars we observe are main-sequence stars. During this phase the luminosity and
surface temperature of the star change only little, but whenthe star runs out of hydrogen in
its core, it will change drastically. Because the core consists of helium only, nuclear fusion
stops and the helium core will contract and heat up. The hydrogen-rich layers just outside
the core become sufficiently compressed and heated that hydrogen fusion can take place
in a shell around the core. The hydrogen-burning shell converts hydrogen into helium,
and the core becomes more massive, more compact and hotter. Calculations show that a
more compact core causes the density in the burning shell to drop so that the density in
the envelope must drop as well to maintain hydrostatic equilibrium. The envelope of the
star expands and cools, so that the opacity in the envelope rises and the envelope becomes
convective. The star becomes a red giant and keeps expandingas long as the helium-core
mass grows and becomes more compact. Because red giants are luminous and the surface
gravity is low, they are thought to have strong stellar windsthat blow appreciable amounts
of gas into the interstellar medium, although the exact mass-loss rates due to stellar wind
are unknown.

For all stars that evolve within a Hubble time (M ∼> 0.8 M⊙) the core pressure and
temperature become sufficiently high to start helium fusion. In the case of stars with masses

∼< 2.4 M⊙ the helium core is degenerate, therefore isothermal and thecore grows up to
0.47 M⊙ before helium is ignited. Because the core is degenerate, the rise in temperature
due to the helium fusion does not lead to a rise in pressure anddensity, so that a ther-
monuclear runaway ensues, in what is called the ‘helium flash’, until the rising temperature
eventually lifts the degeneracy. The helium cores in stars more massive than2.4 M⊙ are
non-degenerate, so that helium fusion begins at a lower helium-core mass, hence a smaller
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radius, and without a helium flash. These stars ascend the red-giant branch only little and
as a consequence lose relatively little mass in a stellar wind at this stage.

While helium is ignited in the core, the core expands and as a consequence the star
shrinks again. The star is now on the horizontal branch untilall helium has been converted
to carbon and oxygen and the star expands again. Stars more massive than about10 M⊙

can have many burning phases in which they produce increasingly more massive elements,
until their core consists of iron and further nuclear fusionno longer releases energy. The
core of such a massive star collapses to a neutron star or perhaps a black hole, while the
outer layers are blown off the star in an explosive event thatis known as a supernova.

In this thesis we discuss the evolution of stars that are lessmassive than about10 M⊙.
When helium is exhausted in the core of such a low- or intermediate-mass star, it develops
a degenerate carbon-oxygen core surrounded by a helium-burning shell which is in turn
surrounded by the hydrogen-burning shell. These two burning shells come closer to one
another while they move out and when they come very close, so-called thermal pulses occur.
Meanwhile, the star has expanded again, onto the asymptoticgiant branch (AGB). These
large stars experience Mira pulsations, which typically have periods on the order of a year.
At the moment of maximum radius during such a pulsation, the surface temperature of the
star drops sufficiently to allow the formation of dust. If thedust couples to the gas, the high
radiation pressure will cause the star to rapidly lose its envelope. The star loses enough
mass that a supernova is prevented and ends its life as a whitedwarf consisting of carbon
and oxygen or, for the more massive stars, oxygen and neon. The former envelope of the star
is visible for some time as a planetary nebula surrounding the proto-white dwarf, irradiated
by the intense radiation of the hot central star. The white dwarf no longer produces energy,
save for a possible thermonuclear shell flash when the white dwarf is still young, but cools
and becomes less luminous. The cooling rate is determined bythe mass of the white dwarf,
the thickness of the hydrogen layer on its surface and the occurrence of shell flashes. A
computer model for a star of 1M⊙ is shown in Fig.1.1.

1.2 Binary-star evolution

Of the about 5000 stars that we can see with the naked eye, about 2000 are actually binary
or multiple-star systems and it is thought that this fraction is representative for the stars in
our Galaxy. The star closest to our Sun, Proxima Centauri, isa member of a triple system
and it seems reasonable to assume that more than half of all stars are in a binary or multiple
system.

Stars in a binary evolve in a potential that is determined by the gravity of the stars and
the orbital motion in the binary. The surface that defines thesphere of influence within
which a particle is bound to one of the two stars in the frame corotating with the binary
is called the Roche equipotential surface and the two droplet-shaped spaces it confines are
called the Roche lobes of the two stars. The point where the two Roche lobes touch is called
the first Lagrangian point.

Stars in a binary with an orbital period in excess of 10 yr are likely to spend their lives
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Figure 1.1: A computer model for the evolution of a star of 1M⊙ with wind mass loss,
calculated with the evolution code of P. Eggleton.Upper panel(a): A Hertzsprung-Russell
diagram for the model. The dashed line is where the helium flash occurs; the code replaces
the pre-helium-flash model (E) with a post-helium-flash model (F). The dotted lines are
lines of constant radius.Lower panel(b): A Kippenhahn diagram that shows the internal
structure of the star as a function of time. Grey areas are convective regions, in hatched
areas intense nuclear burning takes place. The thick line isthe total mass of the star, the
dotted lines are the masses of the helium and carbon-oxygen cores and often coincide with
the burning shells. Notice the changes in scale of the time axis. The labelled points are A:
zero-age main sequence, B: terminal-age main sequence, C: base of the giant branch, D:
first dredge-up, E: helium flash, F–G: core helium burning phase, H: early asymptotic giant
branch, and I: point where the hydrogen envelope has been blown away and the star starts
contracting.
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effectively as single stars, well inside their Roche lobes.In closer binaries, at least one of
the stars may expand up to the size of its Roche lobe, for instance if the star becomes a
giant. If this happens, gas from the giant can funnel throughthe first Lagrangian point into
the Roche lobe of its companion, which may or may not accrete it. Thus, in a close-enough
binary, mass can be transferred from one star to the other andin a later stage of evolution
the reverse process may take place. Since the mass of a star isthe dominant factor that
determines the evolution of the star, mass transfer betweenstars can change the evolution
of the two stars in a binary appreciably. A star of 1M⊙ on the red-giant branch could lose
its envelope prematurely due to mass transfer, so that an undermassive helium white dwarf
is formed, rather than the more massive carbon-oxygen whitedwarf that would be the end
product of such a star if it were single. In addition, the orbital period of the binary usually
changes during mass transfer, because the transferred matter carries angular momentum
from the donor to the accretor.

If the companion of the donor star is large enough and the mass-transfer rate not too
high, the transferred matter will be accreted by the companion. If the companion is very
small compared to the orbit, like in the case of a neutron star, the matter carries too much
angular momentum to be accreted directly. In this case the matter will form an accretion disc
around the neutron star and if the mass-transfer rate is higher than the Eddington accretion
limit, some or most of the matter could be driven out of the system rather than accreted by
the compact object. The gas in the accretion disc is heated and emits copious X-rays. Such
systems, with a neutron star or black hole as accretor, are observed as X-ray binaries.

In the solar neighbourhood, the average distance between stars is rather high (∼1 pc) so
that it is unlikely that a binary interacts with other stars.It is therefore reasonable to assume
that binaries in the galactic disc are primordial binaries.However, this is not true for dense
stellar environments, like the galactic centre and globular clusters. The stellar density in
the core of a globular cluster can be on the order of one million times higher than in the
solar neighbourhood and hence the probability that an interaction between stars or between
a star and a binary occurs is about1012 times larger in the core of a dense globular cluster
than in the solar neighbourhood. The fact that many luminousX-ray binaries are observed
in globular clusters can probably be explained by this high density, for instance if these
binaries are formed by the collision of a neutron star and a (sub)giant star (see Sect.1.3.1).

1.3 Summary of this thesis

In this thesis we study the formation and evolution of compact binaries. Chapter2 and3
deal with the formation of luminous, ultra-compact X-ray binaries in globular clusters and
rule out one of the proposed formation scenarios for these systems. In Chapter4 we look in
detail at observations of one particular X-ray binary in thegalactic disc that is believed to be
ultra-compact. Based on the observation of a long X-ray burst and a high neon-to-oxygen
ratio in the X-ray spectrum, we show that the donor of this binary is probably the remnant
of a helium white dwarf that was produced by a star no more massive than about 2.25M⊙.
In Chapter5 we discuss the formation of double white dwarfs. We present models that
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Cluster Position Porb Indirect indication
low fopt/fx burst max. spectrum

NGC 1851 0512–40 ? U U U
Terzan 2 1724–31 ? — U N
Liller 1 1730–33 ? — — —
Terzan 1 1732–30 ? — — —

NGC 6440 1745–20 ? — — N
Terzan 5 1745–25 ? — — U

NGC 6441 1746–37 5.7 hr — N N
Terzan 6 1751–31 12.4 hr — — N

NGC 6624 1820–30 11.4 min U U U
NGC 6652 1836–33 ? U U U
NGC 6712 1850–09 20.6 min U U U
NGC 7078 2127+12a 22.6 min — U —
NGC 7078 2127+12b 17.1 hr — — —

Table 1.1: Luminous X-ray binaries in the galactic globularclusters. The columns list the
name of the cluster, the position of the source, the orbital period and three indications for
an ultra-short (U) or normal (N) period, based on the opticalto X-ray luminosity ratio,
the maximum luminosity in bursts and the X-ray spectrum. Seethe main text for more
explanation. Adapted fromVerbunt & Lewin(2004).

describe the evolution of a binary through two mass-transfer phases in which the two white
dwarfs are formed. We conclude that we can explain the observed masses and periods well,
but that it is more difficult to find a model that also explains the observed age difference of
the two components.

1.3.1 The formation of luminous X-ray binaries in globular clusters

(Chapter2 and3)

Thirteen luminous X-ray sources are detected in the globular clusters of our Galaxy (Verbunt
& Lewin 2004; Verbunt 2005). All of these sources are low-mass X-ray binaries in which
a low-mass star transfers mass to a compact object. Twelve ofthese systems are X-ray
bursters and hence the compact object must be a neutron star,for the 13th source this is
not certain. For 6 of these 13 systems the orbital period is measured and 3 out of these 6
have an ultra-short (∼< 40 min) period. These systems are 4U 1820–30 in NGC 6624 which
has an 11.4 min period (Stella et al. 1987), 4U 1850–087 in NGC 6712 with a 20.6 min
period (Homer et al. 1996) and recently a 22.6 min orbital period was found for M15 X-2
(in M 15/NGC 7078) (Dieball et al. 2005) (see Table1.1).

The other 7 X-ray sources have no detected orbital periods. However, indirect methods
are available that give an indication as to whether an X-ray binary is ultra-compact or not.
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The first method uses the fact that most optical light from luminous low-mass X-ray binaries
comes from re-processing of X-rays in the accretion disc. A short orbital period means a
small disc and hence a relatively low optical luminosity with respect to the X-ray luminosity
(Van Paradijs & McClintock 1994). The second method was found byKuulkers et al.(2003)
and is based on the peak luminosity reached during X-ray bursts. This maximum luminosity
is compatible with the Eddington luminosity for hydrogen-poor material for two systems
with measured ultra-short periods, whereas it is compatible with the Eddington luminosity
for hydrogen-rich material for a source with a normal period. The third method comes from
a simple two-component model to explain the X-ray spectra ofthese systems bySidoli et al.
(2001). This model gives realistic and self-consistent solutions for three systems believed to
be ultra-compact, and non-consistent solutions with unrealistic parameters for sources with
normal periods. For more details on these methods, seeVerbunt & Lewin(2004); Verbunt
(2005). The last three columns of Table1.1show for each of the luminous X-ray sources in
the globular clusters whether they are ultra-compact (U) ornormal (N) according to these
indirect methods. From the Table one can infer that of the thirteen luminous X-ray sources
in globular clusters, certainly 3, probably 5 and possibly 6–8 are ultra-compact binaries.
This is in sharp contrast to the much-lower fraction of ultra-compact binaries in the field
(Deutsch et al. 1996).

There are three explanations for the formation of ultra-compact X-ray binaries in globu-
lar clusters. The first formation scenario starts with a binary of a neutron star and a massive
companion. If the companion becomes a giant its envelope canengulf the neutron star and
cause a spiral-in. The core of the companion thus forms a close binary with the neutron star
and the orbital period will become shorter due to gravitational radiation until mass transfer
starts. If the companion had a helium core and the orbit afterthe spiral-in is very close, there
may be no time to burn the helium so that helium is the main constituent of the transferred
matter. If the star had a helium core and the orbit is wider, the core would become a helium
star and convert most of its helium to carbon and oxygen. Thiswould be similar to the case
where the companion had a carbon-oxygen core at the time of the spiral-in. Although stars
of sufficient mass for a spiral-in with a neutron star do no longer exist in the galactic globu-
lar clusters, it can take some time before gravitational radiation causes Roche-lobe overflow
to occur so that this could explain the observed systems in the galactic disc and in globular
clusters today. A second formation scenario is likely to happen only in dense stellar envi-
ronments, such as (the cores of) globular clusters. In this scenario the neutron star collides
with a (sub)giant star, the envelope is expelled and the neutron star forms a binary with the
core of the giant (Verbunt 1987). Since the probability of such a collision is largest if the
star is on the sub-giant branch, the companion to the neutronstar is likely to be a helium
white dwarf. It has recently been found that this scenario could provide for a sufficiently
large formation rate to explain the observed numbers of luminous sources (Ivanova et al.
2005).

A third mechanism to explain the ultra-compact X-ray binaries starts with a neutron star
and a main-sequence star that loses angular momentum due to strong magnetic braking.
The angular-momentum is lost from the orbit due to spin-orbit coupling and causes the
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orbit to shrink. We call such a system converging. When the initial orbital period is short,
the minimum period lies around 70 min (Paczynski & Sienkiewicz 1981). At this point
the donor becomes degenerate and the orbit starts expandingagain. If the initial period
is long, a helium core develops and mass transfer becomes fast enough to overcome the
effect of angular-momentum loss, so that the orbit expands until the donor has transferred
all of its mantle and a low-mass helium white dwarf is formed (Webbink et al. 1983). Such a
system diverges. For a narrow range of initial periods around the bifurcation period between
converging and diverging systems the donor star fills its Roche lobe around the terminal-age
main sequence. Such a star becomes degenerate at smaller radius due to the high helium
abundance while a pure helium core is not yet formed. In this case, the period minimum
can be much smaller than∼ 70min (Tutukov et al. 1985) and ultra-short orbital periods
of 11 min can be reached (Podsiadlowski et al. 2002). We will refer to this mechanism as
magnetic capture. Pylyser & Savonije(1988) investigated the magnetic-capture scenario
and found no periods lower than about 38 minutes. They stopped their calculations at the
Hubble time, whilePodsiadlowski et al.(2002) only show the time that elapsed since mass
transfer started.

The interesting feature about the magnetic-capture scenario is that for an X-ray binary
with an orbital period of 11 min the period derivative can be either positive or negative,
depending on whether the system has already passed the period minimum or not. A negative
period derivative has been observed several times for the 11.4 min binary in NGC 6624 (Van
der Klis et al. 1993b; Chou & Grindlay 2001) and this suggests that the binary evolved
along the lines of the magnetic-capture scenario. However,the negative period derivative
could be apparent due to acceleration of the binary in the cluster potential (Van der Klis
et al. 1993a). Figure1.2 shows that the acceleration at the projected distance of thebinary
from the centre of the cluster seems insufficient to explain the observed period derivative,
especially if the gravitational acceleration should be twice as strong in case the intrinsicṖ
is positive. However, observations with HST of the optical counterpart of the X-ray binary
place it six times closer to the cluster centre (King et al. 1993), which makes it again more
probable that the negative period derivative is due to acceleration.

We investigate the magnetic-capture scenario in Chapter2 and3. In Chapter2 we inves-
tigate the magnetic-capture scenario along the lines ofPodsiadlowski et al.(2002), using
the magnetic-braking law byVerbunt & Zwaan(1981) and assuming that half of the trans-
ferred mass is lost from the system. In addition we do not allow evolution beyond the
Hubble time. We calculate models starting with a binary thatconsists of a neutron star and
a low-mass (0.7 M⊙≤Mi≤1.5 M⊙) zero-age main-sequence star. We vary the initial mass
of the donor, the initial period and the metallicity of the stars and produce several grids
of models. We use these grids and interpolate between two adjacent models to derive an
evolutionary scenario for a binary with an arbitrary initial period. This way we calculate
the distribution of a simulated population of one million stars with an age between 10 and
13 Gyr for each initial donor mass in our grid. Next we add these distributions to produce
a period distribution for a population of 10 million of thesestars at the age of the globular
clusters. The distribution forZ = 0.01 thus obtained shows us that one in107 binaries



8 Chapter 1

that evolved this way should have an orbital period of 11 min and that for each such system
there should be about 100 binaries with an orbital period∼< 20 min. We conclude that the
initial period of a binary must be very close to the bifurcation period in order for it to evolve
to an ultra-compact system. Furthermore, such a system evolves very rapidly through the
period minimum, so that there is only a small probability to observe it in the ultra-compact
regime. We also find that there is no contribution from the most massive donors in our grid
(≥ 1.2 M⊙) to the ultra-compact binaries.

Figure 1.2: The maximum acceleration along
the line of sightamax as a function of the
projected distance from the cluster centre,
according to a cluster model for NGC 6624
(curve) compared to the measured position
and acceleration of the 11.4 min binary (dot
with error bars). In more recent observations
the binary is closer to the centre (King et al.
1993). Taken fromVan der Klis et al.(1993a).

In Chapter3 we expand these grids of
models by varying more parameters. We
reduce the strength of the magnetic-braking
law that we used in Chapter2 and in ad-
dition we use a more modern law, based
on the measured ranges in rotational veloc-
ities of stars in the Hyades and Pleiades
and including saturation of the angular-
momentum loss at a certain critical rotation
velocity (Sills et al. 2000). We show that
our results from Chapter2 depend strongly
on the magnetic-braking law we used. If
we reduce the strength of magnetic brak-
ing by simply scaling down this law with
a factor of 4, the shortest orbital period
found in our models increases from about
10 min to 23 min. This is due to the fact
that since magnetic braking is weaker, the
systems need more time to reach the ultra-
compact regime. Thus many systems may
only reach this regime after the Hubble
time, so that they do not contribute to the
simulated population at 10 to 13 Gyr. Sec-
ondly, because the evolution needs more
time, a small offset in initial period has
larger consequences for the evolution than
before. This basically means that the range
of initial periods that lead to ultra-compact
binaries is even narrower than before. If
there is no magnetic braking at all, or if
we use the saturated magnetic-braking law
by Sills et al. (2000), the shortest periods
found lie around 70 min. Reducing the
strength of the magnetic braking used in
our models to perhaps more realistic values
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thus changes the probability of forming an ultra-compact X-ray binary with the magnetic-
capture scenario from very improbable to impossible.

The conclusions of these two chapters have important consequences for our understand-
ing of the formation of the observed low-mass X-ray binaries; they cannot have been formed
by the magnetic-capture scenario. Interestingly, this could be confirmed observationally, as
we mention in Chapter3. Our models for magnetic capture predict that donors in an ultra-
compact binary with a negative period derivative still havehydrogen on their surface and this
surface hydrogen vanishes around the period minimum. Thus,if hydrogen were observed in
the 11.4 min binary this would prove that the orbit is shrinking, whereas conclusive evidence
of the lack of hydrogen at the surface would suggest that the intrinsic period derivative is
positive. Furthermore, if in such a study carbon and oxygen would be found abundantly,
this would suggest that the binary was formed long ago in a spiral-in caused by a massive
star and the white dwarf was brought to Roche-lobe overflow bygravitational radiation only
recently. Most probably, helium will be the most abundant element which would allow both
the the spiral-in scenario and the collision-scenario to explain the formation of this binary.

1.3.2 The presumed ultra-compact X-ray binary 2S 0918–549

(Chapter4)

The object 2S 0918–549 is an X-ray binary with a low optical toX-ray flux ratio (Chevalier
& Ilovaisky 1987). As shown byVan Paradijs & McClintock(1994), this is an indica-
tion that the system might be an ultra-compact binary with anorbital period less than 1 hr.
The object also has an unusually high neon-to-oxygen abundance ratio.Juett et al.(2001)
show that of a set of 56 low-mass X-ray binaries, there are four sources that display this
phenomenon. Two of these four systems have measured ultra-short periods of 18 min (in
4U 1543–624, seeWang & Chakrabarty 2004) and 21 min (in 4U 1850–087, seeHomer
et al. 1996). This observation therefore provides an extra indicationthat 2S 0918–549 is
an ultra-compact binary. Because such a binary cannot be formed by stable mass transfer
(Chapter2 and3) and a collision between a neutron star and a (sub)giant is rather improbable
in the galactic disc, 2S 0918–549 probably formed from a spiral-in following dynamically
unstable mass transfer by the companion to the neutron star and leaving the core of that
companion exposed.

Optical spectroscopy of 2S 0918–549 shows a lack of spectrallines from hydrogen and
helium (Nelemans et al. 2004). This suggests that the donor is a carbon-oxygen or neon-
magnesium-oxygen white dwarf. However, like two other LMXBs identified byJuett et al.
(2001), this system shows type-I X-ray bursts caused by thermonuclear shell flashes on
neutron stars (see Sect.4.1). Such bursts, of duration 10 s to several minutes, can only
be explained by the presence of helium, possibly in combination with hydrogen (Juett
& Chakrabarty 2003; Nelemans et al. 2004) and the duration of the burst is proportional
with the hydrogen content. 2S 0918–549 experienced a burst that lasted almost 40 min (see
Sect.4.3) which would suggest a high hydrogen content, in blatant contradiction to the op-
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tical spectrum and the presumed ultra-compact nature of thebinary.
Because 2S 0918–549 is a persistent source with a low accretion rate (∼1% of the Ed-

dington accretion limit, seeJonker et al. 2001) we argue that pure helium has been accreted
slowly but for a long time by the neutron star. Thus, a thick layer of helium has accumulated
on the surface of the neutron star, which explains the long duration of the burst. The donor
could therefore be a helium white dwarf, although it is not clear why lines of helium should
be missing from the spectrum. My contribution to this chapter is mainly in Sect.4.5.2, where
we present a number of progenitor models for the donor of 2S 0918–549. We assumed that
the star that is now the donor in 2S 0918–549 was the core of itsprogenitor and exposed
after a spiral-in. First we argue that the donor cannot be a massive carbon-oxygen white
dwarf or a neon-magnesium-oxygen white dwarf. Such stars have masses that are higher
than about 0.4–0.5M⊙, which is thought to be the upper limit to the mass of a white dwarf
that can have stable mass transfer. Thus, any white-dwarf donor with stable mass transfer
should be either a helium white dwarf or a low-mass carbon-oxygen white dwarf, once the
core of a giant star. We therefore consider the cores of our model stars that evolve from the
zero-age main sequence (ZAMS), via the red giant branch (RGB) to the asymptotic giant
branch (AGB).

Stars of 1M⊙ or more on the RGB have a helium core that was formed by hydrogen
fusion at least in part via the CNO cycle. In this process the neon abundance does not
change, but the oxygen abundance drops because oxygen is converted to nitrogen in the
CNO cycle. Thus the neon-to-oxygen abundance ratio in a helium core is higher than it
was at the ZAMS. The precise number depends on the temperature at which the burning
takes place and thus, among others, on the mass of the star. Inour stellar models this ratio
increases to about twice the ZAMS ratio for a star of 1M⊙ and to almost 20 times the
ZAMS ratio for a 5M⊙ star.

A star on the AGB has a carbon-oxygen core, the ‘ashes’ of helium burning. In a side
reaction to the helium-burning process some nitrogen is converted into neon-22, but this
happens on a much smaller scale than the production of oxygen. The oxygen abundance
therefore rises much more than the neon abundance and the models show a neon-to-oxygen
ratio that is much lower than it was initially: 13–16% of the ZAMS value. We conclude that
the donor of 2S 0918–549 that we observe today is probably thecentral part of a helium-
white dwarf, the former core of a progenitor no more massive than about 2.25M⊙. This is
compatible with the observations of long X-ray bursts and the high neon-to-oxygen abun-
dance ratio, although it is unclear why helium lines are lacking in the optical spectrum.

1.3.3 The formation of double white dwarfs

(Chapter5)

Double white dwarfs, binaries in which both components are white dwarfs, are sought for
systematically by the SPY (ESO SN Ia Progenitor surveY) project (e.g. Napiwotzki et al.
2001). If these systems have short enough orbital periods and a mass that exceeds the
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Figure 1.3: Observations of WD 0316+768.Left panel:Spectrograms (left-most) and the fit
to these data.Right panel:Radial velocities measured for both components (symbols) and
least-squares fits of sine functions to these points (solid curve). Adapted fromMaxted et al.
(2002b).

Chandrasekhar limit, they might produce supernovae of typeIa (Iben & Tutukov 1984).
Furthermore, they may be the dominant source of low-frequency gravitational radiation
(Evans et al. 1987; Hils et al. 1990). Ten double white dwarfs have been observed as double-
lined spectroscopic binaries to date. These systems typically have orbital separations of a
few solar radii or less and component masses between about 0.3 and 0.8M⊙ (see Table 6.1).
Since these white dwarfs were once the cores of stars on the giant branch with radii of
several tens to several hundreds of solar radii, a drastic orbital shrinkage must have taken
place around the formation of the youngest white dwarf. It isusually assumed that the
progenitor of this white dwarf filled its Roche lobe while it had a deep convective envelope,
so that the ensuing mass transfer was dynamically unstable and the envelope of the donor
engulfed the white dwarf that was already formed. The two compact objects would then
spiral inwards due to drag forces inside this common envelope, while the orbital energy that
is liberated is used to expell the envelope from the system (Webbink 1984).

In Chapter5 we try to find an evolutionary scenario for these 10 observed systems.
We follow the lines ofNelemans et al.(2000) who did very similar work, but based on 3
observed systems rather than 10 and with use of many analytical approximations where we
use a stellar evolution code for more detailed calculations. Among the advantages of the use
of an evolution code is that we can calculate for a set of progenitor models the radius of the
star and the binding energy of its envelope at every moment ofits evolution. This enables
us to calculate the efficiency parameter for a common envelope with spiral-inαce. Another
difference is that we consider more-massive progenitors and stars on the asymptotic giant
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branch as possible progenitors.

We confirm the conclusion ofNelemans et al.(2000) that the formation of the observed
systems cannot be explained by the scenario where the first white dwarf is formed after con-
servative mass transfer and the second white dwarf in a common envelope with spiral-in, or
by the scenario in which two occurrences of such a spiral-in take place. A different mecha-
nism in which a donor star can lose its envelope is therefore required and we again follow
Nelemans et al.(2000) in their prescription of envelope ejection with angular-momentum
balance, rather than energy balance. This prescription uses an efficiency factorγ to re-
late the angular momentum that is carried by the ejected envelope to the average angular
momentum of the progenitor system. This prescription was also used for this purpose by
Nelemans & Tout(2005), but again with approximations for the stellar parameters. We
share their conclusion that all observed masses and orbitalperiods can be explained with
this mechanism, if1.5 ≤ γ ≤ 1.75. However, this would imply that the envelope matter
somehow gains extra angular momentum from the binary beforeit is lost and at this moment
there is no physical explanation for this.

We therefore introduce two slightly different prescriptions for the scenario of envelope
ejection with angular-momentum balance. In the first prescription it is assumed that the mat-
ter is transferred from the donor to the companion and then re-emitted isotropically. The
second prescription is for an isotropic wind from the donor star. These two prescriptions
can explain the masses and periods of all observed systems, but now with an efficiency
parameter0.9 ≤ γ ≤ 1.1. These prescriptions therefore need no additional physical ex-
planation for the high angular-momentum losses. The observed masses and periods can be
explained with either an envelope ejection with aγ-prescription followed by a spiral-in with
theα-prescription, or with two subsequentγ-envelope ejections. However, if we want our
models to explain in addition the difference in cooling age between the two components of
a binary, found by the observers by comparing their observations to white-dwarf cooling
models, we find that this is more problematic. Some systems can still be explained with
the same values forγ, while for others we must allow values that are much farther form
the desired values than before. We list the best solutions inTable 6.5 and one of them is
schematically displayed in Fig.1.4.

Among the solutions that can explain the observed double white dwarfs there is one that
could explain the observation that the oldest white dwarf inthe system PG 1115+116 is a
DB white dwarf,i.e. has no hydrogen in the spectrum (Maxted et al. 2002a). The scenarios
for stable mass transfer or envelope ejection predict that there is a thin layer of hydrogen
at the surface of a white dwarf produced this way so that it should be a DA white dwarf,
i.e. with hydrogen in its spectrum.Maxted et al.(2002a) suggest that the star may have
experienced a giant phase after the first mass-transfer phase. This scenario corresponds
to solution 54 in Table 6.5, in which the 0.89M⊙ helium core of a 5.42M⊙ progenitor is
exposed due to envelope ejection with theγ-prescription. Such an exposed core becomes a
helium star and massive helium stars can become giants. Mostof the mass in such a giant
is in the carbon-oxygen core and it is possible that this starloses its outer layers, either by
Roche-lobe overflow or by a stellar wind, without much changeto the total mass and the
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Figure 1.4: Schematic representation of the evolution of aninitial binary that leads to the
double white dwarf WD 0136+768 with the observed masses, orbital period and age differ-
ence. This scenario corresponds to solution 22 in Table 6.5,in which the primary ejects its
envelope withγ ≈ 0.95 (from panel 2 to 3 in the Figure) and the secondary causes a spiral-
in with αce ≈ 1.00 (panel 4 to 5). The Figure shows the stars and their Roche lobes with
respect to the centre of mass of the binary (dotted vertical line). The numbers are the age
since the zero-age main sequence, the two masses and the orbital period. The components
of the double white dwarf that is formed in this scenario havean age difference of 299 Myr;
compare the observed age difference of 450 Myr according to the cooling models. The final
panel shows the binary at its current age, according to the cooling age for the youngest white
dwarf. The final orbital separation is less than 5R⊙ and hardly visible.
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orbital period. It is interesting that such an evolutionaryscenario is indeed amongst our
solutions.



Chapter 2

Creating ultra-compact binaries
in globular clusters through stable
mass transfer

M.V. van der Sluys, F. Verbunt and O.R. Pols

Astronomy and Astrophysics, v.431, p.647–658 (2005)

Abstract A binary in which a slightly evolved star starts mass transfer to a neutron star can
evolve towards ultra-short orbital periods under the influence of magnetic braking. This is
called magnetic capture. We investigate in detail for whichinitial orbital periods and initial
donor masses binaries evolve to periods less than 30–40 minutes within the Hubble time.
We show that only small ranges of initial periods and masses lead to ultra-short periods,
and that for those only a small time interval is spent at ultra-short periods. Consequently,
only a very small fraction of any population of X-ray binaries is expected to be observed at
ultra-short period at any time. If 2 to 6 of the 13 bright X-raysources in globular clusters
have an ultra-short period, as suggested by recent observations, their formation cannot be
explained by the magnetic capture model.
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2.1 Introduction

The globular clusters belonging to our Galaxy house thirteen bright (LX ∼> 1035 erg s−1 in
the 0.5–2.5 keV range) X-ray sources, neutron stars accreting from a low-mass companion.
A surprisingly large fraction of these has ultra-short orbital periods of less than about 40
minutes, as first noticed byDeutsch et al.(1996). Two of the five orbital periods known are
11.4 min and 20.6 min (or its alias 13.2 min) for the sources inNGC 6624 and NGC 6712,
respectively (Stella et al. 1987; Homer et al. 1996). The orbital periods of eight systems
are not known, but for four of them indirect evidence points to an ultra-short period. This
evidence consists of the absolute magnitude of the optical counterpart (Van Paradijs & Mc-
Clintock 1994), of the energy distribution of the X-ray spectrum (Sidoli et al. 2001), and of
the maximum flux reached during X-ray bursts (Kuulkers et al. 2003). Collating this evi-
dence,Verbunt & Lewin(2004, their Table 1) suggest that two more sources probably, and
two others possibly have ultra-short orbital periods (in NGC 1851 and NGC 6652, and in
NGC 7078 and Terzan 5, respectively). The 43.6 min period found byDeutsch et al.(1996)
is not the period of the bright X-ray source in NGC 6652, but ofa fainter source (Heinke
et al. 2001).

Thus both among the known periods and among the suggested periods, about half of
the bright X-ray sources have ultra-short orbital periods.This is in marked contrast to the
period distribution of bright X-ray sources in the galacticdisk, where only one period much
shorter than 40 minutes has been suggested so far (Wang & Chakrabarty 2004).

Ultra-short-period binaries with a neutron star can be formed in a number of ways. An
expanding giant star can engulf the neutron star, which thenspirals in to form a binary with
the helium-burning core. If mass transfer starts immediately after spiral-in, the donor is a
helium-burning star (Savonije et al. 1986), if mass transfer starts only after a long time, the
donor has evolved into a CO white dwarf or a CO white dwarf withhelium mantle (Yungel-
son et al. 2002). The process requires a giant of higher mass than exists in globular clusters
today; but the waiting time between end of the spiral-in and onset of the mass transfer al-
lows us to observe the mass transfer stage today of systems formed long ago. Indeed, it
has been argued that this in fact is the dominant formation process for ultra-short-period
binaries in globular clusters (Davies & Hansen 1998; Rasio et al. 2000). Alternatively, it
has been suggested that in a cluster, a neutron star can also in a collision with a giant expell
its envelope and form a binary with its core (Verbunt 1987). It is not obvious that this leads
to a binary sufficiently close to start mass transfer within the Hubble time (Rasio & Shapiro
1991). A white dwarf donor implies an expanding orbit, and thus predicts an increasing
orbital period.

Yet another scenario starts from a binary of a neutron star and a main-sequence star.
The evolution of this binary depends critically on the initial orbital period. When the pe-
riod is short, mass transfer is driven by loss of angular momentum, and the orbital period
decreases with the donor mass until a minimum period is reached near 70 min (Paczynski
& Sienkiewicz 1981). We will call this a converging system. At the minimum period, the
donor becomes degenerate, and further mass transfer expands the orbit. When the orbital
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period is long, mass transfer is driven by expansion of the donor star, and the orbit ex-
pands with the donor radius until the donor has transferred its full envelope (Webbink et al.
1983). These are diverging systems. However, for a narrow range of periods loss of angular
momentum can still shrink the orbit for a slightly evolved donor. Due to its higher he-
lium content, the donor becomes degenerate at smaller radius, and correspondingly shorter
orbital period (Tutukov et al. 1985). Orbital periods shorter than 11 min can be reached
(Podsiadlowski et al. 2002). These systems therefore converge, but the process may take
more than a Hubble time. At 11.4 min, the period derivative may be negative or positive,
depending on whether the system is still on its way to the period minimum, or has already
rebounded. We will refer to this scenario as magnetic capture.

The repeated observation that the 11.4 min period of the bright X-ray source in the glob-
ular cluster NGC 6624 is decreasing (Van der Klis et al. 1993b; Chou & Grindlay 2001)
would appear to indicate that the system evolved according to the magnetic capture sce-
nario. However, it is not impossible that the negative period derivative is only apparent, the
consequence of an acceleration of the binary in our direction, in the gravitational potential
of the innermost part of the globular cluster. A more accurate position of the (optical coun-
terpart to the) X-ray binary and a re-determination of the centre of the cluster shows that
the X-ray source is much closer to the cluster centre than wasthought before, and thus in-
creases the probability that the measured period is affected by acceleration. Nonetheless, the
measurement of a period decrease is a strong incentive to investigate the magnetic capture
scenario in more detail.

A possible problem with the magnetic capture scenario is suggested by computations
for binaries in the galactic disk, byPylyser & Savonije(1988). None of their calculated
evolutions lead to periods of about 11 minutes within the Hubble time.Podsiadlowski et al.
(2002) do not address this problem explicitly, but only show the time elapsed since the onset
of mass transfer.

In this chapter, we address the question under which circumstances the very short orbital
periods observed in NGC 6624 and NGC 6712 are reached within the Hubble time, in the
magnetic capture scenario described above. The parametersthat we vary are the initial
mass of the donor star, the initial orbital period (or more orless equivalently, the orbital
period at which mass transfer starts), and the metallicity of the donor. In Sect.2.2we briefly
describe the code that we use, and the algorithms specific to the evolutionary scenario that
we study. In Sect.2.3 we give the results for two specific cases, to compare with earlier
work and to illustrate the possible evolution paths. We thendescribe the expected outcomes
for an initial distribution of donor masses and initial orbital periods in Sect.2.4. We find
that orbital periods of 11.4 and 20.6 min are possible, but very unlikely in this scenario. The
consequences of this conclusion are discussed in Sect.2.5.
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2.2 Binary evolution code

2.2.1 The stellar evolution code

We calculate our models using the STARS binary stellar evolution code, originally devel-
oped byEggleton(1971, 1972) and with updated input physics as described inPols et al.
(1995). Opacity tables are taken from OPAL (Iglesias et al. 1992), complemented with
low-temperature opacities fromAlexander & Ferguson(1994).

The equations for stellar structure and composition are solved implicitly and simulta-
neously, along with an adaptive mesh-spacing equation. Convective mixing is modelled
by a diffusion equation for each of the composition variables, and we assume a mixing
length ratiol/Hp = 2.0. Convective overshooting is taken into account as inSchröder et al.
(1997), with a free parameterδov = 0.12 calibrated against accurate stellar data from non-
interacting binaries (Schröder et al. 1997; Pols et al. 1997). The helium core mass is defined
as the mass coordinate where the hydrogen abundance becomesless than 10%.

We use a version of the code (seeEggleton & Kiseleva-Eggleton(2002), hereafter
EK02) that allows for non-conservative binary evolution, even though the evolution of only
one component star is calculated in detail. The companion, in our case a neutron star, is
treated as a point mass. With the adaptive mesh, mass loss by stellar winds or by Roche-
lobe overflow (RLOF) in a binary is simply accounted for in theboundary condition for the
mass. Spin-orbit interaction by tides is treated accordingto the equilibrium tide theory (Hut
1981) with a tidal friction timescale as given by EK02. This is taken into account by solving
additional equations for the moment of inertiaI(r), the uniform stellar rotation frequency
Ωrot, the orbital angular momentumJorb and the orbital eccentricitye. These equations
(of which the latter three are independent of the interior structure and only depend on time)
are also solved implicitly and simultaneously with the usual set of equations, at little extra
computational cost. The rotation induces a centrifugal potential that influences the stellar
structure through a reduction of the effective gravity. Thecentrifugal potential for each
mesh point is averaged over a spherical shell. Rotationallyinduced mixing is not taken into
account in this code.

Unlike EK02, we do not include their model for dynamo-drivenmass loss and mag-
netic braking. Rather we apply a magnetic braking law without accompanying mass loss,
as discussed in Sect.2.2.2. This facilitates direct comparison to previous binary evolution
calculations in which similar assumptions have been made. Although we follow tidal in-
teraction in detail, the effect on the current calculation is limited because the short orbital
periods we consider ensure that the orbit is always circularised and synchronised with the
stellar spin. However, exchange of angular momentum between spin and orbit is taken into
account.

The initial hydrogen and helium abundances of our model stars are a function of the
metallicityZ: X = 0.76 − 3.0Z andY = 0.24 + 2.0Z. In this research we use the metal-
licities Z = 0.0001 (with X = 0.7597, Y = 0.2402), Z = 0.002 (with X = 0.754, Y =
0.244), Z = 0.01 (with X = 0.73, Y = 0.26) andZ = 0.02 (with X = 0.70, Y = 0.28).
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2.2.2 Angular momentum losses

If the lower mass star in a binary fills its Roche lobe and starts to transfer mass to a more
massive companion, the orbit will widen, unless there are enough angular momentum losses
to compensate for this effect. We assume three sources of angular momentum loss from the
system.

The most important source is magnetic braking. Due to magnetic braking, spin angular
momentum is lost from the secondary and eventually, due to the tidal spin-orbit coupling,
from the orbit. We use the formula given byRappaport et al.(1983):

dJMB

dt
= −3.8 × 10−30 M2 R4 ω3 dyn cm. (2.1)

Like Podsiadlowski et al.(2002), we apply full magnetic braking when the mass of the con-
vective envelope of the donor exceeds 2% of the total mass of the star, and ifqconv < 0.02
reduce the strength of the magnetic braking in Eq.2.1by a factor ofexp(1 − 0.02/qconv),
whereqconv is the mass fraction of the convective envelope of the star. The fact that the
magnetic braking removes angular momentum from the spin of the star rather than directly
from the orbit is different fromPodsiadlowski et al.(2002). The main difference is that our
study takes into account stellar spin at all, which influences the radius of the star and thus
the moment at which Roche-lobe overflow commences.

For short orbital periods, gravitational radiation is a strong source of angular momentum
loss. We use the standard description

dJGR

dt
= −

32
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2 (M1 + M2)
1/2

a7/2
(2.2)

(Peters 1984).
The third way of angular momentum loss from the system is by non-conservative mass

transfer. We assume that only a fractionβ of the transferred mass is accreted by the neutron
star. The remainder is lost from the system, carrying away a fraction α of the specific
angular momentum of the neutron star

dJML

dt
= −α (1 − β) a2

1 ω Ṁ2, (2.3)

wherea1 is the orbital radius of the neutron star andω is the orbital frequency.
To keep the models simple, we applied no regular stellar windto our models, so that

all mass loss from the system and angular momentum loss due tothis result from the non-
conservative mass transfer described above.

2.3 Binary models

2.3.1 Calculated grid

Using the binary evolution code described in Sect.2.2, we calculated an initial grid of mod-
els for Z = 0.01, the metallicity of NGC 6624, and Y=0.26. We choose initial masses
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between 0.7 and 1.5M⊙ with steps of 0.1M⊙, and initial periods between 0.50 and 2.75
days, with steps of 0.25 days. Around the bifurcation periodbetween converging and di-
verging systems, where the shortest orbital periods occur,we narrow the steps in P to 0.05
days.

We specify the bifurcation period more precisely as the longest initial period that leads
to an ultra-short period,within a Hubble time. With this definition, the bifurcation period
corresponds to the initial period of the binary that reachesits minimum period exactly after
a Hubble time. This extra constraint is needed because thereis no sharp transition between
converging and diverging systems, especially since every diverging system will eventually
converge due to gravitational radiation, if given the time.For instance, the system with an
initial secondary mass of 1.1M⊙ and an initial period of 0.90 days — that is shown to run
out of the right of Fig.2.2 at logP ≈ −0.4 — does converge to a period of slightly more
than 5 minutes, but only after almost 32 Gyr. This system is therefore considered to be
diverging. Since the last part of the converging tracks in Figs.2.1 and2.2 is very steep, a
system that reaches an ultra-short minimum period shortly after a Hubble time will usually
have an orbital period at the Hubble time that is on the order of hours.

The total number of calculations forZ = 0.01 is 150; 90 for the initial grid, and 60
for the finer grid. We followPodsiadlowski et al.(2002) in choosingα = 1 andβ = 0.5
in Eq.2.3. The orbital evolution of the systems with initial masses of1.0 and 1.1M⊙ is
displayed in Figs.2.1and2.2.

2.3.2 Interpretation of the models

Fig.2.1shows that the models with the shortest initial periods converge to minimum periods
of about 70 minutes. After this, the stars become degenerate, and the orbits expand. Before
the minimum period is reached, the stars become fully convective, thus mixing all of the
star to a homogeneous composition. These stars have not yet formed a helium core, but are
still a mixture of hydrogen and helium when they become degenerate. The stars with larger
initial periods have a lower hydrogen abundance when they reach their minimum period.

For the longest initial periods, the Roche lobe is filled in a later evolution stage and
the evolutionary time scale is shorter, so that the star expands faster and the mass transfer
rate is higher. Because of this, and the fact that the mass ratio is less than 1, the angular
momentum loss is not strong enough to shrink the orbit, so that it starts to expand shortly
after mass transfer starts. These stars are sub-giants, andhave a compact helium core inside
their hydrogen envelopes. After they have transferred all of this envelope, they shrink and
become helium white dwarfs. The systems with larger initialperiods are more evolved when
they fill their Roche lobes and produce more massive white dwarfs.

In between the smallest and largest initial periods, there are a number of models that
reach orbital periods that are much shorter than 70 min. Thishappens due to magnetic cap-
ture: the orbital period is reduced strongly under the influence of strong magnetic braking.
When magnetic braking disappears, the orbit is close enoughto shrink to ultra-short peri-
ods by angular momentum loss due to gravitational radiation. The magnetic captures come
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Figure 2.1: Evolution of the orbital periods of selected systems withZ = 0.01, an initial
secondary mass of 1.0M⊙ and initial periods of 0.50, 0.75, 1.00, 1.25, 1.30, 1.35, 1.40,
1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 2.0, 2.25, 2.5 and 2.75 days. The symbols mark
special points in the evolution:+ marks the start of Roche-lobe overflow (RLOF),× the
minimum period,△ the end of RLOF and© marks the end of the calculation. The four
dotted horizontal lines show the orbital periods of the closest observed LMXBs in globular
clusters: 11.4 and 20.6, and in the galactic disk: 41 and 50 minutes.

from models with a very narrow initial period range. The fourmodels withMi = 1.0M⊙

that reach a period less than 40 minutes, for instance, have initial periods of 1.45 1.50, 1.55
and 1.60 days, where the last model reaches the ultra-short period regime only after 14 Gyr.
By interpolation, as described later in Sect.2.4.1, we find that the models that reach a min-
imum period below 40 min and within 13.6 Gyr, have initial periods in the range 34.5 –
38.1 hours. These stars fill their Roche lobes when their orbital periods are in the range of
14.3 – 17.2 hours. The lowest orbital period reached, by the system with the initial period
of 38.1 hours, is 12.0 min, after 13.6 Gyr.

If one draws a vertical line in Fig.2.1at 11.5 Gyr (about the age of the globular clusters),
one can imagine that there is a distribution of observable X-ray binaries at that moment in
time. The lowest orbital period found at that time is about10−1.75 days, or 25 minutes. All
models with orbital periods higher than about 1 day have stopped mass transfer and will not
be visible as X-ray binaries. Because the lines in Fig.2.1are steeper at lower periods, it is
clear that the higher periods, around one day, will dominate.
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Figure 2.2: Evolution of the orbital periods of selected systems withZ = 0.01, an initial
secondary mass of 1.1M⊙ and initial periods of 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80,
0.85, 0.90, 0.95, 1.00, 1.25, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 2.0, 2.25, 2.5 and 2.75 days.
See Fig.2.1for more details.

Figure2.2shows the same data as Fig.2.1, but for models with an initial secondary mass
of 1.1M⊙. The results are qualitatively similar, but the ultra-short period regime is reached
from lower initial periods, and after a shorter period of time. We find that the models that
reach periods lower than 40 min before 13.6 Gyr have initial periods of 18.0 – 20.9 hr and
fill their Roche lobes in the period range 15.1 – 18.2 hr. The system with the initial period of
18.0 hr reaches 40 min after 8.3 Gyr, the system with a 20.9 hr initial period has the smallest
minimum period: 8.0 min.

If we again imagine the period distribution at 11.5 Gyr, but now for Fig.2.2, we see
that the period range that we expect for mass transferring binaries is shifted downwards in
period. Orbital periods as short as 10.6 min can now occur, and systems with periods over
9.5 hr do not transfer mass anymore at that moment. With respect to the tracks in Fig.2.1,
we see that their density is much lower here. This is partially due to the fact that we use
linear equally spaced periods at a lower initial period, so that they are more widely spaced
in log P .

Figure2.3 illustrates the evolution of the convective envelope of a 1.1M⊙ star for the
grid models with initial periods between 0.5 and 0.9 d. Looking at the models in the order
of increasing initial period we find that in the first five the stars become fully convective
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Figure 2.3: Mass fraction of the convective envelope (qconv) as a function of the total
mass of the donor, for the models with the shortest 9 initial orbital periods in Fig.2.2. The
numbers in the plot give the initial periods in days for that line. As evolution proceeds
towards lower donor masses, the mass faction of the convective envelope increases. For the
5 models with initial periods between 0.5 and 0.7 d, the totalmass at which the star becomes
fully convective is anti-correlated with the initial period. At initial periods of 0.75 d and
longer, the initial increase of the mass fraction of the convective envelope is followed by a
decrease.

at decreasing total masses. The first model that evolves towards ultra-short periods, with
an initial period of 0.75 d is also the first model in which the donor never becomes fully
convective: an initial increase of the mass fraction of the convective envelope is followed
by a decrease. For initial periods of 0.85 d and 0.9 d the convective envelope disappears
completely. The general trend with increasing initial period that is visible in Fig.2.3, is
the consequence of an increasing helium abundance in the core. The cores with a higher
helium abundance tend to be hotter and thus more stable against convection. The absence
of convection in the core in turn keeps the helium abundance high. The third model, with an
initial period of 0.6 d shows a track that is slightly different from those of the neighbouring
models. This model becomes almost fully convective, but thecentral10−4 M⊙ does not,
and as a consequence the mixing from the core to the surface issuppressed. We have
repeated this calculation with a slightly different convective mixing efficiency and find the
same results.
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Pi (d) Prlof (h) Pmin (m) t (Gyr) Ṁtr M2 (M⊙) log L/L⊙ log Teff log Tc log ρc log Xc log Yc log Xs log Ys

0.50 10.3 80.7 4.92 -10.31 0.060 -3.64 3.33 6.44 2.53 -0.23 -0.40 -0.23 -0.40
0.55 11.2 76.3 6.31 -10.39 0.052 -3.75 3.32 6.45 2.57 -0.31 -0.30 -0.31 -0.30
0.60 12.2 68.7 7.53 -10.49 0.042 -3.85 3.32 6.54 2.81 -1.46 -0.02 -0.53 -0.16
0.65 13.3 66.8 8.09 -10.31 0.038 -3.96 3.31 6.54 2.68 -0.64 -0.12 -0.64 -0.12
0.70 14.4 62.7 8.28 -10.36 0.043 -3.67 3.38 6.72 2.82 -1.32 -0.03 -0.89 -0.07

0.75 15.2 39.5 8.32 -9.67 0.056 -3.46 3.48 6.93 3.43 -2.34 -0.01 -1.24 -0.03
0.80 15.8 17.6 9.53 -8.53 0.074 -3.97 3.45 7.01 4.08 -∞ 0.00 -1.51 -0.02
0.85 17.6 11.3 11.17 -7.76 0.101 -4.15 3.45 7.10 4.43 -∞ 0.00 -1.84 -0.01
0.90 19.1 5.1 31.85 -6.62 0.164 -4.89 3.34 6.81 5.05 -∞ 0.00 -1.10 -0.04

Table 2.1: Properties for the donor stars of some of our grid models withZ = 0.01 andMi = 1.1M⊙ at their period minimum.
The first three columns list the orbital period initially (atthe ZAMS) in days, at Roche-lobe overflow (Prlof ) in hours and the
minimum period (Pmin) in minutes. The next 11 columns show stellar properties atPmin: the age of the donor (since ZAMS), the
logarithm of the mass transfer rate (expressed inM⊙ yr−1), the mass and luminosity of the donor, the logarithms of theeffective
temperature, the core temperature (both in K) and the central density (in g cm−3), and the last four columns show the logarithms
of the core and surface mass fractions of hydrogen and helium.
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Porb (min) t (Gyr) log Ṁtr log−Ṗorb M2 (M⊙) log L/L⊙ log Teff log H log He log C log N log O
PZAMS 0.000 — — 1.100 0.17 3.79 -0.14 -0.59 -2.75 -3.28 -2.30

80.0 8.023 -10.11 -12.56 0.097 -2.44 3.59 -0.46 -0.19 -5.12 -2.50 -2.36
60.0 8.147 -9.97 -12.48 0.086 -2.66 3.59 -0.57 -0.14 -5.07 -2.42 -2.44
50.0 8.205 -9.81 -12.49 0.079 -2.82 3.58 -0.70 -0.10 -5.01 -2.35 -2.53
45.0 8.236 -9.72 -12.54 0.074 -2.95 3.57 -0.82 -0.08 -4.96 -2.31 -2.62
39.5 8.317 -9.67 -∞ 0.056 -3.46 3.48 -1.24 -0.03 -4.90 -2.23 -2.88

40.0 11.145 -9.92 -11.86 0.124 -1.64 3.88 -0.48 -0.18 -5.22 -2.50 -2.36
30.0 11.156 -9.51 -11.68 0.122 -1.87 3.86 -0.51 -0.17 -5.23 -2.49 -2.36
20.0 11.163 -9.06 -11.41 0.120 -2.46 3.77 -0.57 -0.14 -5.18 -2.48 -2.37
15.0 11.165 -8.53 -11.26 0.117 -3.21 3.63 -0.68 -0.11 -5.11 -2.47 -2.39
11.3 11.167 -7.76 -∞ 0.101 -4.15 3.45 -1.84 -0.01 -4.81 -2.31 -2.62

Table 2.2: Some properties for two of our grid models withZ = 0.01 andMi = 1.1M⊙ at selected orbital periods.First
row: Initial (ZAMS) parameters.Rows 2-6: The model withPi = 0.75 d andPmin = 39.5 min. Rows 7-11: The model with
Pi = 0.85 d andPmin = 11.3 min. Ṁtr in column 3 is expressed inM⊙ yr−1 andTeff in column 7 in Kelvin. The last five
columns give the logarithm of the surface mass fractions of the elements described.
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Table2.1lists some properties of the same nine models shown in Fig.2.3at their period
minimum. The first five models all have minimum periods more than 1 h and more than 1%
hydrogen in the core at their minimum, whereas the cores of the last four models consist
for more than 99% of helium. With decreasing minimum period,the mass transfer rates
increase rapidly and the luminosities of the donors decrease. In Table2.2 we list some
observational properties along the evolutionary tracks oftwo of our grid models withZ =
0.01 andMi = 1.1 M⊙.

Although we find that it is possible to reach orbital periods below 40 minutes without
spiral-in, but due to magnetic capture instead, it seems that one has to select an initial period
carefully in order to actually do so. We also find that it is possible to construct a model
that has a minimum period as low as the observed 11.4 min in a time span smaller than
the Hubble time. The question arises, however, what the chances are that such a system
is indeed formed in a population of stars. In order to quantify this, we will expand our
parameter space to the entire grid we calculated and do statistics on these tracks in Sect.2.4.

2.3.3 Bifurcation models

For an initial secondary mass of 1.1M⊙, the grid models with initial periods of 0.85 days
and 0.90 days bracket the bifurcation period. Some timescales that can explain this differ-
ence are shown in Fig.2.4. The evolution of both models is rather similar in the beginning,
except for the small difference in orbital period, that stays about constant during the main
sequence. The wider system has a larger Roche lobe and thus the donor fills its Roche lobe
at a slightly later stage of its evolution. At this point, theevolutionary timescale of the donor
is shorter than that in the closer system, and it can form a well defined helium core. When
the envelope outside this core has been reduced by mass transfer to≃ 0.03 M⊙, it collapses
onto the core, mass transfer stops, and magnetic braking disappears before the magnetic
capture is complete. Gravitational radiation is then the only term of angular momentum
loss and it is not strong enough to shrink the orbit to the ultra-short period regime within the
Hubble time.

In the closer system, the evolutionary timescale of the donor is slightly larger and its
helium core mass is slightly smaller. At approximately 9 Gyrmass transfer has stripped the
donor to such extend that hotter layers emerge at the surface, the convective envelope of the
star becomes very thin and magnetic braking is strongly reduced (see the discussion with
Fig.2.3). Fig.2.4 shows that this happens at the moment where the gravitational radiation
timescale becomes shorter than the evolutionary timescaleof the donor, so that angular
momentum loss remains sufficient to shrink the orbit from thehour to the minute regime.
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Figure 2.4: Timescales of the models that bracket the bifurcation period for 1.1M⊙.
Upper panel (a): model with Pi = 0.85 d. Lower panel (b): model withPi = 0.90d.
The line styles represent the different timescales: Solid line: nuclear evolution timescale
(M/M⊙)/(L/L⊙) × 1010 yr, dashes: magnetic braking timescaleJorb/J̇MB, dash-dot:
gravitational radiation timescaleJorb/J̇GR, dash-dot-dot-dot: mass transfer timescale
M/Ṁtr. See the text for a discussion.

2.4 Statistics

2.4.1 Interpolation between models

In order to do statistics on our models, we have to interpolate between the calculated models
to get a time-period track, that gives the orbital period of asystem as a function of time, for
a given initial orbital periodPi.

Before we can interpolate between two calculated tracks, wemust first divide the tracks
into similar parts of evolution. We choose three parts: i) the part between ZAMS and the
beginning of RLOF, ii) the part between the beginning of RLOFand the moment where
the minimum period (Pmin) was reached, and iii) the part betweenPmin and the end of the
calculation. Each of these parts is redistributed into a fixed number of data points, equally
spaced in the path length of that part and determined by a polynomial interpolation of the
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third degree. The path length is the integrated track in the t–log P plane, and defined as

ℓ =
∑

i

√

(

t(i) − t(i − 1)

∆t

)2

+

(

log P (i) − log P (i − 1)

∆ log P

)2

, (2.4)

where∆t = tmax − tmin and∆log P = log Pmax − log Pmin. Thus, each part of all tracks
contains the same number of points, and each point on these parts marks about the same
moment in evolution in two different tracks.

Next, we interpolate between two tracks, to calculate the track for the given initial pe-
riod. Because the tracks differ considerably between the shortest and longest initial period,
we use linear interpolation between two adjacent tracks, that are always rather similar. Each
track is thus interpolated point-by-point between each pair of corresponding points from the
two adjacent tracks, to get the time and the orbital period.

Once the interpolated track is known, we interpolate withinthe track, to obtain the
orbital period at a given moment in time. For this, we use a polynomial interpolation of the
fourth degree. For some models the second part of a track consists of one point, because the
beginning of RLOF marks the minimum period. For interpolations involving this point, we
use a third degree polynomial interpolation.

A handful of models crash after they have stopped mass transfer, for instance the models
with the highest initial period in Figs.2.1and2.2. These systems will not give observable
X-ray sources, but some of these tracks may be needed for the interpolation. We continued
the orbital evolution of the most important of these models analytically, under the influence
of gravitational radiation only, until the orbit becomes sosmall that the star’s Roche lobe
touches its surface. We consider the orbital period at whichmass transfer recommences
as the minimum period. We assume a constant radius of the starsince the last converged
model, which probably means that we overestimate the minimum period a bit in these cases.

2.4.2 Results for Z=0.01

In Sect.2.3, we have found that we can create LMXBs with periods down to 11minutes or
perhaps even less, within a Hubble time. We also saw, however, that one has to select the
initial period carefully to create a model that reaches sucha low period, and that the system
spends very little time on this minimum period. In order to investigate how probable it is to
observeultra-compact binaries, we select random points on random tracks like the ones in
Figs.2.1 and2.2 and convert the result into a histogram. We perform this operation in the
following way.

For a fixed initial secondary mass, we draw a random initial period, between 0.50 and
2.75 days, from a flat distribution inlog P . We then interpolate the time-period track that
corresponds to this initial period, using the method described in Sect.2.4.1. For each point
on this track, an estimate for the mass transfer rate is obtained by interpolating in the log-
arithm of the calculated mass transfer rates. For points without mass transfer, we adapt a
value ofṀtr = 10−35 M⊙ yr−1, so that we can take its logarithm. This introduces some
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irregularities, like the peaks aroundlog P (d) = −0.5 in Fig.2.5, where interpolation be-
tween models with and without mass transfer, and interpolation between converging and
diverging models play a role. This is usually only the case atorbital periods of several hours
or more, and hence it is of no consequence for the ultra-compact binaries.

Once the time-period track is calculated, we draw a random moment in time, from a
linear distribution between 10 and 13 Gyr, the approximate ages of globular clusters, and
interpolate within the track to obtain the orbital period atthat random moment. We accept
only systems that have not evolved beyond their minimum period, firstly because of the
negative period derivative measured for the 11.4 min systemin NGC 6624, and secondly
because the evolution code we use can generally not calculate far beyond the period min-
imum. We also estimate the mass transfer rate at that moment,again by interpolating in
log Ṁtr. We reject all systems with a mass transfer rateṀtr < 10−20 M⊙ yr−1, because
it is unlikely that they have any mass transfer at that momentand will therefore not be an
X-ray source.

If we repeat this procedure many times, we can create a histogram that displays the
expected distribution of orbital periods of a population ofconverging LMXBs (with all the
same initial secondary masses) after 10 - 13 Gyr. The resultsfor 1.1 M⊙ andZ = 0.01 are
shown in Fig.2.5.

To simulate a population consisting of stars of different masses, one should interpolate
between the tracks as we did for the period. The tracks are toodifferent from each other to
ensure correct results. It would require a large number of extra models to be able to inter-
polate between the masses correctly. Instead, we choose to add the period distributions of
the different masses to simulate such a population. We do this for two different assumptions
for the mass distribution: the Salpeter birth function, anda flat distribution. The results are
shown in Fig.2.6.

We see that there is little difference between the two weighing methods. This assures
that although we do not know the initial distribution of the mass, it is of little influence on
this result. Especially the short-period tails of the distributions are almost equal. In a sample
of 107 systems we find one converging system with a period of about 11minutes and 15
systems with a period of 20 minutes.

2.4.3 Results for other metallicities

The whole exercise we described in section Sect.2.3.1, 2.4.1and2.4.2is also applied to
models forZ = 0.0001, Z = 0.002, andZ = 0.02, in order to see the effect of metallicity
on the expected distributions. ForZ = 0.02 we calculate the same initial grid as we did for
Z = 0.01, betweenPi = 0.5−2.75days forMi = 0.7−1.3M⊙, butPi = 0.55−3.025days
for Mi = 1.4 and1.5M⊙, since these stars even at the ZAMS do not fit in an orbit with
P = 0.5 days. ForZ = 0.002 we use the same initial mass range, but it turns out that
for Mi = 1.0 − 1.5M⊙ the bifurcation period lies very close to or lower than 0.5 days
(see Fig.2.7). We therefore shift the minimum initial period to 0.35 daysfor Mi = 1.0, 1.4
and1.5M⊙, and to 0.4 days forMi = 1.1 − 1.3M⊙. For Z = 0.0001, the minimum



30 Chapter 2

Figure 2.5: Statistics results for the 1.1M⊙ models. Left panel (a): Results from the draw
of one million random initial periods and times. Each dot represents the orbital period of
the selected system at the selected time. Only models that were converging and transferring
mass at that time were accepted, about 10.5% of the total number. The peaks at the higher
orbital periods are artefacts, caused by interpolation between models with and without mass
transfer. Dots belowP = 30 min are plotted larger for clarity. Right panel (b): A histogram
displaying the fraction of systems found at a certain orbital period, at any time between 10
and 13 Gyr. Thelog P -axis was chosen to be vertical, to correspond to the vertical axis
in the left panel. The thick line displays the data corresponding to the horizontal axis,
the thin line is the short-period tail of the same data, multiplied by a factor of 100 in the
horizontal (probability) direction. The dotted horizontal lines are the orbital periods of the
four observed LMXBs mentioned in Fig2.1.
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Figure 2.6: Probability distribution for all models withZ = 0.01. The solid line repre-
sents the sum of the distributions of the different masses weighed with the Salpeter birth
function, the dash-dotted line assumes a flat distribution in mass. The thin lines below
log P (d) = −1.3 and belowlog P (d) = −1.7 are the same data, multiplied with 100
and 1000 respectively. The four vertical, dotted lines showthe orbital periods of the four
observed LMXBs mentioned in Fig2.1.

initial period is shifted to 0.3 d for0.7 − 1.2 M⊙ and even to0.28 d for 1.3 − 1.5 M⊙. For
Z = 0.0001 andMi = 1.5 M⊙, the initial period at which a ZAMS star fills its Roche lobe
is higher than the bifurcation period. Stars with higherZ have larger radii and often do not
fit in these tight orbits. We shift the upper limit for the period range from which we took
random values accordingly, so that the size of the range (inlog P ) did not change. Since
the bifurcation period for the lower metallicity models lies lower, we also have to pinpoint
better to calculate the interesting models around it. We therefore narrow the grid to steps
of 0.01 d around the bifurcation period forZ = 0.002 andZ = 0.0001, and even down to
0.001d for the last metallicity.

The bifurcation periods for the different masses are plotted in Fig.2.7a. There is a trend
in metallicity in the sense that the dotted line ofZ = 0.02 could be moved down and left to
fall over that ofZ = 0.01 and further to reach that ofZ = 0.002 andZ = 0.0001. Fig.2.7b
shows the minimum periods for the systems that have the bifurcation period for that mass
as their initial period. The trend that is shown can be explained the fact that low mass stars
with a lower metallicity reach the TAMS before the Hubble time and are therefore eligible
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Figure 2.7: Bifurcation periods and minimum periods as a function of the initial mass for
the four metallicities.Upper panel(a): The bifurcation period (in hours) between systems
that converge and systems that do not converge within a Hubble time. Lower panel(b):
The minimum period (in minutes) that can be reached within a Hubble time as a function
of the initial secondary mass. The different line styles display the different metallicities,
as indicated in the upper panel. The data point forZ = 0.0001, Mi = 1.5 M⊙ is missing
in both panels, because the bifurcation period for these systems is lower than the period at
which such a donor fills its Roche lobe at ZAMS.

for magnetic capture, whereas low mass stars of higherZ do not.
The results of the statistics forZ = 0.0001, Z = 0.002 andZ = 0.02 are plotted

in Figs.2.8, 2.9 and2.10in the same way as the results forZ = 0.01 in Fig.2.6, so that
they can easily be compared. All four distributions are alsoplotted in a cumulative plot in
Fig.2.11, showing the fraction of systems with an orbital period below some value, so that
they can be compared directly.

The most remarkable feature in the three distributions withthe higher metallicities is
the sharp drop of the number of predicted systems belowlog P (d) = −1.25, or about
80 minutes. This is due to the systems with low initial mass (0.7− 0.9M⊙), that reach their
minimum periods there because they evolve too slow to reach ultra-short periods before the
Hubble time, and remain relatively long at this period. Models with Z = 0.0001 evolve
more quickly, and although most models do not reach ultra-short periods, they are substan-
tially lower than 80 min and can even reach 31 min in the case ofMi = 0.9 M⊙. The drop
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Figure 2.8: Probability distribution of the orbital periods for all models withZ = 0.0001.
The characteristics of this plot are the same as in Fig.2.6.

is therefore less sharp for the lowest metallicity we used.
The lower mass stars dominate in roughly thelog P -range−1.25 –−0.6, as can be seen

from the fact that here the solid line for a Salpeter weightedaddition of the masses that
favours low mass stars is higher than the dash-dotted line for a flat mass distribution. For
the ultra-short periods, there is very little difference between the two weighing methods,
and we can again conclude that the exact initial mass distribution is not important for our
results.

We also see that the lowest possible orbital period for an X-ray binary withZ = 0.0001
within the Hubble time is about a factor two smaller than for the other metallicities. This
is partly due to the fact that ultra-compact binaries are less likely to be formed for this low
metallicity because the initial period must be chosen more precisely. However, we find no
minimum periods less than 16.0 min for this metallicity. This has probably to do with the
fact that these stars are hotter and thus have a weaker magnetic field.

In a sample of107 binaries withZ = 0.0001, we expect no converging systems with
mass transfer and an orbital period of 11.4 min, and around 5 with a 20.6 min period
(Fig.2.8). For Z = 0.002 andZ = 0.02, these numbers are 7 systems with an 11.4 min
period and 60 with a 20.6 min period and 4 systems with an 11.4 min period and 10 with a
20.6 min period respectively.

Fig.2.11shows clearly that there is some difference between the period distributions for
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Figure 2.9: Probability distribution of the orbital periods for all models withZ = 0.002.
The characteristics of this plot are the same as in Fig.2.6.

the different metallicities, the largest difference beingthe higher period cut-off for the lowest
orbital periods forZ = 0.0001. The largest differences for the three higher metallicities
are found around 11 min, (a bit more than an order of magnitudebetweenZ = 0.01 and
the other two metallicities) and around 20 min (less than an order of magnitude between
Z = 0.002 and the others). Note that the line forZ = 0.01 predicts for each system with
an orbital period of 11 min about 100 systems withPorb ∼< 20 min.

2.5 Discussion

2.5.1 The importance of converging evolution for the formation of
ultra-compact binaries

To understand why the fraction of ultra-compact binaries with decreasing orbital period in
our computations is so small, we note that there are three main factors contributing to this.
First, only a limited range of initial orbital periods leadsto strongly converging orbital evo-
lution within the Hubble time, as listed in Table2.3. This range of periods varies strongly
with donor mass: forZ = 0.01 and for 1.0 and 1.1M⊙ the width is about 0.1 d; but for
1.2 and 1.3M⊙ it is only 0.003d. This corresponds to∼5% and∼0.2%, respectively, of
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Figure 2.10: Probability distribution of the orbital periods for all models withZ = 0.02.
The characteristics of this plot are the same as in Fig.2.6.

the range that we consider. The reason for this rapid decrease is that the nuclear evolu-
tion time scale of the star increases much more rapidly with mass than the time scale of
magnetic braking. Thus, at higher stellar mass magnetic capture can only occur for smaller
initial orbital periods. Second, for each initial orbital period within the range of converging
systems, only a very short time is spent at ultra-short periods while converging. Thus, the
1.1M⊙ system with initial period of 0.85 d reaches the 20 min periodafter 11.163 Gyr and
the 11 min period after 11.167Gyr. If we allow a range of ages of 3 Gyr, then only 0.1% of
these systems will have an orbital period less than 20 minanda negative period derivative.
If we allow also positive period derivatives, the fraction of ultra-compact binaries is some-
what higher: as can be seen in Fig.2.2 the evolution towards longer period is comparably
rapid as the evolution towards shorter period close to the minimum period. Third, as al-
ready mentioned, the range of initial periods leading to converging systems is very small for
donors withM ≥ 1.2M⊙; hence only donors in a narrow range of initial masses contribute
to ultra-short period systems. The combination of these three factors explains why so few
ultra-short period systems are produced, as already surmised byTutukov et al.(1987).

In our computations above we have assumed an initial period distribution in the range
0.5 d ∼< Pb ∼< 3 d. In the galactic disk, the actual period range extends to much longer
periods, and accordingly our estimates of the fraction of X-ray binaries that is observed
at ultra-short periods are upper bounds, for systems evolved along the scenario that we
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Figure 2.11: Cumulative plot for the distribution of the orbital periods for all models and all
four metallicities. The different line styles represent the different metallicities as indicated
in the lower right of the plot. The height of the lines shows the logarithm of the fraction
of all probed systems that have an orbital period equal to or lower than the period on the
horizontal axis. For all lines, a flat initial mass distribution is used. The dotted vertical lines
show the observed orbital periods mentioned in Fig2.1.

compute. This is in agreement with the absence of large numbers of X-ray binaries with
periods much less than 40 minutes, in the galactic disk. If fact only one such system has
recently been discovered; it may well have formed through a different mechanism, e.g. via
a double spiral-in at the end of which a white dwarf becomes the donor of a neutron star
(Savonije et al. 1986).

In globular clusters the binary period distribution is expected to be different from that
in the galactic disk: the widest primordial binaries are dissolved and close binaries are pro-
duced in close stellar encounters. If the neutron star is exchanged into a primordial binary in
a neutron-star/binary encounter, the period after the encounter scales with the pre-encounter
binary period; in general the orbit after exchange will be similar in size (Sigurdsson & Phin-
ney 1993). However, the range of periods is still expected to be widerthan the range that
we have considered in our computations, which therefore give an upper bound to the frac-
tion of ultra-compact binaries. If the neutron star is captured tidally, the orbital period after
capture tends to be short. The exact description of tidal capture is highly uncertain, and we
will discuss the simplest description to provide a reference frame. In this description, the
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Mi Pi,1 Pi,2 Prlof,1 Prlof,2 Rzams Rtams Pzams Ptams

1.0 1.477 1.589 0.638 0.715 0.92 1.73 0.19 2.50
1.1 0.767 0.856 0.640 0.740 1.05 1.51 0.22 2.00
1.2 0.753 0.756 0.686 0.689 1.18 1.71 0.26 2.37
1.3 0.753 0.756 0.704 0.707 1.27 2.00 0.29 2.94
1.4 0.753 0.758 0.714 0.719 1.31 2.37 0.29 3.71
1.5 0.752 0.763 0.717 0.728 1.33 2.65 0.29 4.32

Table 2.3: Comparison between the orbital periods that leadto periods less than 30 min
within a Hubble time and orbital periods that result from tidal capture with a 1.4M⊙ neutron
star, for different secondary masses andZ = 0.01. Column 1: initial secondary mass,
columns 2-3: initial period range that leads to ultra-shortperiods, columns 4-5: RLOF-
period period range that leads to ultra-short periods, columns 6-7: ZAMS and TAMS radii,
columns 8-9: orbital periods for a circularised binary withcapture distances of1 × Rzams

and3 × Rtams. Masses are inM⊙, radii in R⊙ and periods in days.

neutron star captures a main-sequence star if its closest approachd is within three times the
radiusR of that star, i.e.d ≤ 3R (Fabian et al. 1975). The capture rate is linear ind; thus
one third of the captures is a direct hit, which completely destroys the main-sequence star.
Capture may lead to a binary ifR ∼< d ≤ 3R. The lower bound may in fact be higher, since
too close a capture still does serious damage to the star (Ray et al. 1987). The orbit imme-
diately after capture is highly eccentric, and after it circularises its semi-major axis is twice
the capture distance:ac ≃ 2d. Hence orbits formed by tidal capture have a semi-major axis
(after circularisation)2R ∼< ac ≤ 6R, or with Kepler’s law:

0.23 d

(

R

R⊙

)3/2 (

M⊙

M + m

)1/2

∼< Pb ≤ 1.20 d

(

R

R⊙

)3/2 (

M⊙

M + m

)1/2

(2.5)

Immediately after the capture, the main-sequence star is highly perturbed, but after a
thermal timescale it may settle on its equilibrium radius, and continue its evolution. The
range of orbital periods depends on the radius that the star has when it is captured. In gen-
eral, the period range is bounded below by the period found byentering twice the zero-age
main-sequence radius into Eq.2.5 and above by entering six times the terminal-age main-
sequence radius (because a star evolved beyond this point does not evolve towards shorter
periods). In Table2.3we list the period ranges expected in this simplest description of cap-
ture. Unless the central density of the globular cluster evolves dramatically, the probability
of capture is approximately flat in time. The period after capture close to the zero-age main
sequence should be compared to the initial binary period in our computations; the period
after capture close to terminal-age main sequence should becompared to the period of a
system close to filling its Roche lobe. In either case, we see that capture leads to a period
distribution which covers an appreciable fraction of the period distribution that we cover in
our computations. This means that our conclusion that only an exceedingly small fraction
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of all binaries with a neutron star evolve towards periods less than 30 min holds also for
tidally captured binaries.

We have taken the simplest description of tidal capture. From the above argument it is
clear that changing the assumptions made about tidal capture is unlikely to change our con-
clusion, that evolution from magnetically driven converging evolution does not contribute
significantly to the population of ultra-compact binaries.Even if tidal capture would mirac-
ulously focus the resulting orbits into the narrow range required for converging evolution,
the fact would remain that each systems spends only a small fraction of its time converging
from 20 min to 11 min.

If the binary in NGC 6624 were the only ultra-short-period binary in a globular cluster,
one could accept an evolutionary scenario with low probability. It is thus worthy of note that
our statistical argument depends critically on the observation that the 20.6 min (or 13.2 min)
period of the binary in NGC 6712 is real. So far, this period has been measured only once
in a single HST data set, and an independent new measurement is very desirable, to exclude
definitely that the first measurement of a significant periodicity is a statistical fluke.

2.5.2 Comparison to Pylyser & Savonije

The question arises whyPylyser & Savonije(1988) andPylyser & Savonije(1989), here-
after PS1 and PS2, did not find ultra-compact systems in theirstudy. We tried to reproduce
their models with a 1.0M⊙ compact primary and a 1.5M⊙ secondary (models A25-I25
in PS1 and A25-Z25 in PS2) because these are best documented and they find the lowest
minimum period here (38 min for A25 in PS2). We calculated models with the same initial
masses, mixing length (l/Hp = 1.5), metallicity (Z = 0.02) and without overshooting.
Figure2.12compares their results to our calculations as the minimum period (Pmin) as a
function of the period where Roche-lobe overflow starts (Prlof ).

We find the bifurcation period at much largerPrlof , which is due to the fact that our
stars rotate (about 25% of the difference, according to testcalculations we have done) and
increased opacities. Both effects increase the radii of ourmodel stars, so that they must be
placed in a larger orbit to fill their Roche lobe at the same stage of evolution. It seems that
shifting the two solid lines of PS1 and PS2 horizontally can approximately compensate for
this, but the lines must be shifted over different amounts. Hence, a gap arises between what
at first sight appears to be a continuousPrlof -range from PS1 and PS2. The fact that they
find the minimum period at the limit of each range, and the factthat these two points are
both atPrlof = 0.70 d, but give very different minimum periods (100 min and 38 minfor
PS1 and PS2 respectively), are supporting the evidence for the existence of this gap. The
cause for the gap seems to be clear; in PS2 an accretion induced collapse (AIC) occurs when
the primary reaches 1.44M⊙, whereas in PS1 no such event happens. The AIC decreases
the mass of the compact object and increases the orbital period so that the further evolution
can no longer be compared to that of systems without an AIC.

In our more complete series of models, shown in Fig.2.12, the lowest minimum period
we find is 7.0 min, and is reached after 12.4 Gyr.
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Figure 2.12: Comparison of our models (dashed line) to the models A25-I25 of PS1 and
A25-Z25 of PS2 (solid lines). See the text for details.

2.5.3 Comparison to Podsiadlowski et al.

We chose the parameters of our models as similar as possible to those ofPodsiadlowski
et al.(2002) (see Sect.2.2), to see if we could reproduce their results for a 1.4M⊙ neutron
star and a 1.0M⊙ secondary. Indeed, the results of our calculations are qualitatively very
similar to their findings in their Fig. 16 and their statementthat binaries with an orbital
period of 5 minutes can be achieved without a spiral-in, although we need slightly larger
initial periods to get to the same minimum period.Podsiadlowski et al.(2002) display
their results as a function of time since Roche-lobe overflowstarted, and because of this we
cannot ascertain the total age of the binary at the minimum period. The red and blue model
in their Fig. 16 reach minimum periods of about 9 and 7 minutes, at approximately 4.5 and
5.5 Gyr after the beginning of RLOF. We find very similar results, and in addition we find
the total ages of these systems: 14 and 17 Gyr respectively. We find that it takes 13.4 Gyr
to reach an orbital period of 11.4 minutes, the shortest period observed for an X-ray binary,
and more than 35 Gyr to shrink the orbit to 5 minutes. We conclude that it is not possible to
create systems with orbital periods less than 10 min this way, within a Hubble time.

Podsiadlowski et al.(2002) find that there is a rather large range of initial orbital periods
(13 – 17.7 hr) that lead to a minimum period that is less than 30minutes. We find for
the same condition aPrlof of 15.3 – 17.2 hr, which is considerably smaller. This is firstly
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because our model stars have a slightly larger radius. Part of the explanation of the increased
radius is given by the rotation of the star, although this canonly account for 20% of the
difference in thePrlof -range, and by the different helium abundance (Podsiadlowski et al.
(2002) useY = 0.27, we haveY = 0.26), which explains 10%. The larger radius shifts
the wholePrlof -range to larger orbital period. Secondly, we limit our range to systems that
reach their minimum period before the Hubble time, so that itis cut off above a certainPrlof .

What Podsiadlowski et al.(2002) call the initial period is the period at which RLOF
initiates, and which we callPrlof . In the time before RLOF began, the magnetic braking
may have played a role in shrinking the pre-RLOF orbit of the systems as listed in Table2.3.

2.5.4 Comparison with observations and other models

The main result from our computations is that, in a population where all X-ray binaries
evolve from close detached binaries of a main-sequence starand a neutron star, systems
with orbital periods less than 30-40 minutes and with decreasing orbital periods are very
rare. If we accept that the orbital period of the X-ray sourcein NGC 6624 is decreasing
intrinsically (and not just observationally due to gravitational acceleration), we must accept
that it is a statistical fluke, or look for a different origin.

In this respect it would be important to know more about the orbital periods and their
derivatives of other X-ray sources in globular clusters. A very short orbital period is detected
for just one other bright X-ray source, in NGC 6712, as a regular variation of 0.044(7)mag
in one series of 53 F300W (wide U) filter HST observations withWFPC2 in 1995; aliasing
allows two solutions at 13.2 or 20.6 minutes (Homer et al. 1996). Homer et al.(1996) opt for
the longer period, on the basis of the low X-ray luminosity that reflects a low mass-transfer
rate and a model in which the donor to the neutron star is a white dwarf (Verbunt 1987).
We note that the same choice for the longer period would follow for the magnetic-capture
model. The period derivative of the source in NGC 6712 is not known. The argument that
as many as half of the bright X-ray sources in globular clusters have ultra-short periods is
based on the similarity of various properties of those X-raysources with the properties of
the X-ray sources in NGC 6624 and NGC 6712. This argument is correct only if the X-ray
source in NGC 6712 indeed has an ultra-short period. It is therefore important that this
period is confirmed; which will also settle between the aliases of 13.2 and 20.6 minutes.

Measurement of the period derivative will be very difficult.It is therefore of interest
to know how many ultra-compact binaries one would expect irrespective of their period
derivative, in the magnetic capture model. Alas, our computations stop a short time after
the minimum period, so that we do not have an accurate estimate of the time spent at positive
period derivative. Nonetheless, inspection of our resultsas reflected in Fig.2.1 shows that
the evolution away from the minimum period is only slightly slower than the evolution
towards it. Thus, the number of systems expected at the shortest period range of between 10-
30 minutes would only be a factor few higher than the number inthe same period range with
decreasing period only. This implies that the presence of even two systems with periods less
than 30 minutes among 13 globular cluster systems excludes the magnetic-capture scenario
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as the dominant formation process. The conclusion is true a fortiori if more such systems
are discovered.

A donor in an ultra-compact system can also be a helium-burning star. To bring such a
small star into contact, a spiral-in must have occurred (Savonije et al. 1986). The progenitor
of such a helium-burning star would be more massive than the main-sequence star found in
globular clusters, andVerbunt(1987) argued that this excludes such donors for sources in
globular clusters. However, more massive stars can be made in direct collisions: if such a
more massive star ends up in a binary with a neutron star, further evolution can lead to a
helium-burning donor in an ultra-compact system. This scenario may gain in importance if
tidal capture is indeed less efficient, as indicated by a highfraction of systems with ultra-
short periods. It allows negative derivatives of the orbital period.

Since the measurement of the intrinsic derivative of the orbital period is so difficult, it
is useful to look for other observational properties that can discriminate between the dif-
ferent origins of an ultra-compact binary. With this in mind, we refer to Table2.2 where
some properties of ultra-short-period systems are listed that follow for the magnetic-capture
model, in particular the mass-transfer rate at various periods, and the abundances of the
more important elements. A pure white-dwarf donor, whittled down to a mass less than
0.1M⊙, would have no hydrogen if it was a helium white dwarf; and no hydrogen and
no helium if it was a carbon-oxygen white dwarf. Therefore, if hydrogen is discovered in
the spectrum of an ultra-compact X-ray binary, this indicates evolution through magnetic
capture and the orbital period must still be decreasing. Close to the minimum period the
hydrogen abundance at the surface goes to zero and thus is no longer discriminant between
models.
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Abstract A binary in which a slightly evolved star starts mass transfer to a neutron star can
evolve towards ultra-short orbital periods under the influence of magnetic braking. This is
called magnetic capture. In Chapter2 we showed that ultra-short periods are only reached
for an extremely small range of initial binary parameters, in particular orbital period and
donor mass. Our conclusion was based on one specific choice for the law of magnetic
braking, and for the loss of mass and angular momentum duringmass transfer. In this
chapter we show that for less efficient magnetic braking it isimpossible to evolve to ultra-
short periods, independent of the amount of mass and associated angular momentum lost
from the binary.
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3.1 Introduction

In Chapter2 we examined the process of magnetic capture: a slightly evolved main-
sequence star in a binary that transfers mass to a neutron-star companion while the orbital
period shrinks to the ultra-short-period regime (less thanabout 40 minutes). To facilitate
comparison with earlier work, we used the same law for magnetic braking, and the same
assumption about the loss of mass and angular momentum during mass transfer asPodsi-
adlowski et al.(2002). Specifically, we used the law for magnetic braking as postulated
by Verbunt & Zwaan(1981), with the extra requirement that a sufficiently large convective
zone is present near the surface of the star, and we assumed that half of the transferred mass
leaves the binary with the specific angular momentum of the neutron star. We concluded
that ultra-short periods are reached within the Hubble timeonly by binaries within very nar-
row ranges of initial orbital periods and donor masses. In this chapter we investigate how
this conclusion changes if we vary the assumptions on the strength of magnetic braking and
on the loss of mass and angular momentum from the system.

Section3.2 briefly describes the stellar evolution code used and especially the laws for
magnetic braking and system mass loss that we implemented. We then show which grids
of models were calculated and how the statistical study was performed in Sect.3.3. The
results are presented in Sect.3.4 and discussed in Sect.3.5. In Sect.3.6 we summarise our
conclusions.

3.2 Binary evolution code

3.2.1 The stellar evolution code

We calculate our models using the STARS binary stellar evolution code, originally devel-
oped byEggleton(1971, 1972) and with updated input physics as described inPols et al.
(1995). Opacity tables are taken from OPAL (Iglesias et al. 1992), complemented with low-
temperature opacities fromAlexander & Ferguson(1994). For more details, see Sect.2.2.

3.2.2 Angular momentum losses

Loss of angular momentum is essential to shrink the orbit of abinary in which the less
massive star transfers mass to its more massive companion. We consider three sources of
angular momentum loss.

For short periods, gravitational radiation is a strong source of angular momentum loss.
We use the standard description

dJGR

dt
= −

32

5

G7/2

c5

M2
1 M2

2 (M1 + M2)
1/2

a7/2
(3.1)

(Peters 1984).
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The second mechanism of angular momentum loss from the system is by non-
conservative mass transfer. We assume that only a fractionβ of the transferred mass is
accreted by the neutron star. The remainder is lost from the system, carrying away a frac-
tion α of the specific orbital angular momentum of the neutron star:

dJML

dt
= −α (1 − β) a2

1 ω Ṁ2, (3.2)

wherea1 is the orbital radius of the neutron star andω is the angular velocity.
To keep the models simple, we applied no regular stellar windto our models, so that

all mass loss from the system and associated angular momentum loss result from the non-
conservative mass transfer described above.

The third source of angular momentum loss in this study is magnetic braking.Verbunt
& Zwaan(1981) postulated a law for magnetic braking

dJMB

dt
= −3.8 × 10−30 η M R4 ω3 dyn cm, (3.3)

on the basis of the observations bySkumanich(1972) that the equatorial rotation velocity
ve of main-sequence G stars decreases with the aget of the star asve ∝ t−0.5. In Chapter2
we assumedη = 1, afterRappaport et al.(1983). More recent measurements of rotation
velocities of stars in the Hyades and Pleiades, however, show that M stars have a wide range
of rotation velocities that is preserved as they age (Terndrup et al. 2000). This indicates
that magnetic braking is less strong for low mass stars than assumed in Eq.3.3with η = 1.
Also, observational evidence indicates that coronal and chromospheric activity, and with it
magnetic braking, saturate to a maximum level at rotation periods less than about 3 days
(e.g. Vilhu 1982; Vilhu & Rucinski 1983). Verbunt(1984) showed that to explain a braking
with the strength of Eq.3.3for a solar-type star, the star must have a magnetic field in excess
of∼ 200G for a slow rotator, and in addition a stellar wind loss in excess of5×10−10M⊙/yr
for a fast rotator (for which the corotation velocity of the wind matter is much higher than
the escape velocity – see alsoMochnacki(1981)). A smaller field or less wind (for the fast
rotator) automatically leads to a lower braking.

Many theoretical descriptions of angular momentum loss dueto a magnetized wind can
be found in the literature (among othersKawaler 1988; Stepien 1995; Eggleton & Kiseleva-
Eggleton 2002; Ivanova & Taam 2003). These prescriptions depend on properties of the
star (for instance wind mass loss rate, magnetic field strength, corona temperature) that
are poorly known from observations for main-sequence starsand even less for evolving
stars. These angular momentum prescriptions vary in strength and dependence on the stellar
parameters. We have selected two different semi-empiricalprescriptions to investigate the
effect of reduced braking on the mechanism of magnetic capture. In Sect.3.5we will show
that these two different implementations of magnetic braking dominate the evolution of the
binary in two completely different phases of their life.

First, we retain the functional dependence of the braking onstellar mass and radius
given by Eq.3.3, but arbitrarily reduce the strength by takingη = 0.25 (reduced braking)
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and η = 0 (no braking). Second, we use a new law for magnetic braking, derived on
the basis of the ranges of rotation velocities in the Hyades and Pleiades, which includes
saturation at a critical angular rotation velocityωcrit (Sills et al. 2000):

dJMB

dt
= −K
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R⊙

)0.5 (

M

M⊙

)−0.5

ω3, ω ≤ ωcrit

dJMB

dt
= −K
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R⊙

)0.5 (

M

M⊙

)−0.5

ω ω2
crit, ω > ωcrit (3.4)

FromAndronov et al.(2003) we take the valueK = 2.7× 1047 g cm2 s that reproduces
the angular velocity of the Sun at the age of the Sun.Krishnamurthi et al.(1997) require
a mass-dependent value forωcrit and they scale this quantity inversely with the turnover
timescale for the convective envelopeτto of the star at an age of 200 Myr:

ωcrit = ωcrit,⊙
τto,⊙

τto

(3.5)

They use a fixed value forωcrit, because they consider main-sequence stars and the value of
τto does not change much during this evolution period. However,we consider donor stars in
a binary system that change substantially during their evolution and hence use the instanta-
neous value forτto. This convective turnover timescale is determined by the evolution code
by integrating the inverse velocity of convective cells, asgiven by the mixing-length theory
(Böhm-Vitense 1958), over the radial extent of the convective envelope. We further use a
value ofωcrit,⊙ = 2.9×10−5 Hz, equivalent toPcrit,⊙ = 2.5 d (Sills et al.(2000) find that a
value forωcrit,⊙ of around 10 times the current solar angular velocity is needed to reproduce
observational data of young clusters with a rigidly rotating model), andτto,⊙ = 13.8 d, the
value that the evolution code gives for a1.0 M⊙ star at the age of 4.6 Gyr.

In both prescriptions (Eqs.3.3and3.4) we followPodsiadlowski et al.(2002) and reduce
the magnetic braking by an ad hoc term

exp(1 − 0.02/qconv) if qconv < 0.02, (3.6)

whereqconv is the fractional mass of the convective envelope. In this way we account
for the fact that stars with a small or no convective mantle donot have a strong magnetic
field and will therefore experience little or no magnetic braking. Notice that Eq.3.5 alone
predicts that stars with higher mass have a higherωcrit, because they have a higher surface
temperature, hence a smaller convective mantle and a shorter τto. The application of the
term in Eq.3.6prevents that these stars experience unrealistically strong magnetic braking.

3.3 Creating theoretical period distributions

3.3.1 Binary models

Using the binary evolution code described in Sect.3.2, with the non-saturated magnetic-
braking law of Eq.3.3 we calculated grids of models for Z=0.01, the metallicity ofthe
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globular cluster NGC 6624, and Y=0.26. We choose initial masses between 0.7 and 1.5M⊙

with steps of 0.1M⊙. For each mass we calculated models with initial periods (Pi) between
0.5 and 2.5 days with steps of 0.5 d for all masses and dropped the lower limit for the initial
period where necessary, down to 0.25 d. Around the bifurcation period between converging
and diverging systems, where the shortest orbital periods occur, we narrow the steps in Pi

to 0.05 or sometimes even 0.02 d.
Another series of models was calculated with a similar grid of initial masses and periods,

but with the magnetic-braking law of Eq.3.4 that includes saturation of the magnetic field
strength at high angular velocities.

3.3.2 Statistics

In order to create a theoretical period distribution for a population of stars, we proceed as
described in Sect.2.4. First, we draw a random initial period (Pi) and calculate the time-
period track for this Pi by interpolation from the two bracketing calculated tracks. Second,
we pick a random moment in time and interpolate within the obtained time-period track to
get the orbital period of the system at that moment in time. The system is accepted if mass
transfer is occurring and the period derivative is negative. The details of this interpolation
are described in Sect.2.4.1. We do this106 times for each mass to produce a theoretical
orbital-period distribution for a given initial mass and given ranges in log Pi and time.

To simulate the period distribution for a population of stars with an initial mass distri-
bution, we add the distributions of different masses. In Sect. 2.4.2we show that the result
depends very little on the weighting, so that we simulate a flat distribution in initial mass.

3.4 Results

3.4.1 Reduced magnetic braking

We have calculated three grids of models as described in Sect.3.3.1with the non-saturated
magnetic-braking law given by Eq.3.3. We have given the three grids different braking
strengths by changing the value forη. We used the valuesη = 1.0 (as in Chapter2), η =
0.25 andη = 0.0. For the last set, there is no magnetic braking and the angular momentum
loss comes predominantly from gravitational radiation. For all models in these grids, half of
the transferred mass is ejected from the system with the specific angular momentum of the
neutron star, i.e. we usedα = 1 andβ = 0.5 in Eq.3.2. Figure3.1shows time-period tracks
for models from the three grids with selected initial orbital periods andMi = 1.1 M⊙.

The figure shows clearly that initially similar models evolve in different ways, but only
after mass transfer has started. This is because a low-metallicity main-sequence 1.1M⊙

star has a high surface temperature, hence a small convective envelope (qconv ≈ 10−3) and
therefore effectively no magnetic braking at that stage (see Eq.3.6). After mass transfer
starts, the surface temperatures drop and the differences in magnetic braking strength be-
come apparent. It is obvious that a model that experiences weaker magnetic braking may
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Figure 3.1: Time-period tracks forZ = 0.01, Mi = 1.1M⊙ with Pi = 0.6 d,Pi = 0.8 d,
andPi = 1.0 d. Each model is shown for three different values ofη: 0.0 (solid lines), 0.25
(dashed lines) and 1.0 (dotted lines). The symbols mark special points in the evolution:
+ marks the start of Roche-lobe overflow (RLOF),× the minimum period,△ the end of
RLOF and O marks the end of the calculation. The four dash-dotted horizontal lines show
the orbital periods of the closest observed LMXBs in globular clusters: 11.4 and 20.6, and
in the galactic disk: 41 and 50 minutes.

diverge where a similar model with stronger braking converges, and that models with weak
magnetic braking converge slower than models with strong magnetic braking.

For each grid of models we produce a statistical sample as explained in Sect.3.3.2. The
results are period distributions for three populations of stars with initial masses between 0.7
and 1.5M⊙ and ages between 10 and 13 Gyr. The distributions are compared in Fig.3.2.

The most striking difference in the period distributions for the three values ofη is the
shortest orbital period produced in the magnetic capture model. In models with reduced
magnetic braking the orbits do not converge to ultra-short periods before the Hubble time,
and the cut-off at the low-period end of the distribution accordingly lies at a higher period.
This is also the reason why there are more systems with orbital periods of around 0.1 d for
η = 0.0 than forη = 1.0; the missing models with stronger braking have already converged
to lower orbital periods, or beyond the period minimum.



Reduced magnetic braking and the magnetic capture model 49

Figure 3.2: Period distributions for the magnetic capture model forη = 0.0 (solid lines),
0.25 (dashed lines) and 1.0 (dotted lines). It is clear that the cut-off for lower orbital periods
strongly depends on the strength of the magnetic braking. The vertical axis displays the
logarithm of the probability that an X-ray binary with a certain orbital period is found. The
four vertical dash-dotted lines show the same observed orbital periods as the horizontal
lines in Fig.3.1. The probability is computed by distributing the accepted periods into bins
of width ∆log P = 0.011 and dividing the number in each bin by the total number of
systems.

3.4.2 Saturated magnetic braking

We have calculated one grid of models described in Sect.3.3.1with the saturated magnetic-
braking law given by Eq.3.4. In this prescription the magnetic field saturates at a certain
critical angular velocityωcrit, that depends on the convective turnover timescale of the donor
star, as shown in Eq.3.5. At an angular velocity higher thanωcrit, the magnetic braking
scales linearly withω rather than cubically. As the typical initial critical spinperiod is a
few days, this is long compared to the initial orbital and – since the spins and orbits of our
models are generally synchronised – spin period, and therefore replacing the prescription of
Eq.3.3by that of Eq.3.4can be expected to have an effect similar to lowering the strength
of the magnetic braking, as we did in Sect.3.4.1. Because we will see in Sect.3.4.3that the
shortest orbital periods are reached for models with conservative mass transfer, all models
in this grid haveβ = 1.0 in Eq.3.2.

Figure3.3compares the tracks of1.1M⊙ models from this grid with tracks taken from
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Figure 3.3: Time-period tracks forZ = 0.01, Mi = 1.1 M⊙ with Pi = 0.38 d (the shortest
possiblePi for this model),Pi = 0.45 d,Pi = 0.56 d, andPi = 0.60 d. Each model is shown
for a magnetic braking law according to Eq.3.4 (Sat. MB, solid lines) and no magnetic
braking, but gravitational waves only (GW only, dashed lines). The symbols and horizontal
dash-dotted lines are as in Fig.3.1. Note that the time axis extends far beyond the Hubble
time.

Sect.3.4.3with conservative mass transfer and without magnetic braking, i.e.β = 1.0 and
η = 0.0. We see similar differences between the two sets of models asseen in Fig.3.1, but
the magnetic braking is clearly too weak to evolve the systems to less than 75 min within
the Hubble time.

We performed statistics on the model as described in Sect.3.3.2; the result is displayed
in Fig.3.4 and compared to the period distribution for a grid of models with β = 1.0 and
η = 0.0.

3.4.3 The influence of mass loss

In Chapter2 we have assumed that half of the transferred mass in our models is lost by
the accretor and leaves the system with the specific angular momentum of the accretor. To
see what influence this assumption has on the results of our study, we calculated a number
of models with conservative mass transfer, so thatβ = 1.0 in Eq.3.2. We calculated two
sets of conservative models, one set without magnetic braking (η = 0 in Eq.3.3) and one
set with full braking (η = 1). The time-period tracks of selected models are compared to
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Figure 3.4: Period distribution for the magnetic capture model using the magnetic braking
law described in Eq.3.4(Sat. MB, solid line) compared to the period distribution for models
without braking, but with gravitational waves only (GW only, dashed line). The four vertical
dash-dotted lines show the same observed orbital periods asthe horizontal lines in Fig.3.1.
The probability is calculated in the same way as in Fig.3.2.

previous models withβ = 0.5 in Figs.3.5and3.6.

Figure3.5 shows that the time-period tracks of models with gravitational waves as the
dominant angular momentum loss source are changed noticeably by a change inβ. Con-
verging models reach their minimum period much earlier for conservative models than for
non-conservative models. The reason for this is that mass loss from the binary according to
Eq.3.2 leads to a widening of the binary for the value ofα we use. However, even for the
shortest possible initial period (0.38 d), and therefore the earliest possible period minimum
for these systems, the time of the minimum shifts from 19.9 Gyr to 14.7 Gyr with a period of
78 min. The conclusion is that this effect makes no difference to the number or distribution
of ultra-compact binaries.

For models with magnetic braking, the differences between the two sets of models is
much smaller, as shown in Fig.3.6. The reason for this is that the orbital evolution is com-
pletely dominated by the strong magnetic braking, so that changes in less important terms,
like the amount of mass loss from the system and the associated angular momentum loss, are
of very little influence. The models with full magnetic braking canproduce ultra-compact
binaries within the Hubble time; the distribution of ultra-short periods in these models is
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Figure 3.5: Time-period tracks forZ = 0.01, Mi = 1.1 M⊙ with Pi = 0.38 d (the shortest
possiblePi), Pi = 0.45 d andPi = 0.50 d. Each model is shown for two different values of
β (β = 0.5, solid lines andβ = 1.0, dashed lines) and has no magnetic braking (η = 0.0).
The symbols and horizontal dash-dotted lines are as in Fig.3.1.

slightly affected by a change inβ (see Fig.3.6), but not enough to change the overall con-
clusion of Chapter2.

3.5 Discussion

It is clear that the magnetic capture scenario to create ultra-compact binaries depends very
strongly on the strength of the magnetic braking used. By simply scaling down theVer-
bunt & Zwaan(1981) prescription for magnetic braking, the results are, as canbe expected
intuitively,

• The bifurcation period between converging and diverging systems decreases, which
means that only models with a lower initial orbital period will converge.

• The rate at which a system converges is lower, so that minimumperiods are reached
at a later time. This can imply that ultra-compact periods occur only after a Hubble
time.
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Figure 3.6: Time-period tracks forZ = 0.01, Mi = 1.1 M⊙ with Pi = 0.6 d,Pi = 0.8 d,Pi

= 0.9 d, andPi = 1.0 d. Each model is shown for two different values ofβ (β = 0.5, solid
lines andβ = 1.0, dashed lines) and has full magnetic braking (η = 1.0). The symbols and
horizontal dash-dotted lines are as in Fig.3.1.

• Because reaching the minimum period takes much longer, a small offset in the initial
period has much more impact on the evolution of the system. Because of this, the
initial period range that leads to ultra-compact systems for a certain initial mass is
much smaller and thus the chances of actually producing an ultra-compact system
decrease.

If we use a slightly more sophisticated, saturated magneticbraking law, the results are
qualitatively similar to decreasing the magnetic braking strength. Because of the different
dependencies of the two different magnetic braking laws on the mass and radius of the
star in Eqs.3.3and3.4, the two prescriptions take effect at completely differentparts of the
evolution. To illustrate this, we picked three models with an initial mass of1 M⊙ that evolve
to the same minimum period (28 min) at about the same mass (0.06–0.07 M⊙). The three
models have different magnetic braking laws implemented and are given different initial
periods to reach the desiredPmin: the first model uses braking according to Eq.3.3 and
Pi = 1.485d so that the period minimum is reached after 11.7 Gyr. The second model
loses angular momentum according to the saturated magneticbraking law in Eq.3.4. It
hasPi = 1.109d and needs 20.1 Gyr. The third model has no magnetic braking but only
gravitational waves to lose angular momentum. It needs the shortest initial period (0.4998d)
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and longest evolution time (42 Gyr) to reach the desired minimum period.
The three models are compared in Fig.3.7. The data are shown as a function of the

total mass of the donor, starting with the onset of Roche-lobe overflow. Fig.3.7a displays
the orbital evolution of the three models. Due to loss of angular momentum, the orbital
periods at the start of mass transfer are already significantly shorter than the periodsPi

at the ZAMS. The model with the magnetic braking law of Eq.3.3 has the longest orbital
period at the onset of RLOF, but shrinks fast and coincides with the model without magnetic
braking in the end. The dashed line of the model with the saturated magnetic braking from
Eq.3.4 intersects the solid line twice before the period minimum, indicating that braking
starts out weaker, but ends stronger than the canonical magnetic braking of Eq.3.3. This is
clearly seen in Fig.3.7b, where for each model two competing time scales are plotted: the
time scale in which the mass transfer from the less massive tothe more massive component
would expand the orbit if it were the only process going on, and the timescale in which
angular momentum loss (the sum of gravitational radiation and magnetic braking) would
shrink the orbit if nothing else would happen. In order to obtain the timescale at which
the orbital period changes (τP ) due to angular momentum loss (J̇), we use the fact that
the total angular momentum of a binary scales with the cubed root of the orbital period
(Jorb ∝ P

1/3

orb ) and thus

τP =
Porb

Ṗorb

=
Porb

dP
dJ J̇orb

=
Jorb

3 J̇orb

. (3.7)

To calculateτP due to angular momentum loss we substitute forJ̇orb in Eq.3.7 the sum
of the angular momentum losses due to gravitational radiation and magnetic braking. The
period derivative due to conservative mass transfer from star 1 to star 2, assuming no angular
momentum loss, is given by:

Ṗorb = 3Porb

M1 − M2

M1 M2

Ṁ1 (3.8)

which can be substituted into Eq.3.7to getτP . Depending on which of the two timescales
is shorter, the orbit will expand or shrink. At the period minimum, the two lines for each
model intersect. The figure shows that the timescales for themodel with the canonical mag-
netic braking and the model with gravitational radiation only coincide around the period
minimum. This happens because at these short orbital periods the models with canonical
braking have very weak magnetic braking due to their small masses and radii (see Eq.3.3)
and therefore gravitational wave emission dominates the orbital evolution. It can be clearly
seen in the figure that the timescales for the model with saturated magnetic braking are al-
most two orders of magnitude shorter than for the two other models and the orbital evolution
is driven by the strong magnetic braking. Figure3.7c shows the true period derivatives of
the three models, which could have been inferred from the difference between the lines in
Fig.3.7b. It shows clearly that the orbit changes fastest for the model with canonical mag-
netic braking in the first part of the evolution, but faster for the model with the saturated
magnetic braking law when the donor mass drops below about 0.2M⊙. Interestingly, the
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model with saturated magnetic braking is in the saturated regime during all of the evolu-
tion, so that the difference in strength comes from the different dependence on the mass
and radius of the donor. The deep dips in Fig.3.7c are the period minima wherėP changes
sign. Figure3.7 illustrates that the two magnetic braking prescriptions that we use work at
completely different phases of the evolution of the model. The canonical braking model
of Eq.3.3 acts mainly in the first part of the mass transfer phase, well before the period
minimum, up to the point where the orbital period has decreased enough for gravitational
radiation to take over as the main angular momentum loss mechanism and evolve the orbit
to the ultra-short period regime. The saturated magnetic braking prescription of Eq.3.4 is
only slightly stronger than the gravitational radiation inthe first part of the evolution, but
becomes orders of magnitude stronger at shorter orbital periods and evolves to the ultra-
compact binary state without any significant contribution in the angular momentum loss
from gravitational radiation. Despite these large differences, there is little influence on the
outcome of our statistical study. We therefore conclude that our study is independent of the
the details of the magnetic braking, and that the use of othertheoretical or semi-empirical
laws mentioned in Sect.3.2will lead to similar results.

3.6 Conclusions

In Chapter2 we showed that for magnetic braking according toVerbunt & Zwaan(1981)
the formation of ultra-short-period binaries via magneticcapture is possible, albeit very
improbable, within the Hubble time. In this chapter we find that for less strong magnetic
braking, in better agreement with recent observations of single stars, the formation of ultra-
short-period binaries via magnetic capture is even less efficient. Specifically, for magnetic
braking reduced to 25% of the standard prescription (according to Eq.3.3), the shortest
possible period is 23 min; for saturated magnetic braking (according to Eq.3.4) the shortest
possible period is essentially the same as without magneticbraking, about 70 min.

Loss of mass and associated angular momentum from the binaryin general widens the
orbit and thereby delays the formation of ultra-compact binaries. However, this effect is
only noticeable in the absence of magnetic braking.

An attractive feature of the magnetic capture model is its ability to explain the nega-
tive period derivative of the 11-minute binary in the globular cluster NGC 6624 (Van der
Klis et al. 1993b; Chou & Grindlay 2001). Since we find that for a more realistic mag-
netic braking law it is impossible to create ultra-compact binaries via magnetic capture at
all, it becomes less likely that the negative period derivative is intrinsic.Van der Klis et al.
(1993a) show that an apparent negative period derivative can be theresult of acceleration of
the binary in the cluster potential. According to measurements with the HST the projected
position of the binary is very close to the cluster centre, which makes a significant contribu-
tion of gravitational acceleration to the observed period derivative more likely (King et al.
1993).
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Figure 3.7: Upper panel(a): The logarithm of the orbital period. The line styles show
the different models: with magnetic braking according to Eq.3.3 (V&Z MB, solid line),
with magnetic braking according to Eq.3.4 (Sat. MB, dashed line) and without magnetic
braking (GW only, dotted line).Middle panel(b): The logarithm of the timescales of orbital
shrinkage due to angular momentum loss (AM loss, thick lines) and orbital expansion due
to the mass transfer (Mtr, thin lines). The line styles represent the different models as in
(a). Lower panel(c): The logarithm of (the absolute value of) the orbital period derivative
in dimensionless units. The line styles are as in (a).



Chapter 4

On the possibility of a helium
white dwarf donor in the
presumed ultracompact binary
2S 0918–549
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Abstract 2S 0918–549 is a low-mass X-ray binary (LMXB) with a low optical to X-ray
flux ratio. Probably it is an ultracompact binary with an orbital period shorter than 60 min.
Such binaries cannot harbor hydrogen-rich donor stars. As with other (sometimes con-
firmed) ultracompact LMXBs, 2S 0918–549 is observed to have ahigh neon-to-oxygen
abundance ratio (Juett et al. 2001) which has been used to argue that the companion star
is a CO or ONe white dwarf. However, type-I X-ray bursts have been observed from several
of these systems implying the presence of hydrogen or heliumon the neutron star surface.
In this chapter, we argue that the companion star in 2S 0918–549 is a helium white dwarf
We first present a Type I X-ray burst from 2S 0918–549 with a long duration of 40 minutes.
We show that this burst is naturally explained by accretion of pure helium at the inferred ac-
cretion rate of∼ 0.01 times the Eddington accretion rate. At higher accretion rates of∼ 0.1
Eddington, hydrogen is required to explain long duration bursts. However, at low rates the
long duration is due to the large amount of helium that accumulates prior to the burst. We
show that it is possible to form a helium white dwarf donor in an ultracompact binary if
accretion starts during the first ascent of the giant branch,when the core is made of predom-
inantly helium. Furthermore, this scenario naturally explains the high neon-to-oxygen ratio,
without requiring a CO or ONe white dwarf companion. The onlyobservational aspect of
2S 0918–549 that we cannot explain is the absence of helium lines in the optical spectrum.
Model calculations of optical accretion disk spectra need to be carried out in order to obtain
limits on the helium abundance.
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4.1 Introduction

2S 0918–549 is a low-mass X-ray binary (LMXB) in which a Roche-lobe filling low-mass
star orbits a neutron star and the liberation of gravitational energy of the in-falling matter
produces X-rays. It is a particularly interesting example of a LMXB for three reasons. First,
it has an optical to X-ray flux ratio which suggests that it is an ultracompact binary with
an orbital period less than∼60 min and a companion donor star that can only fit within the
Roche lobe if it is hydrogen depleted (Juett et al. 2001, based on relations established byVan
Paradijs & McClintock 1994). This was recently confirmed through optical spectroscopy
which revealed the lack of lines from hydrogen and helium (Nelemans et al. 2004). It
suggests that the companion star is a C-O or O-Ne white dwarf (cf., Nelson, Rappaport, &
Joss 1986).

Second, it has an X-ray luminosity which is low for an active LMXB, namely less than
or equal to 1% of the Eddington limit for a canonical (1.4M⊙, 10 km radius) neutron star
(Jonker et al. 2001).

Third, 2S 0918–549 appears to have an unusually high Ne/O abundance ratio, a charac-
teristic which it shares with three other non-pulsating LMXBs out of 56 cases investigated
by Juett et al.(2001). Juett et al. propose that this is related to a degenerate donor in the
suggested ultracompact nature of the binary. This proposition is supported by detections of
orbital periods in two of the other three (18 min in 4U 1543–624, seeWang & Chakrabarty
2004; 21 min in 4U 1850–087, seeHomer et al. 1996), although those detections need
corroboration since they were made only once in each case. Recently, it was observed for
two of these high Ne/O systems that the Ne/O ratio changed while for another previously
not measured ultracompact system the Ne/O ratio was not high(Juett & Chakrabarty 2003,
2005). This indicates that the interpretation of Ne/O in terms ofdonor evolutionary status is
less straightforward and is possibly biased by ionisation effects. For 2S 0918–549, neverthe-
less, the Ne/O ratio was found be consistently 2.4 times the solar value, as measured with
ASCA, Chandra-LETGS and XMM-Newton observations, while the flux changed almost
by an order of magnitude.

Three of the four LMXBs with a possibly high Ne/O-ratio exhibit sporadic type-I X-ray
bursts which are due to thermonuclear flashes in the upper layers of a neutron star. Two
have been reported from 4U 0614+09 (Swank et al. 1978; Brandt et al. 1992), four from
4U 1850–087 (Swank et al. 1976; Cominsky et al. 1977; Hoffman et al. 1980; Cominsky
1981) and three from 2S 0918–549 (Jonker et al. 2001; Cornelisse et al. 2002; Galloway
et al. 2006). We here report four additional bursts from the latter. Additional bursts for the
other systems were also detected, particularly with HETE-II (see for instanceNakagawa
et al. 2004), but these are not published in detail yet. The one source never seen bursting is
4U 1543–624.

As noted byJuett & Chakrabarty(2003) andNelemans et al.(2004), there is a puz-
zling contradiction between the characteristics (or mere presence) of these bursts and the
suggested hydrogen or helium depletion in the donor stars. The bursts detected from these
systems last between 10 and a few hundred seconds, suggesting a high hydrogen and helium
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content in the flash fuel. The question is: where does the hydrogen and helium come from if
not from the donor star? The problem is more severe for hydrogen than for helium because
in an evolved donor star like in an ultracompact system the hydrogen can reside only in
the outer layers that were lost being outside the Roche lobe.Juett et al. and Nelemans et
al. suggest that spallation of accreted elements may be important (e.g.,Bildsten, Salpeter,
& Wasserman 1992). However, it is not trivial to invoke spallation. Spallation requires hy-
drogen nuclei (protons) to bombard the higher-up Coulomb-stopped heavy nuclei and create
lighter elements, but the problem is that protons are in short supply. A definite assessment of
the viability of this process needs to come from new calculations that also take into account
non-radial accretion (e.g.,Bildsten, Chang, & Paerels 2003) and high metal abundances.

In this chapter we present (in Sections4.2 and4.3) measurements of an extraordinary
burst from 2S 0918–549 which was detected with the Wide FieldCameras (WFCs;Jager
et al. 1997) on board BeppoSAX (Boella et al. 1997a). It is the longest of all bursts ob-
served from any (presumed) ultracompact, lasting over halfan hour. Commonly, long burst
durations (for example, bursts from the regular burster GS 1826–24;Ubertini et al. 1999;
Galloway et al. 2004) are explained by a high hydrogen fuel content. The protons are cap-
tured by the ashes of unstable helium burning and initiate a relatively slow beta decay pro-
cess (the rp process) that is responsible for the burst longevity (e.g.,Fujimoto et al. 1981).
However, at the low accretion rate of∼ 1% Eddington appropriate for 2S 0918–549, the
conditions at the time of ignition of the flash are different.Because the fuel accumulates
slowly, any hydrogen has time to stably burn away, leaving a thick layer of helium which
ignites and burns in a long duration and energetic burst. In fact, given the likely ultracom-
pact nature of this source, we argue that the long duration burst is due to accretion of pure
helium from a helium white dwarf companion. As we show in section 4.5.1, 2S 0918–549
provides the rarely seen circumstances for a long duration helium flash to be possible, be-
ing a persistent X-ray source at a fairly low mass accretion rate. We investigate in section
4.5.2evolutionary paths to arrive at the implied helium-rich donor star and find a likely path
leading to a helium white dwarf. What is more, this star is predicted to have a Ne/O over-
abundance ratio which confirms the observations. Thus, a model in which the companion
star is a helium white dwarf explains many peculiar details about 2S 0918–549. One detail
which is not explained concerns the lack of helium lines in the optical spectrum.

4.2 Synopsis of X-ray bursts from 2S 0918–549

Thus far three X-ray bursts were reported from 2S 0918–549,Jonker et al.(2001), Cor-
nelisse et al.(2002) andGalloway et al.(2006). The first two bursts have similar bolomet-
ric peak fluxes of 8.8 and 9.4×10−8 erg cm−2 s−1, but the decay times differ by a factor
of 3 (see Table4.1). The third burst as identified by Galloway is an order of magnitude
fainter. We carried out archival searches in BeppoSAX/WFC data (net exposure 9.2 Msec),
RXTE/ASM (2.6 Msec for an effective exposure time of 70 s per dwell), and RXTE/PCA
data (∼300 ksec, including data from AO9), and found 2 more bursts inASM and 2 in WFC
data. No reports of bursts were made from observations with Einstein, EXOSAT, ROSAT,
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Figure 4.1: 2–28 keV light curves of the three WFC-detected bursts at varying time resolu-
tion. Typical error bars are indicated at the left and right of each panel.
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No Date Instr. Peak Persistent τ
flux flux

(Crab units⋆) (sec)
1 1996 Oct 1 WFC 3.7(3) 0.0048(5) 117(2)
2† 1999 Jun 10 WFC 3.3(3) 0.0037(5) 29(4)
3‡ 2000 May 12 PCA > 3.2 < 0.0146 8.95(5)
4 2001 May 18 WFC 2.5(3) 0.0094(5) 5.8(4)
5 2001 Sep 29 ASM 2.9(1) 0.0061(7)¶ 25(3)
6 2003 Aug 5 ASM 2.1(1) 0.0080(8)¶ 22(10)×

7∗ 2004 Jun 18 PCA 0.26(1) 0.0126(3) 12.5(5)
⋆For a burst peak spectrum as determined in this chapter for the first burst, one Crab
unit translates to a bolometric flux of2.7 × 10−8 erg cm−2 s−1. For the persistent
flux, one may adhere to a 2–10 keV flux of2.0×10−8 erg cm−2 s−1 (the bolometric
correction is less certain in that case).

†

Cornelisse et al.(2002). This burst was erroneously dated four days earlier in that
paper.

‡Jonker et al.(2001)
∗

Galloway et al.(2006) (this paper mentioned 2 more faint bursts from 2S 0918–
549, but the data do not allow confirmation as type-I X-ray bursts

¶These are 14-d averages.
×This burst was only partly observed. The observation stopped 18 s after burst onset.

Table 4.1: List of X-ray bursts from 2S 0918–549. Bursts 2, 3 and 7 have been published
before. Values between parentheses represent uncertainties in the last digit.

ASCA, BeppoSAX, Chandra and XMM-Newton within a total of approximately 170 ksec.
We derive an average burst rate (from simple division of the exposure time by the number
of bursts) of once every 20 days, but note that the WFCs and ASMare not sensitive enough
to detect the fainter bursts. Based on PCA data alone, the average burst rate is once every
2 ± 1 d. Table4.1reports the main characteristics of all 7 bursts.

Except for the last, all bursts are fairly bright with bolometric peak fluxes that translate
to between6 × 10−8 and 10−7 erg cm−2 s−1. Cornelisse et al.(2002), equalizing the peak
flux of the second burst to the Eddington limit of a hydrogen-rich photosphere, derive a
distance of 4.2 kpc with an uncertainty of 30%. This is in contrast to an earlier distance
estimate, from optical measurements, of 15 kpc byChevalier & Ilovaisky(1987) which is
derived assuming the optical counterpart to be as luminous as in other LMXBs. Therefore,
the counterpart must be considerably sub-luminous which isindicative of a small accretion
disk and short orbital period of at most 60 min (Juett et al. 2001).

In Fig.4.1 the three bursts detected with the WFC are plotted on identical scales. This
illustrates the diversity of the bursts. In particular it illustrates the longevity of the first burst.
In Fig.4.2 the flux scale is blown up for this burst and it is clear that it persists for at least
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Figure 4.2: 2–28 keV light curve of the long burst, zooming inat low flux levels and with a
time resolution of 30 s. The dotted line indicates the out-of-burst persistent flux level. There
are no data during times between the two panels.

approximately 2500s. The second burst lasts 10 times as short, the third burst nearly 100
times as short, the bright PCA-detected burst about 25 times(Jonker et al. 2001).

4.3 Analysis of the long burst

The long burst started on October 1, 1996, at 21:14:51 UT, rose to peak levels within 1 s
and carried on for approximately 40 min before it disappeared in the background noise (at a
level≈350 times below the burst peak; see Fig.4.2). The e-folding decay time over the first
200 s is117 ± 2 s. This is the longest decay time of all 2427 type-I X-ray bursts measured
with the WFCs that are not superbursts (In ’t Zand et al. 2004a; Kuulkers 2004), except
for one burst from SLX 1737–282 (In ’t Zand et al. 2002) which exhibited a decay time of
600 s.

The off-axis angle of 2S 0918–549 in the WFC field of view during the long burst was
near to optimum. The source illuminated 90% of the availablesensitive detector area. How-
ever, the observation was plagued by high telemetry rates due to a bright source within the
concurrent narrow-field instruments, which resulted in sporadic WFC data drop outs. Two
drop outs occurred during the long X-ray burst, from 165 to 180 sec after burst onset and
from 350 to 354 sec.

There are two more conspicuous features in the time profile ofthe long burst, see
Fig.4.3: two minutes after the burst onset a 30 s period of strong variability is observed,
with dips and peaks that grow above the flux before that. Two minutes later the flux sud-
denly (within 2 s) decreases by a factor of about four. Subsequently it remains on a decay-
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Figure 4.3: 2–28 keV light curve of the long burst, zooming inon the period of strong
variability at a time resolution of 0.25 s.

ing track. After a little over 70 s it rises back to the extrapolated pre-drop downward trend
and continues its decay. Since several data drop outs occurred during this observation we
checked whether this drop in flux could be due to telemetry overflow. We studied the flux
history of another bright source in the field of view, Vela X-1, and that of the remaining
background. These showed no flux decrease whatsoever, in contrast to during the data drop
out periods. We conclude that the flux decrease during the burst is genuinely associated
with 2S 0918–549.

We modeled the spectrum of the long burst with black body radiation and present the
results in Fig.4.4. The burst starts with a strong photospheric radius expansion phase which
ends after a few seconds. Subsequently the bolometric flux remains at a level of about
10−7 erg cm−2 s−1 for one minute during which the temperature rises and the radius shows
a slow instead of fast decrease. This suggests that the photosphere is continuously injected
with fresh (radiation) energy since the fall-back time of the atmosphere is much shorter.
Thereafter the burst decays in an ordinary fashion for about3 minutes with decreasing
temperatures and constant radii. This suggests cooling by afairly thick layer. Four minutes
after the burst onset the flux suddenly (within 2 s) drops by a factor of 4. The flux remains
low for 73 s after which it slowly rises during 20 s and resumesthe pre-drop decay. The
e-folding decay time then is236 ± 11 s. The cause of the dip can be modeled in two ways:
either through a variation ofNH (χ2

ν = 0.85 for ν = 78 for simultaneously fitting the 3
spectra of the dip [exposure time 71 s], the rise out of the dip[14 s], and a period afterwards
[41 s]) or through a variation of the emission area (χ2

ν = 0.82 for ν = 78). Fig.4.4
shows the results of the latter model. The implied reductionin emission area is a factor
of 6 (or 2.5 in radius). When modeled through an increase of the absorption, the implied
maximum column density isNH = 8.3+2.9

−2.5 × 1022 cm−2 (90% confidence; compare with
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Figure 4.4:a): Time history of observed photon flux.b): Bolometric flux of modeled black
body radiation. c): Colour temperature of black body radiation.d): Sphere-equivalent
radius of bb radiation for a distance of 5 kpc (the first data point of 208 ± 25 km is out-
side the plot borders).e): χ2

ν of fits. The vertical lines indicate time intervals for further
spectroscopy of the dip (see Fig.4.5).
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Figure 4.5: Spectra of the 71 s lower-flux interval (lower spectrum; first interval between
vertical lines in Fig.4.4) and the 41 s interval after the dip (upper spectrum; last interval in
Fig.4.4). The crosses indicate the measurements (vertical lengthsindicate 1σ error inter-
vals; histograms indicate the fitted model with freeNH and fixed radius).

NH = 4.2 × 1021 cm−2 outside the dip).
If one equalizes the peak bolometric flux to the Eddington limit of a canonical1.4 M⊙

neutron star, the implied distance is 4.1 kpc for a hydrogen-rich photosphere and 5.4 kpc if
it is hydrogen-poor.

Ignoring the behavior of the source during the dip and data drop outs, the total bolomet-
ric energy output for a distance of 5.4 kpc is estimated to be(0.9 ± 0.4)× 1041 erg. This is
a factor of of at least 3 smaller than any of the 13 superburstsobserved so far (cf,Kuulkers
2004; In ’t Zand et al. 2004b) but similar to the most energetic non-super X-ray burst (from
SLX 1737–282,In ’t Zand et al. 2002).

What is the cause of the 1.2 min drop during the decay phase? The profile of the flux
history looks strikingly similar to a partial eclipse. However, this is inconceivable because
1) the radiating surface is so small that apartial eclipse seems very unlikely, and 2) eclipses
have never been seen in 2S 0918–549 down to very good limits (e.g., Juett & Chakrabarty
2003).
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The effect looks a bit like the few-second long dip seen in thesuperburst from 4U 1820–
303 (Strohmayer & Brown 2002). There it was attributed to the combination of photospheric
radius expansion and a clean sweep of the normally X-radiating inner accretion disk. This
explanation is inconsistent with the temperature evolution seen in 2S 0918–549. Still, it
seems likely that the dip is related to a perhaps more moderate change in the accretion flow
geometry induced by the radiation pressure of the luminous flash. An indication of that is
provided by the strong variability in the minute before the dip.

4.4 Flux history of persistent emission

Given the wide variety of burst durations, it is of interest to test whether there is a connection
with a varying mass accretion rate. Therefore, we studied data relating to the persistent flux
history. 2S 0918–549 is quite faint for monitoring devices such as the WFC or the RXTE
All-Sky Monitor (Levine et al. 1996). This hampers accurate measurements on time scales
below a few weeks. In Fig.4.6, the 2–12 keV flux history is plotted as measured with
the RXTE ASM with a 14 d binning time. On that time scale the fluxranges between
0.3 and 1.0 ASM c s−1 which, for a Crab-like spectrum, translates to a 2–10 keV fluxof
(1 − 3) × 10−10 erg cm−2 s−1. We note that no flares were observed on shorter time scales
above a limit of roughly 0.1 Crab units, except for the bursts. In the same plot the times of
the 7 bursts are indicated. The long (first) burst distinguishes itself from the other bursts by
occurring during a somewhat tranquil low state of the source.

There has been one broad-band X-ray measurement of the source, by the BeppoSAX
Narrow Field Instruments (Boella et al. 1997a) on 1998 April 22. Broad-band coverage
was obtained through the Low-Energy Concentrator Spectrometer (LECS,Parmar et al.
1997, 0.1–3.0 keV, 16 ksec exposure time), the Medium Energy Concentrator Spectrometer
(MECS,Boella et al. 1997b, 1.6–10.0 keV, 28 ksec) and the Phoswhich Detector System
(PDS,Frontera et al. 1997, 15–200 keV, 12 ksec). The LECS and MECS provided imaging
data, while the PDS operated with a collimator that rocked between on-source and back-
ground pointings 240′ from the source position. We verified that no bright X-ray source
was contained in the background pointings.

We employed standard extraction and data analysis techniques (e.g.,In ’t Zand et al.
1999) and restricted further analysis to those photon energies where there is a significant
detection (extending from 0.3 to 120 keV). The LECS and MECS extraction radii were
4′, a LECS/MECS and PDS/MECS normalization factor was left free during spectral fits,
LECS and MECS background spectra were determined from independent long observa-
tions on empty fields, and no systematic uncertainty was included. Various models were
tested against the data; two have a satisfactory result. These are presented in Table4.2. The
power-law fit is shown in Fig.4.7. We tested a pure Comptonised model (modelcomptt
in XSPEC, Arnaud 1996; Titarchuk 1994; Hua & Titarchuk 1995; Titarchuk & Lyubarskij
1995), and a simple power law. Both models were absorbed (following the model byMorri-
son & McCammon 1983) and a black body component was included describing the 0.7 keV
feature discussed byJuett et al.(2001). The fit results are consistent with those obtained
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Figure 4.6: RXTE/ASM 2–12 keV light curve with bin time of 14 dand eliminating all data
points from SSC3 and with an error in excess of 0.15 c s−1. The vertical lines in the top
indicate the times when bursts were detected (solid lines WFC, dashed lines RXTE PCA
(1st and last) and ASM).

by Juett & Chakrabarty(2003). The (absorbed) 2–10 keV flux is consistent with the ASM
measurements. The unabsorbed 0.1–200 keV flux is the same in both cases.

The 0.1–200 keV flux is of(6.0 ± 0.5) × 10−10 erg cm−2 s−1 is less than 1% of
the bolometric burst peak flux of(1.0 ± 0.1) × 10−7 erg cm−2 s−1 which is thought to
be the Eddington limit. For a distance of 4.1–5.4kpc the 0.1–200keV luminosity is
(1.2 − 2.1) × 1036 erg s−1. The ASM light curve suggests that the source never becomes
brighter than roughly twice this value, on time scales of weeks. The 2–10 keV absorbed
flux is also consistent with similar measurements since the 1970s as compiled byJuett &
Chakrabarty(2003) which range between 0.9 and 2.7×10−10 erg cm−2 s−1, except for an
ASCA measurement on 1995 May 2 (MJD 49839; 17 months before the first burst) when
the flux was 7.0×10−10 erg cm−2 s−1. We note that an analysis of the near-to-continuous
BATSE data set on 2S 0918–549 byHarmon et al.(2004) does not discuss a peak in 1995.

2S 0918–549 has never been seen in an off state, despite extensive coverage since the
early 1970s. It is therefore not an X-ray transient. The reason that it is persistent while
the luminosity is rather low is possibly related to the presumed ultracompact nature. A
smaller orbit generally implies a smaller accretion disk. Therefore, the disk will remain
completely photo-ionised at lower accretion rates and the accretion will sustain all the way
to the neutron star rather than turn off due to an accretion disk instability (White et al. 1984;
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Model power law + black body
NH (3.1 ± 0.3)× 1021

bbkT 0.51 ± 0.03 keV
Γ 2.07 ± 0.05
χ2

ν 1.21 (133 dof)
Unabs. 0.1–200 keV flux (6.4 ± 0.5)× 10−10 erg cm−2 s−1

Abs. 2–10 keV flux (1.37 ± 0.02)× 10−10 erg cm−2 s−1

Model comptt + black body
NH (2.8 ± 0.3)× 1021

bbkT 0.51 ± 0.03 keV
kTplasma 34+110

−17 keV
τ (spherical geometry) 1 ± 0.5
χ2

r 1.20 (131 dof)
Unabs. 0.1–200 keV flux (5.5 ± 0.5)× 10−10 erg cm−2 s−1

Abs. 2–10 keV flux (1.37 ± 0.02)× 10−10 erg cm−2 s−1

Table 4.2: Spectral parameters of acceptable model fits to the NFI spectrum.Γ is the photon
index. Errors are for 90% confidence.

Van Paradijs 1996; Deloye & Bildsten 2003).

4.5 Discussion

4.5.1 Short and long helium bursts

In general, the longevity of an X-ray burst is determined by the duration of the nuclear
burning, and by the thickness and composition (through thermal conductivity) of the layer
where the burning deposits heat. Whereas helium and carbon burn very rapidly, hydrogen
burning involves slow beta decays, and so can prolong the energy generation. Slow hydro-
gen burning via the rp-process (Wallace & Woosley 1981) is believed to power the minutes
long tails of bursts from GS 1826–24 (Galloway et al. 2004). For accretion rates∼ 0.1
times Eddington, appropriate for most X-ray burst sources,this has led to the identifica-
tion of “short” duration bursts (∼ 10 s) with helium-dominated flashes, and long duration
(∼ 100 s) bursts with hydrogen-dominated flashes. In this picture,the long duration burst
from 2S 0918–549 is difficult to explain because we expect thecompanion to be hydrogen
deficient. However, at low accretion rates, long bursts can arise because of very thick fuel
layers that accumulate between bursts. These thick layers have a long cooling time, leading
to long burst durations. In this section, we show that the long burst from 2S 0918–549 is
naturally explained by accretion of pure helium at the observed rate of0.01 of the Eddington
accretion rate.

The observed burst energy ofEnuc = 1041 ergs implies an ignition column depth of
y = Enuc(1 + z)/4πR2Qnuc ≈ 7 × 109 g cm−2, whereQnuc ≈ 1.6 MeV per nucleon
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Figure 4.7: Top panel: from left to right LECS, MECS and PDS spectrum (crosses with
vertical lines depicting 1σ error bars) and best fit result for power law and black body model
(histogram). Bottom panel: fit residuals.

is the energy release for helium burning to iron group nuclei, R is the neutron star radius,
andz is the gravitational redshift (we assumeR = 10 km andz = 0.31, appropriate for a
1.4 M⊙ neutron star). We have calculated the ignition depth for pure helium following the
ignition calculations ofCumming & Bildsten(2000). The calculation involves finding the
temperature profile of the accumulating fuel layer, and adjusting the layer thickness until the
criterion for unstable ignition is met at the base. Since hydrogen burning is not active for
pure helium accretion, the temperature profile of the layer is set by the heat flux emerging
from the neutron star crust. We write this heat flux asṁQb erg cm−2 s−1, whereṁ is the
mass accretion rate per unit area, andQb is the energy per gram released in the crust by
pycnonuclear reactions that flows outwards. For lowṁ, Brown (2000) found that almost
all of the≈ 1.4 MeV per nucleon released in the crust comes out through the surface1 (see
Fig. 11 ofBrown 2000). For Qb ≈ 1 MeV per nucleon orQb ≈ 1018 erg g−1, and using
the Eddington accretion ratėmEdd ≈ 105 g cm−2 s−1, we findFb ≈ 1021 erg cm−2 s−1

for accretion atṁ = 0.01 ṁEdd. Figure4.8shows the ignition column depth and predicted
burst energy as a function of base flux. For a base flux of1021 erg cm−2 s−1, we find an
ignition column depth ofy ≈ 1010 g cm−2, in good agreement with the value inferred from

1We expect that the value ofQb will depend on the thermal properties of the neutron star interior, for example,
the core temperature and crust thermal conductivity. We will investigate the dependence of the ignition conditions
on these factors in a future paper.



70 Chapter 4

Figure 4.8: Ignition thicknesses and flash energies as a function of heat flux.

the burst energetics.
Additional constraints come from the burst light curve and the recurrence time. Fig-

ure4.9 shows the observed light curve compared with theoretical cooling models calcu-
lated following Cumming & Macbeth(2004). In these models, the burning is assumed
to take place instantaneously, since helium burning is extremely rapid. We then follow
the cooling of the hot layer using a time-dependent thermal diffusion code. We show
two curves with a total energy release of1041 ergs, with column depths7 × 109 and
1010 g cm−2. The observed decay is well-reproduced by these models. Unfortunately,
the recurrence time of the long burst is not well constrainedby observations although the
suggestion is that it is long. The expected recurrence time from the ignition models is
y/ṁ = 116 days (y/1010 g cm−2)(ṁ/103 g cm−2 s−1)−1. 2S 0918–549 was almost con-
tinuously observed with the WFCs for 4 days prior to the burst, but there were two data gaps
so that the lower limit to the recurrence time is only 1.1 days. In the 87.3 d period prior to
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Figure 4.9: Comparison of the observed decay of the bolometric black body flux (histogram)
with a theoretical model (Cumming & Macbeth 2004) for the cooling rate of a column of
depth7×109 g cm−2 and a nuclear energy release of1.6×1018 erg g−1 which is expected for
helium burning to iron (dashed curve). To illustrate the dependence on these two parameters
a model is shown with the same energy output (1041 erg) but for a column depth of1 ×

1010 g cm−2 and an energy release of1.0 × 1018 erg g−1 (dashed-dotted curve).

the long burst, 15.6 d of effective exposure time were collected with no burst detections. The
only other X-ray experiment with coverage of 2S 0918–549 in 1996 is the All-Sky Monitor
on RXTE, also without burst detections.

We have assumed that the accreted material is pure helium. Ifthe accreted material
contains carbon, carbon ignition is also possible. However, the burst energy in that case
would be≫ 1042 ergs, and recurrence time> 10 years (Cumming & Bildsten 2001). If
hydrogen is included in the accreted material, additional heating arises because of CNO
burning. Our steady-state accumulation models are only applicable if the temperature is
large enough during accumulation (∼> 8×107 K) that the temperature-independent hot CNO
cycle operates. Assuming this to be the case, we find that accretion of solar composition
material at a rate103 g cm−2 s−1 gives an ignition depth smaller than the pure helium case,
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6×108 g cm−2, and energy release≈ 1040 ergs (in this model, only the upper 10% by mass
of the layer contains hydrogen). In fact, depending on the accretion history, CNO burning
may be much less than the hot CNO value.Narayan & Heyl(2003) calculate steady-state
models with detailed CNO burning, and find ignition column depths of≈ 3×109 g cm−2 for
ṁ = 0.01 ṁEdd. Therefore, the burst properties may be similar to those observed if some
hydrogen is present. However, we do not expect this because of the likely ultracompact
nature of this source.

If the long burst is indeed a helium burst and the other burstsare as well, then the
widely varying burst duration must be directly related to the layer thickness. The ignition
condition predicts that the ignition thickness decreases with increasing temperature. This
implies that the temperature increases from burst 1 to 4 and then decreases again. If the hot
CNO cycle is not active, the heat flux from the core/crust and the composition of the outer
100 m of the NS determines the temperature (Brown et al. 2002). Since the time scale of
variation of the crust temperature is expected to be much longer than the burst interval time
(years rather than months), the suggestion is there that thecomposition of the layer changes
between bursts. Given the limited accuracy of our measurements we are unable to test this
quantitatively. Temperature variability of roughly a factor of 2 to 3 would be needed to
explain a variety of burst durations of a factor of 10 to 100. The ASM data suggest that
the accretion rate shows more variability during the six shorter bursts. Perhaps this explains
the earlier ignition and presence of shorter (less energetic) bursts, much as was observed in
KS 1731–260 byCornelisse et al.(2003); Cornelisse(2004).

4.5.2 Evolutionary considerations

Since the surface layers of the donor are the source of the matter flowing through the ac-
cretion disk onto the neutron star, we may conclude that these surface layers are deficient
in hydrogen (from the optical spectrum of the disk and the presumed ultracompact nature),
do contain helium (from the X-ray bursts), and have an enhanced Ne/O abundance ratio
(from the X-ray spectrum). This information is useful to discriminate between different
evolutionary scenarios.

The evolutionary path of a binary in which a neutron star accretes matter from a com-
panion depends to a large extent on the evolutionary state ofthe donor at the moment at
which mass transfer starts. If mass transfer starts on the main sequence, the orbit shrinks
to a minimum of around 70–80 min, and then expands again. At all times during the evo-
lution, the transferred mass consists mainly of hydrogen. It has been suggested that strong
magnetic braking may cause the orbit to shrink even if mass transfer is initiated after the
donor has evolved a little beyond the terminal age main sequence (Tutukov et al. 1985). The
decrease of the orbital period may then proceed to periods less than 70–80 min before the
orbit expands again. Even though the hydrogen contents of the transferred mass drop at the
shortest periods, the transferred mass is hydrogen rich throughout the evolution in this case
also (see e.g. Tables2.1and2.2). In Chapter2 and3 we showed that this path to ultrashort
periods demands both very special initial conditions and very strong magnetic braking, and
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thus is unlikely to be important.

If mass transfer starts during shell burning as the star ascends the giant branch, it will
lead to long periods if the mass transfer is stable, and eventually to a wide binary of a
neutron star an an undermassive white dwarf (e.g.Webbink et al. 1983). However, if the
mass transfer is unstable, a spiral-in may ensue, and lead toa close binary of the core
of the giant and the neutron star. Mass transfer is increasingly likely to be unstable if
the donor star has higher mass, and is further evolved along the giant branch and hence
its envelope is fully convective. The post-spiral-in closebinary evolves to even shorter
periods through loss of angular momentum via gravitationalradiation, which may bring
the core of the giant, by then cooled into a white dwarf, into contact with the Roche lobe,
after which mass transfer starts again. If the spiral-in started with the donor in a phase
of hydrogen shell burning, the white dwarf is a helium white dwarf. Donors in a phase
of helium and carbon shell burning would lead to carbon-oxygen and neon-magnesium-
oxygen white dwarfs, respectively. Mass transfer from the white dwarf to the neutron star
is dynamically unstable if the white dwarf has a mass which istoo high. The precise limit
is somewhat uncertain, depending on the amount of mass and angular momentum loss, but
is probably near 0.4–0.5M⊙ (see e.g.Yungelson et al. 2002). This limit excludes neon-
magnesium-oxygen white dwarfs as well as the more massive carbon-oxygen white dwarfs.
Only low-mass carbon-oxygen white dwarfs and helium white dwarfs are possible stable
donors for a neutron star.

Mass transfer in a system with a white dwarf donor is a very strong function of the mass
of the white dwarf. Immediately after contact, at a period onthe order of a few minutes, the
mass transfer is highly super-Eddington, and the white dwarf mass decreases rapidly. The
orbit expands, and the donor mass decreases quickly until the binary has a mass transfer
rate that is sufficiently low to be sustained for a longer period of time. The shortest orbital
period observed for a system with a neutron star and white dwarf donor is 11 min. A rough
estimate of the mass of the donorM as a function of orbital periodPb can be made by
combining the mass-radius relation of a white dwarf with theequation giving the size of
the Roche lobe for the less massive star in a binary: this givesM/M⊙ ∼ (50 s/Pb). Thus,
the 11 min binary has a donor with mass less than0.1M⊙ (Verbunt 1987), and the other
ultrashort period systems with known orbital periods have donors of smaller masses still.
This implies that the composition of the mass being transferred to the neutron star in these
binaries is that of the innermost material of the initial white dwarf.

We illustrate the compositions of the helium and carbon-oxygen white dwarfs by means
of the core of a model star of 1.5M⊙ in Fig.4.10and Table4.3. These compositions were
computed with the evolution code ofEggleton(1971, 1972) with updated input physics as
described inPols et al.(1995). We do not expect mass loss to have any effect, because
the profiles in the inner core have already been established by the time mass loss becomes
important. Mass transfer from the white dwarf donor can cause its mantle to become con-
vective, especially near and beyond the period minimum. However, since the core of the
star is very homogeneous (Fig.4.10), this has little influence on the surface abundances. The
demand that the mass transferred in 2S 0918–549 contains helium is obviously compatible
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with a donor consisting of the inner∼< 0.1M⊙ of an initial helium white dwarf; however, it
is not compatible with a donor consisting of the inner∼< 0.1M⊙ of an initial carbon-oxygen
white dwarf. As shown by Fig.4.10 the helium content of the central mass of a carbon-
oxygen white dwarf is zero (it is at the minimum allowed for computational stability in the
evolution code,10−12). From this, one would have to conclude that the donor at the onset
of mass transfer was a helium white dwarf, rather than a carbon-oxygen white dwarf.

This conclusion is strengthened when we consider the neon and oxygen abundances. In
the helium core, the neon abundance is still at the zero-age main-sequence composition of
the progenitor star, not affected by nuclear evolution (Fig.4.10). The oxygen abundance,
however, is lower in the helium core as oxygen is converted into nitrogen in the CNO cycle
(Iben 1967). The depletion of oxygen is stronger in more massive progenitors, because the
CNO cycle takes place at higher temperatures (see Table4.4). Thus the Ne/O abundance
ratio is predicted to be high if the donor in 2S 0918–549 consists of the central mass of a
helium white dwarf. We point out that there is no observational evidence that the mass frac-
tion of neon is enhanced since a complete measurement of the abundance of all expected
elements, particularly helium and carbon, is lacking; onlythe abundance ratios Ne/O and
Ne/Fe have been measured (Juett & Chakrabarty 2003). Neither is there conclusive ob-
servational evidence for an increased oxygen abundance, even when considering the optical
spectrum which does suggest the presence of oxygen (and carbon) lines but with insufficient
significance to prove the presence (Nelemans et al. 2004).

In a carbon-oxygen white dwarf both neon and oxygen are more abundant, but oxygen
more so than neon (Fig.4.10). The increase in neon abundance is caused by the conversion
of 14N, produced by the CNO cycle, into22Ne during core He-burning.2 However, this is
dwarfed by the production of oxygen by helium burning. The possibility exists, if the white
dwarf has time to cool enough for crystallisation to take place, that22Ne settles in the centre
(Yungelson et al. 2002) and reaches there the so-called azeotropic mass fraction,which is
between 0.05 and 0.09 (Isern et al. 1991). This is not enough, however, to increase the Ne/O
ratio above the solar value. Taking into account that the azeotropic Ne abundance may be
underestimated by up to a factor three, the Ne/O ratio might be barely reconciled with the
observed value, as noted byYungelson et al.(2002). Nevertheless, if the donor in 2S 0918–
549 consists of the central mass of a carbon-oxygen white dwarf the Ne/O abundance ratio is
expected to be rather low. Conversely, the Ne/O ratio observed for 2S 0918–549 is naturally
explained if its donor is the central mass of a helium white dwarf, rather than a carbon-
oxygen white dwarf.

The helium core denuded by a spiral-in undergoes helium burning if its mass is higher
than about 0.34M⊙ before it becomes degenerate, which will be the case for stars with
initial mass higher than 2.25M⊙ (see Table4.4). In this case a hybrid white dwarf may be
formed, with a carbon-oxygen core and a helium mantle. When this white dwarf transfers
mass to a neutron star, it will rapidly lose its helium mantle; at orbital periods in excess of

2The nuclear network in the evolution code does not follow the22Ne abundance directly, but instead the burnt
14N is added to the20Ne abundance assuming particle number conservation (seePols et al. 1995). The total neon
mass fraction we find is therefore slightly underestimated.
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Figure 4.10: Three structure plots for different moments inthe evolution of a 1.5M⊙

model. Only the central 0.7M⊙ is shown, as a function of the mass coordinate.Upper panel
(a): Logarithm of the mass density.Middle panel(b): Logarithm of the hydrogen (solid
lines) and helium (dashed lines) mass fraction.Lower panel(c): Logarithm of the oxygen
(solid lines) and neon (dashed lines) mass fraction. The symbols on the lines indicate the
model, as shown in the upper panel.
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Model Age MHe MCO (Ne/O)c (Ne/O)c/(Ne/O)in
TAMS 2.5949 0.166 0.000 1.093 5.97
RGB 2.8495 0.440 0.000 1.093 5.97
AGB 2.9852 0.568 0.379 0.0260 0.142

Table 4.3: Properties of the 1.5M⊙ model at the moments the structure plots of Fig.4.10
were made. The age is in Gyr, the helium and carbon-oxygen core masses inM⊙. The last
two columns give the mass fraction ratio Ne/O in the core, andthe ratio of this number to
the initial (ZAMS or ISM) Ne/O ratio.

M MHe−core (Ne/O)c/(Ne/O)in
RGB AGB

1.00 0.00 – 0.47 2.25 0.14
1.50 0.15 – 0.47 5.97 0.15
2.00 0.23 – 0.39 9.03 0.14
2.25 0.30 – 0.34 10.2 0.13
2.50 0.34 – 0.36 11.3 0.13
3.00 0.38 – 0.42 12.9 0.14
4.00 0.63 – 0.64 16.3 0.15
5.00 0.85 – 0.85 19.0 0.16

Table 4.4: Helium core masses and core abundances for model stars with masses between
1.0 and 5.0M⊙. The second column gives the range of helium core masses (inM⊙) that are
obtained between the formation of the core and core helium ignition. The third and fourth
column give the Ne/O abundance of the core, relative to the initial (ISM) Ne/O abundance,
for the helium core (RGB) and carbon-oxygen core (AGB) respectively.

11 min no helium is left.

Thus, a helium white dwarf is the most promising donor in the 2S 0918–549 system.
Such a donor is formed when a star with initial mass less than 2.25M⊙ enters a spiral-in
phase on its first ascent of the giant branch. Based on the workby Deloye & Bildsten(2003),
the observed mass accretion rate predicts for a He WD donor anorbital period between 25
and 30 minutes. These results are in general agreement with calculations byBelczynski
& Taam(2004) who predict that of all ultracompact binaries with a neutron star accretor,
60% may have a helium white dwarf donor. Furthermore, our calculations suggest that AM
CVn systems, ultracompact binaries in which the accretor isa white dwarf, should show
an enhanced Ne/O ratio if they have a helium white dwarf companion. Indeed, such an
enhancement was recently observed in the AM CVn system GP Com(Strohmayer 2004).
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4.6 Conclusion

In conclusion, we have shown that the properties of the long X-ray burst from 2S 0918–549
and the enhanced Ne/O abundance ratio are both consistent with the companion star being
a helium white dwarf. This scenario would seem to be at odds with the presence of C and
O lines and the absence of He lines in the optical spectrum. However, the evidence for
C and O lines is inconclusive.Nelemans et al.(2004) find that the case is less clear for
2S 0918–549 than for 4U 0614+091 and 4U 1543–624 due to the relative faintness of the
optical counterpart, and confirmation through deeper observations would be desirable. In
addition, non-LTE effects may be important. This is the casein the UV, whereWerner et al.
(2004) calculated accretion disk models for the UV spectrum and found the He II 1640A
line depth to be rather weak even for large helium abundances. Therefore, as yet we regard
all X-ray and optical measurements of 2S 0918–549 to be consistent with a helium white
dwarf donor star.
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Abstract We investigate the formation of the ten double-lined doublewhite dwarfs that
have been observed so far. A detailed stellar evolution codeis used to calculate grids of
single-star and binary models and we use these to reconstruct possible evolutionary sce-
narios. We apply various criteria to select the acceptable solutions from these scenarios.
We confirm the conclusion ofNelemans et al.(2000) that formation via conservative mass
transfer and a common envelope with spiral-in based on energy balance or via two such
spiral-ins cannot explain the formation of all observed systems. We investigate three differ-
ent prescriptions of envelope ejection due to dynamical mass loss with angular-momentum
balance and show that they can explain the observed masses and orbital periods well. Next,
we demand that the age difference of our model is comparable to the observed cooling-
age difference and show that this puts a strong constraint onthe model solutions. One of
these solutions explains the DB-nature of the oldest white dwarf in PG 1115+116 along the
evolutionary scenario proposed byMaxted et al.(2002a), in which the helium core of the
primary becomes exposed due to envelope ejection, evolves into a giant phase and loses its
hydrogen-rich outer layers.
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5.1 Introduction

Ten double-lined spectroscopic binaries with two white-dwarf components are currently
known. These binaries have been systematically searched for to find possible progenitor
systems for Type Ia supernovae, for instance by the SPY (ESO SN Ia Progenitor surveY)
project (e.g. Napiwotzki et al. 2001, 2002). Short-period double white dwarfs can lose
orbital angular momentum by emitting gravitational radiation and if the total mass of the
binary exceeds the Chandrasekhar limit, their eventual merger might produce a supernova
of type Ia (Iben & Tutukov 1984).

The observed binary systems all have short orbital periods that, with one exception,
range from an hour and a half to a day or two (see Table5.1), corresponding to orbital sep-
arations between 0.6R⊙ and 7R⊙. The white-dwarf masses of 0.3M⊙ or more indicate
that their progenitors were (sub)giants with radii of a few tens to a few hundred solar radii.
This makes a significant orbital shrinkage (spiral-in) during the last mass-transfer phase
necessary and fixes the mechanism for the last mass transfer to common-envelope evolu-
tion. In such an event the envelope of the secondary engulfs the oldest white dwarf due to
dynamically-unstable mass transfer. Friction then causesthe two white dwarfs to spiral in
towards each other while the envelope is expelled. The orbital energy that is freed due to
the spiral-in provides for the necessary energy for the expulsion (Webbink 1984).

The first mass transfer phase is usually thought to be either another spiral-in or stable
and conservative mass transfer. The first scenario predictsthat the orbit shrinks appreciably
during the mass transfer whereas the second suggests a widening orbit. Combined with
a core mass–radius relation (e.g. Refsdal & Weigert 1970) these scenarios suggest that
the mass ratioq2 ≡ M2/M1 of the double white dwarfs is much smaller than unity in
the first scenario and larger than unity in the second scenario. The observed systems all
have mass ratios between 0.70 and 1.28 (Table5.1), which ledNelemans et al.(2000) to
conclude that a third mechanism is necessary to explain the evolution of these systems.
They suggested envelope ejection due to dynamical mass lossbased on angular-momentum
balance, in which little orbital shrinkage takes place. They used analytical approximations
to reconstruct the evolution of three double white dwarfs and concluded that these three
systems can only be modelled if this angular-momentum prescription is included.

In this chapter we will use the same method asNelemans et al.(2000), to see if a
stable-mass-transfer episode followed by a common envelope with spiral-in can explain the
observed double white dwarfs. We will improve on their calculations in several respects.
First, we extend the set of observed binaries from 3 to 10 systems. Second, we take into
account progenitor masses for the white dwarf that was formed last up to10 M⊙ and allow
them to evolve beyond core helium burning to the asymptotic giant branch.Nelemans et al.
(2000) restricted themselves to progenitor masses of2.3 M⊙ or less and did not allow these
stars to evolve past the helium flash. This was justified because the maximum white-dwarf
mass that should be created by these progenitors was0.47 M⊙, the maximum helium-core
mass of a low-mass star and less than the minimum mass for a CO white dwarf formed in a
spiral-in (see Fig.5.1). The most massive white dwarf in our sample is0.71 M⊙ and cannot
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have been created by a low-mass star on the red-giant branch.Third, we use more sophis-
ticated stellar models to reconstruct the evolution of the observed systems. This means that
the radius of our model stars does not depend on the helium-core mass only, but also on
total mass of the star (see Fig.5.1). Furthermore, we can calculate the binding energy of the
hydrogen envelope of our models so that we do not need the envelope-structure parameter
λenv and can calculate the common-envelope parameterαce directly. Last, because we use
a full binary-evolution code, we can accurately model the stable mass transfer rather than
estimate the upper limit for the orbital period after such a mass-transfer phase. This places
a strong constraint on the possible stable-mass-transfer solutions. The evolution code also
takes into account the fact that the core mass of a donor star can grow appreciably during
stable mass transfer, a fact that alters the relation between the white-dwarf mass and the
radius of the progenitor mentioned earlier for the case of stable mass transfer.

Our research follows the lines ofNelemans et al.(2000), calculating the evolution of the
systems in reverse order, from double white dwarf, via some intermediate system with one
white dwarf, to the initial ZAMS binary. In Sect.5.2we list the observed systems that we try
to model. The stellar evolution code that we use to calculatestellar models is described in
Sect.5.3. In Sect.5.4we present several grids of single-star models from which wewill use
the helium-core mass, stellar radius and envelope binding energy to calculate the evolution
during a spiral-in. We show a grid of ‘basic’ models with standard parameters and describe
the effect of chemical enrichment due to accretion and the wind mass loss. We find that these
two effects may be neglected for our purpose. In Sect.5.5we use the single-star models to
calculate spiral-in evolution for each observed binary andeach model star in our grid and
thus produce a set of progenitor binaries. Many of these systems can be rejected based on
the values for the common-envelope parameter or orbital period. The remainder is a series
of binaries consisting of a white dwarf and a giant star that would cause a common envelope
with spiral-in and produce one of the observed double white dwarfs. In Sect.5.6we model
the first mass-transfer scenario that produces the systems found in Sect.5.5to complete the
evolution. We consider three possible mechanisms: stable and conservative mass transfer,
a common envelope with spiral-in based on energy balance andenvelope ejection based on
angular-momentum balance. We introduce two variations in the latter mechanism and show
that they can explain the observed binaries. In addition, weshow that the envelope-ejection
scenario based on angular-momentum balance can also explain the second mass-transfer
episode. In Sect.5.6.4we include the observed age difference in the list of parameters our
models should explain and find that this places a strong constraint on our selection criteria.
In Sect.5.7 we compare this study to earlier work and discuss an alternative formation
scenario for PG 1115+116. Our conclusions are summed up in Sect.5.8.

5.2 Observed double white dwarfs

At present, ten double-lined spectroscopic binaries consisting of two white dwarfs have
been observed. The orbital periods of these systems are welldetermined. The fact that both
components are detected makes it possible to constrain the mass ratio of the system from
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the radial-velocity amplitudes. The masses of the components are usually determined by
fitting white-dwarf atmosphere models to the observed effective temperature and surface
gravity, using mass–radius relations for white dwarfs. Thevalues thus obtained are clearly
better for the brightest white dwarf but less well-constrained than the values for the period
or mass ratio. It is also harder to estimate the errors on the derived mass. In the publications
of these observations, the brightest white dwarf is usuallydenoted as ‘star 1’ or ‘star A’.
Age determinations suggest in most cases that the brightestcomponent of these systems
is the youngest white dwarf. These systems must have evolvedthrough two mass-transfer
episodes and the brightest white dwarf is likely to have formed from the originally less
massive component of the initial binary (consisting of two ZAMS stars). We will call this
star the secondary or ‘star 2’ throughout this chapter, whereas the primary or ‘star 1’ is the
component that was the initially more massive star in the binary. The two components will
carry these labels throughout their evolution, and therefore white dwarf 1 will be the oldest
and usually the faintest and coldest of the two observed components. The properties of the
ten double-lined white-dwarf systems are listed in Table5.1. For our calculations we will
use the parameters that are best determined from the Table:Porb, q2 andM2. For M1 we
will notuse the value listed in Table5.1, but the valueM2/q2 instead. We hereby ignore the
observational uncertainties inq2, because they are small with respect to the uncertainties in
the mass. In Sects.5.5and5.6we will use a typical value of0.05 M⊙ (Maxted et al. 2002b)
for the uncertainties in the estimate of the secondary mass.

Although the cooling-age determinations are strongly dependent on the cooling model
used, the thickness of the hydrogen layer on the surface and the occurrence of shell flashes,
the cooling-agedifferenceis thought to suffer less from systematic errors. The valuesfor ∆τ
in Table5.1have an estimated uncertainty of 50% (Maxted et al. 2002b). The age determina-
tions of the components of WD 1704+481a suggest that star 2 may be the oldest white dwarf,
although the age difference is small in both absolute (20 Myr) and relative (≈3%) sense
(Maxted et al. 2002b). Because of this uncertainty we will introduce an eleventhsystem
with a reversed mass ratio. This new system will be referred to as WD 1704+481b or 1704b
and since we assume that the value forM2 is better determined, we will use the following
values for this system:M1 = 0.39 M⊙, q2 = 1.43 ± 0.06 andM2 ≡ q2M1 = 0.56 M⊙.

5.3 The stellar evolution code

We calculate our models using the STARS binary stellar evolution code, originally devel-
oped byEggleton(1971, 1972) and with updated input physics as described inPols et al.
(1995). Opacity tables are taken from OPAL (Iglesias et al. 1992), complemented with
low-temperature opacities fromAlexander & Ferguson(1994).

The equations for stellar structure and composition are solved implicitly and simulta-
neously, along with an adaptive mesh-spacing equation. Because of this, the code is quite
stable numerically and relatively large timesteps can be taken. As a result of the large
timesteps and because hydrostatic equilibrium is assumed,the code does not easily pick up
short-time-scale instabilities such as thermal pulses. Wecan thus quickly evolve our models
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Name Porb (d) aorb (R⊙) M1 (M⊙) M2 (M⊙) q2 = M2/M1 τ2 (Myr) ∆τ (Myr) Ref/Note
WD 0135–052 1.556 5.63 0.52± 0.05 0.47± 0.05 0.90± 0.04 950 350 1,2
WD 0136+768 1.407 4.98 0.37 0.47 1.26± 0.03 150 450 3,10
WD 0957–666 0.061 0.58 0.32 0.37 1.13± 0.02 25 325 3,5,6,10
WD 1101+364 0.145 0.99 0.33 0.29 0.87± 0.03 135 215 4,(10)
PG 1115+116 30.09 40.0 0.7 0.7 0.84± 0.21 60 160 8,9

WD 1204+450 1.603 5.72 0.52 0.46 0.87± 0.03 40 80 6,10
WD 1349+144 2.209 6.65 0.44 0.44 1.26± 0.05 — — 12
HE 1414–0848 0.518 2.93 0.55± 0.03 0.71± 0.03 1.28± 0.03 1000 200 11
WD 1704+481a 0.145 1.13 0.56± 0.07 0.39± 0.05 0.70± 0.03 725 -20 7,a
HE 2209–1444 0.277 1.89 0.58± 0.08 0.58± 0.03 1.00± 0.12 900 500 13

Table 5.1: Observed double white dwarfs discussed in this chapter. The table shows for each system the orbital periodPorb, the
orbital separationaorb, the massesM1 andM2, the mass ratioq2 = M2/M1, the estimated cooling age of the youngest white
dwarf τ2 and the difference between the cooling ages of the components∆τ . M1 is the mass of the oldest white dwarf and thus
presumably the original primary. The errors on the periods are smaller than the last digit. The values foraorb are calculated by
the authors and meant to give an indication. References: (1)Saffer et al.(1988), (2) Bergeron et al.(1989), (3) Bragaglia et al.
(1990), (4) Marsh(1995), (5) Moran et al.(1997), (6) Moran et al.(1999), (7) Maxted et al.(2000), (8) Bergeron & Liebert
(2002), (9) Maxted et al.(2002a), (10)Maxted et al.(2002b), (11)Napiwotzki et al.(2002), (12)Karl et al.(2003a), (13)Karl
et al.(2003b). Note: (a) WD 1704+481a is the close pair of a hierarchical triple. It seems unclear which of the two stars in this
pair is the youngest (see the text).
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up the asymptotic giant branch (AGB), without having to calculate a number of pulses in
detail. We thus assume that such a model is a good representation of an AGB star.

Convective mixing is modelled by a diffusion equation for each of the composition
variables, and we assume a mixing-length to scale-height ratio l/Hp = 2.0. Convective
overshooting is taken into account as inSchröder et al.(1997), with a parameterδov = 0.12
which corresponds to overshooting lengths of about 0.3 pressure scale heights (Hp) and is
calibrated against accurate stellar data from non-interacting binaries (Schröder et al. 1997;
Pols et al. 1997). The code circumvents the helium flash in the degenerate core of a low-
mass star by replacing the model at which the flash occurs by a model with the same total
mass and core mass but a non-degenerate helium core in which helium was just ignited. The
masses of the helium and carbon-oxygen cores are defined as the mass coordinates where
the abundances of hydrogen and helium respectively become less than 10%. The binding
energy of the hydrogen envelope of a model is calculated by integrating the sum of the
internal and gravitational energy over the mass coordinate, from the helium-core massMc

to the surface of the starMs:

Ub,e =

∫ Ms

Mc

(

Uint(m) −
Gm

r(m)

)

dm (5.1)

The termUint is the internal energy per unit of mass, that contains terms such as the thermal
energy and recombination energy of hydrogen and helium.

We use a version of the code (seeEggleton & Kiseleva-Eggleton 2002) that allows for
non-conservative binary evolution. We use the code to calculate the evolution of both single
stars and binaries in which both components are calculated in full detail. With the adaptive
mesh, mass loss by stellar winds or by Roche-lobe overflow (RLOF) in a binary is simply
accounted for in the boundary condition for the mass. The spin of the stars is neglected in the
calculations and the spin-orbit interaction by tides is switched off. The initial composition
of our model stars is similar to solar composition:X = 0.70, Y = 0.28 andZ = 0.02.

5.4 Giant branch models

As we have seen in Sect.5.1, each of the double white dwarfs that are observed today must
have formed in a common-envelope event that caused a spiral-in of the two degenerate stars
and expelled the envelope of the secondary. The intermediate binary system that existed
before this event, but after the first mass-transfer episode, consisted of the first white dwarf
(formed from the original primary) and a giant-branch star (the secondary). This giant is
thus the star that caused the common envelope and in order to determine the properties of
the spiral-in that formed each of the observed systems, we need a series of giant-branch
models. In this section we present a grid of models for singlestars that evolve from the
ZAMS to high up the asymptotic giant branch (AGB). For each time step we saved the total
mass of the star, the radius, the helium-core mass and the binding energy of the hydrogen
envelope of the star.
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In an attempt to cover all possibilities, we need to take intoaccount the effects that
can change the quantities mentioned above. We consider the chemical enrichment of the
secondary by accretion in a first mass-transfer phase and theeffect a stellar-wind mass loss
may have. For each of these changes, we compare the results toa grid of ‘basic’ models
with default parameters. We keep the overshooting parameter δov constant for all these
grids, because this effect is unimportant for low-mass stars (M ∼< 2.0 M⊙) and its value is
well calibrated for intermediate-mass stars (see Sect.5.3).

5.4.1 Basic models

In order to find the influence of the effects mentioned above, we want to compare the models
including these effects to a standard. We therefore calculated a grid of stellar models, from
the zero-age main sequence to high up the asymptotic giant branch (AGB), with default
values for all parameters. These models have solar composition and no wind mass loss.
We calculated a grid of199 single-star models with these parameters with masses between
0.80 and 10.0M⊙, with the logarithm of their masses evenly distributed. Model stars with
masses lower than about 2.05M⊙ experience a degenerate core helium flash and are at that
point replaced by a post-helium-flash model as described in Sect.5.3. Because of the large
timesteps the code can take, the models evolve beyond the point on the AGB where the
carbon-oxygen core (CO-core) mass has caught up with the helium-core mass and the first
thermal pulse should occur.

Figure5.1shows the radii of a selection of our grid models as a functionof their helium-
core masses. We used different line styles to mark differentphases in the evolution of these
stars, depending on their ability to fill their Roche lobes orcause a spiral-in and the type
of star a common envelope would result in. The solid lines show the evolution up the first
giant branch (FGB), where especially the low-mass stars expand much and could cause a
common envelope with spiral-in, in which a helium white dwarf would be formed. Fig.5.1a
shows that low-mass stars briefly contract for core masses around 0.3M⊙. This is due to
the first dredge-up, where the convective envelope deepens down to just above the hydrogen
burning shell and increases the hydrogen abundance there. The contraction happens when
the hydrogen-burning shell catches up with this composition discontinuity. After ignition
of helium in the core, all stars shrink and during core heliumburning and the first phase
of helium fusion in a shell, their radii are smaller than at the tip of the FGB. This means
that these stars could never start filling their Roche lobes in this stage. These parts of the
evolution are plotted with dotted lines. Once a CO core is established, the stars evolve up
the AGB and eventually get a radius that is larger than that onthe FGB. The stars are now
capable of filling their Roche lobes again and cause a common envelope with spiral-in. In
such a case we assume that the whole helium core survives the spiral-in and that the helium
burning shell will convert most of the helium to carbon and oxygen, eventually resulting
in a CO white dwarf, probably with an atmosphere that consists of a mixture of hydrogen
and helium. This part of the evolution is marked with dashed lines. Fig.5.1b shows that
the most massive models in our grid have a decreasing helium-core mass at some point
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Figure 5.1: Core-mass–radius relations for the ‘basic’ models, as described in the text. The
lines show the logarithm of the radius of the stars as a function of the helium-core mass.
Upper panel(a): grid models with low masses: 0.91, 1.01, 1.14, 1.30, 1.48,1.63, 1.81 and
2.00M⊙. Lower panel(b): grid models with high masses: 2.00, 2.46, 2.79, 3.17, 3.60,
4.09, 4.65, 5.28 and 6.00M⊙. The 2M⊙ model is plotted in both panels throughout as a
solid line for easier comparison. The other models are shownas solid lines on the first giant
branch (FGB), where they could cause a common envelope with aspiral-in and create a
helium white dwarf. The dashed lines show the asymptotic giant branch (AGB), where a
spiral-in would lead to the formation of a carbon-oxygen white dwarf. Dotted lines are parts
of the evolution where the stars either are smaller than at the tip of the FGB (at lower radii)
or where their envelope binding energies become positive onthe AGB (at large radii).
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on the AGB. This happens at the so-called second dredge-up, where the convective mantle
extends inward, into the helium core and mixes some of the helium from the core into the
mantle, thereby reducing the mass of the core. Models with masses between about 1.2
and 5.6M⊙ expand to such large radii that the binding energy of their hydrogen envelopes
become positive. In Sect.5.5we are looking for models that can cause a spiral-in based on
energy balance in the second mass-transfer phase, for whichpurpose we require stars that
have hydrogen envelopes with a negative binding energy. A positive binding energy means
that there is no orbital energy needed for the expulsion of the envelope and thus the orbit
will not shrink during a common envelope caused by such a star. We have hereby implicitly
assumed that the recombination energy is available during common-envelope ejection.

To give some idea what kind of binaries can cause a spiral-in and could be the progen-
itors of the observed double white dwarfs, we converted the radii of the stars displayed in
Fig.5.1 into orbital periods of the pre-common-envelope systems. To do this, we assumed
that the Roche-lobe radius is equal to the radius of the modelstar, and that the mass of the
companion is equal to the mass of the helium core of the model.This is justified by Ta-
ble5.1, where the geometric mean of the mass ratios is equal to 1.03.The result is shown
in Fig.5.2.

In Sect.5.5we will need the efficiency parameterαce of each common-envelope model
to judge whether that model is acceptable or not. In order to calculate this parameter we
must know the binding energy of the hydrogen envelope of the progenitor star (see Eq.5.4),
that is provided by the evolution code as shown in Eq.5.1. The envelope binding energy is
therefore an important parameter and we show it for a selection of models in Fig.5.3, again
as a function of the helium-core mass. Because the binding energy is usually negative, we
plot the logarithm of−Ub,e. The phases where the envelope binding energy is non-negative
are irrelevant for our calculations ofαce and therefore not shown in the Figure.

Many common-envelope calculations in the literature use the so-called envelope-
structure parameterλenv to estimate the envelope binding energy from basic stellar pa-
rameters in case a detailed model is not available

Ub,e = −
GM∗ Menv

λenv R∗

. (5.2)

De Kool et al.(1987) suggest thatλenv ≈ 0.5. Since we calculate the binding energy of
the stellar envelope accurately, we can invert Eq.5.2 and calculateλenv (see alsoDewi &
Tauris 2000). Figure5.4shows the results of these calculations as a function of the helium
core mass, for the same selection of models as in Fig.5.3. We see that a value ofλenv = 0.5
is a good approximation for the lower FGB of a low-mass star, or the FGB of a higher-mass
star. A low-mass star near the tip of the first giant branch hasa structure parameter between
0.5 and 1.5 and for most starsλenv increases to more than unity rather quickly, especially
when the stars expand to large radii and the binding energiescome close to zero.
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Figure 5.2: Helium-core-mass–orbital period tracks for the ‘basic’ models. The lines show
the logarithm of the orbital period at which the Roche lobe isfilled for grid models with
masses of 1.01, 1.27, 1.59, 2.00, 2.52, 3.17, 3.99, 5.02 and 6.32M⊙. The period was
obtained from the radius of the model star, under the assumption that it fills its Roche lobe
and the companion has a mass equal to the helium-core mass of the model. This way, the
system would undergo a spiral-in that would lead to a binary with mass ratioq = 1. The
line styles have the same meaning as in Fig.5.1.

5.4.2 Chemical enrichment by accretion

The secondary that causes the common envelope may have gained mass by accretion during
the first mass-transfer phase. If this mass transfer was stable, the secondary has probably
accreted much of the envelope of the primary star. The deepest layers of the envelope of the
donor are usually enriched with nuclear burning products, brought up from the core by a
dredge-up process. This way, the secondary may have been enriched with especially helium
which, in sufficiently large quantities, can have an appreciable effect on the opacity in the
envelope of the star and thus its radius. This would change the core-mass–radius relation of
the star and the common envelope it causes.

To see whether this effect is significant, we considered a number of binary models that
evolved through stable mass transfer to produce a white dwarf and a main-sequence sec-
ondary. The latter had a mass between 2 and5 M⊙ in the cases considered, of which 50–
60% was accreted. We then took this secondary out of the binary and let it evolve up the
asymptotic giant branch, to the point where the code picks upa shell instability and termi-
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Figure 5.3: The logarithm of the binding energy of the ‘basic’ model stars as a function
of the helium-core mass. The grid models with masses of 0.91,1.01, 1.14, 1.30, 1.48,
1.63, 1.81, 2.00, 2.46, 2.79, 3.17, 3.70, 4.09, 4.65, 5.28, 6.00 and 6.82M⊙ are shown. The
2.00M⊙ model is drawn as a solid line, the line styles for the other models have the same
meaning as in Fig.5.1. The parts where the envelope binding energy is zero (beforea helium
core develops) or positive are not shown.

nates. We then compared this final model to a model of a single star with the same mass, but
with solar composition, that was evolved to the same stage. In all cases the core mass–radius
relations coincide with those in Fig.5.1. When we compared the surface helium abundances
of these models, after one or two dredge-ups, we found that although the abundances were
enhanced appreciably since the ZAMS, they were enhanced with approximately the same
amount and the relative difference of the helium abundance at the surface between the dif-
ferent models was always less than 1.5%. In some cases the model that had accreted from a
companion had the lower surface helium abundance.

The small amount of helium enrichment due to accretion givesrise to such small changes
in the core mass–radius relation, that we conclude that thiseffect can be ignored in our
common-envelope calculations in Sect.5.5.
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Figure 5.4: The envelope-structure parameterλenv for the ‘basic’ models, as a function of
the helium-core mass. The same grid models are shown as in Fig.5.3. The meaning of the
line styles is explained in the caption of Fig.5.1.

5.4.3 Wind mass loss

The mass loss of a star by stellar wind can change the mass of a star appreciably before
the onset of Roche-lobe overflow, and the mass loss can influence the relation between
the core mass and the radius of a star. From Fig.5.1 it is already clear that this relation
depends on the total mass of the star. In this section, we would therefore like to find out
whether a conservative model star of a certain total mass andcore mass has the same radius
and envelope binding energy as a model with the same total mass and core mass, but that
started out as a more massive star, has a strong stellar wind and just passes by this mass
on its evolution down to even lower masses. We calculated a small grid of models with ten
different initial masses between 1.0M⊙ and 8.0 M⊙, evenly spread inlog M and included
a Reimers type mass loss (Reimers 1975) of variable strength:

Ṁrml = −4 × 10−13 M⊙ yr−1 Crml

(

L

L⊙

) (

R

R⊙

)(

M

M⊙

)−1

, (5.3)

where we have used the valuesCrml = 0.2, 0.5 and 1.0. The basic models of Sect.5.4.1are
conservative and therefore haveCrml = 0. The effect of these winds on the total mass of the
model stars in our grid is displayed in Fig.5.5. It shows the fraction of mass lost at the tip
of the first giant branch (FGB) and the ‘tip of the asymptotic giant branch’ (AGB). The first
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Figure 5.5: The fraction of mass lost at two moments in the evolution of a star as a function
of its initial mass, for the three different wind strengths (Crml = 0.2, 0.5 and 1.0) used in the
grid. This fraction is shown for the tip of the FGB (dashed lines and crosses), and the ‘tip
of the AGB’ (dotted lines and plusses). See the text for details.

moment is defined as the point where the star reaches its largest radius before helium ignites
in the core, the second as the point where the radius of the star reaches its maximum value
while the envelope binding energy is still negative. Valuesfor both moments are plotted in
Fig.5.5 for each non-zero value ofCrml in the grid. For the two models with the lowest
masses the highest mass-loss rates are so high that the totalmass is reduced sufficiently on
the FGB to keep the star from igniting helium in the core, and the lines in the plot coincide.
Stars more massive than 2M⊙ have negligible mass loss on the FGB, because they have
non-degenerate helium cores so that they do not ascend the FGB as far as stars of lower
mass. Their radii and luminosities stay relatively small, so that Eq.5.3 gives a low mass
loss rate. For stars of 4M⊙ or more, the mass loss is diminutive and happens only shortly
before the envelope binding energy becomes positive. We canconclude that for these stars
the wind mass loss has little effect on the core mass–radius relation.

The core mass–radius relations for a selection of the modelsfrom our wind grid are
shown in Fig.5.6. The Figure compares models without stellar wind with models that have
the strongest stellar wind in our grid (Crml = 1.0). Models with the other wind strengths
would lie between those shown, but are not plotted for clarity. The greatest difference in
Fig.5.6 is in the 1.0M⊙ model. The heavy mass loss reduces the total mass of the star to
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Figure 5.6: Comparison of a selection from the small grid of models with a stellar wind.
The models displayed have masses of 1.0, 1.6, 2.5, 3.2, 4.0, 5.0 and 6.3M⊙. The wind
strength parameters areCrml = 0.0 (dotted lines) andCrml = 1.0 (solid lines, the strongest
mass loss in the grid). Stars with mass loss are usually larger, but for models of 4.0M⊙ or
more this effect becomes negligible. The 1.0M⊙ model loses so much mass that it never
ignites helium in the core.

0.49M⊙ on the first giant branch, so that the star is not massive enough to ignite helium in
the core. Fig.5.6shows that models with mass loss are larger than conservative models for
the same core mass, as one would expect from Fig.5.1. This becomes clear on the FGB for
stars that have degenerate helium cores, because they have large radii and luminosities and
lose large amounts of mass there. For stars more massive thanabout2 M⊙ the mass loss
becomes noticeable on the AGB. Stars of4 M⊙ or more show little difference in Fig.5.6.
The envelope binding energies have similar differences in the same mass regions.

The question is whether the properties of the model with reduced mass due to the wind
are the same as those for a conservative model of that mass. Inorder to answer this question,
we have compared the models from the ‘wind grid’ to the basic,conservative models. As
the wind reduces the total mass of a model star, it usually reaches masses that are equal
to that of several models in the conservative grid. As this happens, we interpolate linearly
within the mass-losing model to find the exact moment where its mass equals the mass of
the conservative model. We then use the helium-core mass of the interpolated mass-losing
model to find the moment where the conservative model has the same core mass and we
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calculate its radius and envelope binding energy, again by linear interpolation. This way
we can compare the two models at the moment in evolution wherethey have the same total
mass and the same core mass. This comparison is done in Fig.5.7. Figure5.7a directly
compares the radii of the two sets of models, in Fig.5.7b the ratio of the two radii is shown.

Of the data points in Fig.5.7b 83% lie between 0.9 and 1.1 and 61% between 0.95 and
1.05. For the wind models withCrml = 0.2 these numbers are 99% and 97%, and for
the models withCrml = 0.5 they are 94% and 85% respectively. As can be expected, the
models that have a lower — and perhaps a more realistic — mass-loss rate compare better
to the conservative models. We see in Fig.5.7a that many of the points that lie farther from
unity need only a small shift in core mass to give a perfect match. This shift is certainly less
than0.05 M⊙, which is what we will adopt for the uncertainty of the white-dwarf masses in
Sect.5.5. We conclude here that there is sufficient agreement betweena model that reaches
a certain total mass because it suffers from mass loss and a conservative model of the same
mass. The agreement is particularly good for stars high up onthe FGB or AGB, where the
density contrast between core and envelope is very large.

5.5 Second mass-transfer phase

For the formation of two white dwarfs in a close binary system, two phases of mass transfer
must happen. We will call the binary system before the first mass transfer theinitial binary,
with masses and orbital periodM1i, M2i andPi. If one considers mass loss due to stellar
wind before the first mass-transfer episode, these parameters are not necessarily equal to the
ZAMS parameters, especially for large ‘initial’ periods. The binary between the two mass-
transfer phases is referred to as theintermediate binarywith M1m, M2m andPm. After
the two mass-transfer episodes, we obtain thefinal binarywith parametersM1f , M2f and
Pf , that should correspond to the values that are now observed and listed in Table5.1. The
subscripts ‘1’ and ‘2’ are used for the initial primary and secondary as defined in Sect.5.2.

In the first mass transfer, the primary star fills its Roche lobe and loses mass, that may
or may not be accreted by the secondary. This leads to the formation of the intermediate
binary, that consists of the first white dwarf and a secondaryof unknown mass. In the second
mass-transfer phase, the secondary fills its Roche lobe and loses its envelope. The second
mass transfer results in the observed double white dwarf binaries that are listed in Table5.1
and must account for significant orbital shrinkage. This is because the youngest white dwarf
must have been the core of its progenitor, the secondary in the intermediate binary. Stars
with cores between 0.3 and 0.7M⊙ usually have radii of several tens to several hundreds
of solar radii, and the orbital separation of the binaries they reside in must be even larger
than that. The orbital separation of the observed systems istypically only in the order of a
few solar radii (Table5.1). Giant stars with large radii have deep convective envelopes and
when such a star fills its Roche lobe, the ensuing mass transfer will be unstable and occur
on a very short, dynamical timescale, especially if the donor is much more massive than its
companion. It is thought that the envelope of such a star can engulf its companion and this
event is referred to as acommon envelope. The companion and the core of the donor orbit
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Figure 5.7: Comparison of a selection of grid models withCrml =1.0 with initial masses of
1.3, 1.6, 2.0, 2.5 and 3.2M⊙ to the basic models (Crml =0.0). Upper panel(a): Comparison
of the radius of the models with a stellar wind (solid lines) and the radius of a basic model
with the same mass and core mass (plusses).Lower panel(b): The fraction of the radius of
the wind modelRw over the radius of the basic modelRb with the same total and core mass.
Each data point corresponds to a point in the upper panel. Of the data points in the upper
panel, 7 out of 143 (5%) lie outside the plot boundaries in thelower panel. The dashed lines
show the region where agreement is better than 10%, where 83%of the data points lie. The
1.0M⊙ model was left out because there are only a few basic models with lower mass, the
higher-mass models were left out because they lose very little mass (see Fig.5.5).
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inside the common envelope and drag forces will release energy from the orbit, causing the
orbit to shrink and the two degenerate stars to spiral in. Thefreed orbital energy will heat
the envelope and eventually expel it. This way, the hypothesis of the common envelope
with spiral-in can phenomenologically explain the formation of close double-white-dwarf
binaries.

5.5.1 The treatment of a spiral-in

In order to estimate the orbital separation of the post-common envelope system quantita-
tively, it is often assumed that the orbital energy of the system is decreased by an amount
that is equal to the binding energy of the envelope of the donor star (Webbink 1984):

Ub,e = −αce

[

GM1fM2f

2af

−
GM1mM2m

2am

]

. (5.4)

The parameterαce is thecommon-envelopeparameterthat expresses the efficiency by which
the orbital energy is deposited in the envelope. Intuitively one would expect thatαce ≈ 1.
However, part of the liberated orbital energy might be radiated away from the envelope
during the process, without contributing to its expulsion,thereby loweringαce. Conversely,
if the common-envelope phase would last long enough that thedonor star can produce a
significant amount of energy by nuclear fusion, or if energy is released by accretion on to
the white dwarf, this energy will support the expulsion and thus increaseαce.

In the forward calculation of a spiral-in the final orbital separationaf depends strongly
on the parameterαce, which must therefore be known. In this section we will try toestablish
the binary systems that were the possible progenitors of theobserved double white dwarfs
and we will therefore performbackwardcalculations. The advantage of this is that we start
as close as possible to the observations thus introducing aslittle uncertainty as possible.
The problem with this strategy is that we do not know the mass of the secondary progenitor
beforehand. We will have to consider this mass as a free parameter and assume a range
of possible values for it. The grid of single-star models of Sect.5.4 provides us with the
total mass, core mass, radius and envelope binding energy atevery moment of evolution,
for a range of total masses between 0.8 and 10M⊙. It is then not necessary to know the
common-envelope parameter, and we can even calculate theαce that is needed to shrink the
orbit of a model with a given mass to the observed period of thedouble white dwarf from
the binding energy. We make two assumptions about the evolution of the two stars during
the common envelope to perform these backward calculations:

1. the core mass of the donor does not change,

2. the mass of the companion does not change.

The first assumption will be valid if the timescale on which the common envelope takes
place is much shorter than the nuclear-evolution timescaleof the giant donor. This is cer-
tainly true, since the mass transfer occurs on the dynamicaltimescale of the donor. The
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second assumption is supported firstly by the fact that the companion is a white dwarf, a
degenerate object that has a low Eddington accretion limit and is furthermore difficult to
hit directly by a mass stream from the donor. The white dwarf could accrete matter in the
Bondi-Hoyle fashion (Bondi & Hoyle 1944). This would not change the mass of the white
dwarf significantly but could release appreciable amounts of energy. Secondly, a common
envelope is established very shortly after the beginning ofthe mass transfer, so that the mass
stream disappears and the white dwarf is orbiting inside thefast-expanding envelope rather
than accreting mass from the donor. In the terminology used here, the second assumption
can be written asM1m = M1f .

From the two assumptions above it follows that the mass of thesecond white dwarf,
the one that is formed in the spiral-in, is equal to the helium-core mass of the donor at the
moment it fills its Roche lobe. There is therefore a unique moment in the evolution of a
given model star at which it could cause a common envelope with spiral-in and produce
a white dwarf of the proper mass. Recall from Fig.5.1b that although the second dredge-
up reduces notably the helium-core mass of the more massive models in the grid, there is
no overlap in core mass in the phases where the star could fill its Roche lobe on the first
giant branch (solid lines) or asymptotic giant branch (dashed lines). The moment where the
model star could produce a white dwarf of the desired mass in acommon envelope with
spiral-in is therefore defined by two conditions:

1. the helium-core mass of the model reaches the mass of the white dwarf,

2. the model star has its largest radius so far in its evolution.

The second restriction is necessary because stars can shrink appreciably during their evolu-
tion, as noted in Sect.5.4.1. If the core of a model star obtains the desired mass at a point
in the evolution where the star is smaller than it has been at some point in the past, then the
star cannot fill its Roche lobe at the right moment to produce awhite dwarf of the proper
mass and therefore this star cannot be the progenitor of the white dwarf. This way, each
model star has at most one moment in its evolution where it could fill its Roche lobe and
produce the observed double white dwarf. If such a moment does not exist, the model star
is rejected as a possible progenitor of the second white dwarf.

If the model star could be the progenitor of the youngest white dwarf in the observed
system, the computer model gives us the radius of the donor star, that must be equal to the
Roche-lobe radius. Under the assumption that the mass of thefirst white dwarf does not
change in the common envelope, the mass ratio of the two starsq2m ≡ M2m/M1m and
the Roche-lobe radius of the secondary starRRl2m give us the orbital separation before the
spiral-inam, where we use the fit byEggleton(1983)

RRl2m = am

0.49 q
2/3

2m

0.6 q
2/3
2m + ln

(

1 + q
1/3
2m

) , 0 < q2m < ∞. (5.5)

Kepler’s law finally provides us with the orbital periodPm of the intermediate system. The
stellar model also gives the binding energy of the envelope of the donorUb,e at the onset of
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the common envelope and we can use Eq.5.4to determine the common-envelope parameter
αce. We will useαce to judge the validity of the model star to be the progenitor ofthe second
white dwarf. There are several reasons why a numerical solution can be rejected. Firstly, the
proposed donor could be a massive star with a relatively small radius. Thenam will be small
and it might happen thatam < af

M2m

M2f
, so thatαce < 0. This means that energy is needed

to change the orbit fromam to af , or even thatam < af and a spiral-in (if it can be called
that) to the desired orbit will not lead to expulsion of the common envelope. Secondly,
as mentioned above,αce is expected to be close, though not necessarily equal, to unity.
However if the parameter is either much smaller or much larger than 1, we will consider the
spiral-in to be ‘physically unbelievable’. We arbitrarilychose the boundaries between which
αce must lie for a believable spiral-in to be a factor of ten either way: 0.1 ≤ αce ≤ 10. We
think that the actual value forαce should be more constrained than that because common-
envelope evolution is thought to last only a short time so that there is little time to generate
or radiate large amounts of energy, but keep the range as broad as it is to be certain that all
possible progenitor systems are considered in our sample.

5.5.2 Results of the spiral-in calculations

We will now apply the stellar models of Sect.5.4.1as described in the previous section to
calculate potential progenitors to the observed double white dwarfs as listed in Table5.1.
As input parameters we took the valuesPf = Porb andM2f = M2 from the table, and
assumed thatM1f ≡ M2/q2, whereq2 is the observed mass ratio listed in Table5.1. We
thus ignore for the moment any uncertainty in the observed masses. Figure5.8 shows the
orbital periodPm as a function of the secondary massM2m. Each symbol is a solution to the
spiral-in calculations and represents an intermediate binary system that consists of the first
white dwarf of massM1m =M1f , a companion of massM2m and an orbital periodPm. The
secondary of this system will fill its Roche lobe at the momentwhen its helium-core mass
is equal to the mass of the observed white dwarfM2f , and can thus produce the observed
double-white-dwarf system with a common-envelope parameter that lies between 0.1 and
10.

The solutions for each system in Fig.5.8 seem to lie on curves that roughly run from
long orbital periods for low-mass donors to short periods for higher-mass secondaries. This
is to be expected, partially because higher-mass stars havesmaller radii at a certain core
mass than stars of lower mass (see Fig.5.1) and thus fill their Roche lobes at shorter orbital
periods, but mainly because the orbital period of a Roche-lobe filling star falls off approxi-
mately with the square root of its mass. The Figure also showsgaps between the solutions,
for instance for WD 0957–666 and WD 1704+481a, between progenitor massesM2m of
about 2 and2.5 M⊙. These gaps arise because the low-mass donors on the left side of the
gap ignite helium degenerately when the core mass is0.47 M⊙, after which the star shrinks,
whereas for stars with masses close to2 M⊙ helium ignition is non-degenerate and occurs
at lower core masses, reaching a minimum for stars with a massof 2.05 M⊙, where helium
ignition occurs when the helium-core mass amounts to0.33 M⊙ (see Fig.5.1). Thus, for
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Figure 5.8: Results of the spiral-in calculations, each individual symbol is a solution of
the calculations and thus represents one pre-CE binary. Thefigure shows the logarithm of
the orbital period of the intermediate binaryPm as a function of the secondary massM2m.
Different symbols represent different observed systems, as explained in the legend. System
1704a is the system listed in Table5.1, 1704b is the same system, but with the reverse
mass ratio. For solutions withM2m < 2.5 M⊙, only every third solution is plotted for
clarity. AroundM2m =1.2 andlog Pm =2.8 the symbols of WD 0135–052, WD 0136+768
and WD 1204+450 overlap due to the fact that they have similarwhite-dwarf masses. For
comparison we show the lines of the solutions for (top to bottom) WD 0136+768, WD 0957–
666 and WD 1101+364 taken fromNelemans et al.(2000), as described in the text.

white dwarfs with masses between 0.33 and0.47 M⊙ there is a range of masses between
about 1.5 and3 M⊙ for which the progenitor has just ignited helium in the core,and thus
shrunk, when it reaches the desired helium-core mass.

The dip and gap in Fig.5.8 for WD 1101+364 (withM2f ≈ 0.29M⊙) aroundM2m =
1.8 M⊙ can be attributed to the first dredge-up that occurs for low-mass stars (M < 2.2 M⊙)
early on the first giant branch. Stars with these low masses shrink slightly due to this dredge-
up that occurs at core masses between about 0.2 and0.33 M⊙, the higher core masses for
the more massive stars (see Fig.5.1a). Stars at the low-mass (M2m) side of the gap obtain
the desired core mass just after the dredge-up, are relatively small and fill their Roche lobes
at short periods. Stars with masses that lie in the gap reach that core mass while shrinking
and cannot fill their Roche lobes for that reason. Stars at thehigh-mass end of the gap fill
their Roche lobes just before the dredge-up so that this happens when they are relatively
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large and therefore this happens at longer orbital periods.

For comparison we display as solid lines in Fig.5.8 the results for the white-dwarf sys-
tems WD 0136+768, WD 0957–666 and WD 1101+364 (from top to bottom), as found by
Nelemans et al.(2000) and shown in their Fig. 1. The differences between their andour
results stem in part from the fact that the values for the observed masses have been updated
by observations since their paper was published. To compensate for this we include dashed
lines for the two systems for which this is the case. The dashed lines were calculated with
their method but the values for the observed masses as listedin this chapter. By comparing
the lines to the symbols for the same systems, we see that theylie in the same region of the
plot and in the first order approach they give about the same results. However, the slopes in
the two sets of results are clearly different. This can be attributed to the fact thatNelemans
et al.(2000) used a power law to describe the radius of a star as a functionof its core mass
only. The change in orbital period with mass in their calculations is the result of changing
the total mass in Kepler’s law. Furthermore, they assumed that all stars with masses be-
tween 0.8 and2.3 M⊙ have a solution, whereas we find limits and gaps, partially due to the
fact that we take into account the fact that stars shrink and partially because in Fig.5.8only
solutions with a restrictedαce are allowed. On the other hand, we allow stars more massive
than2.3 M⊙ as possible progenitors.

In Fig.5.9, we display the common-envelope parameterαce for a selection of the so-
lutions with0.1 ≤ αce ≤ 10 as a function of the unknown intermediate secondary mass
M2m. Each of the plot symbols has a corresponding symbol in Fig.5.8. To produce these
two figures, we have so far implicitly assumed that the massesof the two components are
exact, so that there is at most one acceptable solution for each progenitor mass. This is
of course unrealistic and it might keep us from finding an acceptable solution. At this
stage we therefore introduce an uncertainty on the values for M2 in Table5.1and takeM2f

= M2 − 0.05 M⊙, M2 − 0.04 M⊙, . . . , M2 + 0.05 M⊙. Meanwhile we assume that the
mass ratio and orbital period have negligible observational error, because these errors are
much smaller than those on the masses, and obtain the mass forthe first white dwarf from
M1f = M2f/q2. Thus we have 11 pairs of values forM1f andM2f for each observed sys-
tem, which we use as input for our spiral-in calculations. The results are shown in Fig.5.10.

If we compare Fig.5.8and Fig.5.10, we see that the wider range in input masses results
in a wider range of solutions, similar to those we found in Fig.5.8, but extended in orbital
period. This can be understood intuitively, since loweringthe white-dwarf mass demands a
lower helium-core mass in the progenitor and thus a less evolved progenitor with a smaller
radius at the onset of Roche-lobe overflow. Conversely, higher white-dwarf masses need
more evolved progenitors that fill their Roche lobes at longer orbital periods. The introduc-
tion of this uncertainty clearly results in a larger and morerealistic set of solutions for the
spiral-in calculations and therefore should be taken into account.

Each system in Fig.5.10is a possible progenitor of one of the ten observed double white
dwarfs listed in Table5.1. We now turn to the question whether and how these intermediate
systems can be produced.
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Figure 5.9: The logarithm of the common-envelope parameterαce for the solutions of
the spiral-in calculations shown in Fig.5.8. Different symbols represent different observed
systems. ForM2m < 2.5 M⊙ every third solution is plotted only.

5.6 First mass-transfer phase

The solutions of the spiral-in calculations we found in the previous section are in our nomen-
clatureintermediate binaries, that consist of one white dwarf and a non-degenerate com-
panion. In this section we will look for an initial binary that consists of two zero-age main-
sequence (ZAMS) stars of which the primary evolves, fills itsRoche lobe, loses its hydrogen
envelope, possibly transfers it to the secondary, so that one of the intermediate binaries of
Fig.5.10 is produced. The nature of this first mass transfer is a prioriunknown. In the
following subsections we will consider (1) stable and conservative mass transfer that will
result in expansion of the orbit in most cases, (2) a common envelope with spiral-in based
on energy balance (see Eq.5.4) that usually gives rise to appreciable orbital shrinkage and
(3) envelope ejection due to dynamically unstable mass lossbased on angular-momentum
balance, as introduced byPaczyński & Ziółkowski(1967) and already used byNelemans
et al.(2000) for the same purpose, which can take place without much change in the orbital
period.
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Figure 5.10: Results of the spiral-in calculations. This figure is similar to Fig.5.8 and
shows the orbital period of the pre-CE system as a function ofthe secondary mass. The
solutions for each system are plotted in a separate panel, aslabelled in the upper-right
corner. All solutions with acceptableαce are plotted. The number of solutions for each
system is shown in the lower-right corner. We assumed an uncertainty in M2f of 0.05 M⊙

and calculatedM1f usingq2.

5.6.1 Conservative mass transfer

In this section we will find out which of the spiral-in solutions of Fig.5.10may be pro-
duced by stable, conservative mass transfer. We use the binary evolution code described in
Sect.5.3. For simplicity, we ignore stellar wind and the effect of stellar spin on the structure
of the star. Because we assume conservative evolution, the total mass of the binary is con-
stant, so thatM1i + M2i = M1m + M2m, where the last two quantities are known. Also,
we ignore angular momentum exchange between spin and orbit by tidal forces, so that the
orbital angular momentum is conserved. This implies that

Pm

Pi

=

(

M1i M2i

M1m M2m

)3

. (5.6)

Because of the large number of possible intermediate systems we will first remove all
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such systems for which it can a priori be shown that they cannot be produced by conservative
mass transfer. These systems have orbital periods that are either too short or too long to be
formed this way. We can find a lower limit to the intermediate period as a function of
secondary massM2m using the fact that the total mass of the initial system must be equal
to the sum of the mass of the observed white dwarfM1 andM2m. We distributed this mass
equally over two ZAMS stars and set the Roche-lobe radii equal to the two ZAMS radii. By
substituting the initial and desired masses in Eq.5.6 we find a lower limit to the period of
the intermediate binary, which we will callPmin.

An upper limit to the intermediate periodPm can also be obtained. In order to do this,
we note that the maximum orbital period after conservative mass transfer for a given binary
mass is obtained for an optimum initial mass ratioq2i,opt = 0.62 (Nelemans et al. 2000).
We can therefore calculate the massesM1i,opt andM2i,opt of the initial binary that evolves
to that maximum intermediate period by distributing the total system mass (M1 + M2m)
according to the mass ratioq2i,opt. The optimum initial period is the maximum period at
which stable mass transfer can still occur in a binary with massesM1i,opt andM2i,opt. This
is the orbital period at which the donor star fills its Roche lobe just before it reaches the
base of the giant branch (BGB). We use the conditions byHurley et al.(2000) who define
this point as the moment where the mass of the convective envelopeMCE exceeds a certain
fraction of the total mass of the hydrogen envelopeME for the first time:

MCE = 2
5

ME, M1i,opt ≤ 1.995 M⊙,
MCE = 1

3
ME, M1i,opt > 1.995 M⊙,

(5.7)

for Z = 0.02. We then find from our grid of Sect.5.4the two single-star models with masses
that bracketM1i,opt and interpolate within these models to find the radii of thesestars where
the condition of Eq.5.7 is fulfilled for the first time. Subsequently, we interpolateagain
between these two bracketing models to find the radius of the star with the desired mass at
the base of the giant branch (RBGB). By assuming that this radius is equal to the Roche-lobe
radius and using Eq.5.5, the initial masses and period that lead to the maximum intermediate
period are known and we can use Eq.5.6to find this upper limit to the intermediate period,
which we will call Pmax, as a function of the secondary mass. All intermediate systems
that result from our spiral-in calculations and have longerorbital periods thanPmax cannot
result from conservative mass transfer.

The lower and upper limits for the orbital period between which a conservative solution
must lie for WD 0957–666 are shown in Fig.5.11together with the intermediate systems
found from the spiral-in calculations. Black dots represent solutions that lie between the
limits and could match the outcome of a conservative model, grey dots lie outside these
limits and cannot be created by conservative mass transfer.There is a slight difference
between the dashed lines and the division between filled and open symbols in the Figure,
because the spiral-in solutions are shown with the uncertainty in the masses described in the
previous section, whereas the period limits are only shown for the measuredM2 andq2 (see
Table5.1) for clarity.

After selecting the spiral-in solutions that lie between these period limits for all eleven
systems, we find that such solutions exist for only six of the observed binaries, as shown in
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Figure 5.11: Results of the spiral-in calculations for WD 0957–666 with period limits for
a conservative first mass transfer. This figure contains the same data as the third panel in
Fig.5.10(symbols) plus the period limitsPmin andPmax (dashed lines). The solutions that
lie between these limits are shown in black, the others in grey. See the main text for details.

Fig.5.12. We tried to model these intermediate systems with the binary evolution code
described in Sect.5.3. Because of the large number of allowed spiral-in solutionsfor
WD 0957–666 and WD 1101+364, we decided to model about half ofthe solutions for
these two systems and all of the solutions for the other four.Because we assume that during
this part of the evolution mass and orbital angular momentumare conserved, the only free
parameter is the initial mass ratioq1i ≡ M1i/M2i. For each of the spiral-in solutions we
selected, we chose five different values forq1i, evenly spread in the logarithm: 1.1, 1.3, 1.7,
2.0 and 2.5. The total number of conservative models that we calculated is 570, of which
270 resulted in a double white dwarf. The majority of the resteither experienced dynamical
mass transfer or evolved into a contact system. A few models were discarded because of
numerical problems. The results of the calculations for theconservative first mass transfer
are compared to the solutions of the spiral-in calculationsin Fig.5.13.

The systems that result from our conservative models generally have longer orbital pe-
riods than the intermediate systems that we are looking for.This means that stable mass
transfer in the models continues beyond the point where the desired masses and orbital pe-
riod are reached. The result is thatM1m is too small and thatM2m andPm are too large.
The reason that mass transfer continues is that the donor star is not yet sufficiently evolved:
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Figure 5.12: Results of the spiral-in calculations with period limits for conservative mass
transfer as in Fig.5.11, but for all systems. The number in the upper left corner of each
panel is the number of systems that lie between the period limits.

the helium core is still small and there is sufficient envelope mass to keep the Roche lobe
filled. White dwarfs of higher mass would result from larger values ofq1i. This way, the
initial primary is more massive and the initial period is longer, so that the star fills its Roche
lobe at a slightly later stage in evolution. Both effects increase the mass of the resulting
white dwarf. However, if once chooses the initial mass ratiotoo high, the system evolves
into a contact binary or, for even higherq1i, mass transfer becomes dynamically unstable.
In both cases the required intermediate system will not be produced. These effects put an
upper limit to the initial mass ratio for which mass transferis still stable, and thus an upper
limit to the white-dwarf mass that can be produced with stable mass transfer for a given sys-
tem mass. Our calculations show that conservative models with an initial mass ratio of 2.5
produce no double white dwarfs. Apparently this value ofq1i is beyond the upper limit. The
solutions in Fig.5.14with a final mass ratio close to or in agreement with the observations
come predominantly from the models with initial mass ratiosof 1.7 and 2.0.

Because small deviations in the masses and orbital period ofthe intermediate systems
can still lead to acceptable double white dwarfs, we monitorthe evolution of these systems
to the point where the secondary fills its Roche lobe and determine the mass of the second
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Figure 5.13: Results of the spiral-in calculations (grey symbols), obtained as in Fig.5.11,
and the solutions of calculations of conservative evolution (black symbols). Only the six
systems shown have spiral-in solutions within the period limits (see Fig.5.12). The numbers
in the lower left and lower right corners are the numbers of plotted spiral-in solutions and
conservative solutions respectively.

white dwarfM2f from the helium-core mass of the secondary at that point. Because the
secondary in the intermediate binary is slightly too massive in most cases, it is smaller at a
given core mass (see Fig.5.1) so that the mass of the second white dwarf becomes larger than
desired. Combined with an undermassive first white dwarf this results in a too large mass
ratio q2f . This is shown in Fig.5.14, where the values forq2f for our conservative models
are compared to the observations. The Figure also shows the difference in age of the system
between the moment where the second white dwarf was formed and the moment when
the first white dwarf was formed (∆τ ). This difference should be similar to the observed
difference in cooling age between the two components of the binary (see Table5.1). The
vertical dotted lines show this observed cooling-age difference with an uncertainty of 50%.

Figure5.14shows that of the six systems presented, only two have a mass ratio within
the observed range, although values for the other systems may be close. We see that the mass
ratios of the solutions for most of the systems are divided intwo groups and the difference
in mass ratio can amount to a factor of 2 between them. The division arises because in most
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Figure 5.14: The mass ratio of model double white dwarfs formed by a conservative first
mass transfer and a common envelope with spiral-in, againstthe age difference between
the two components. The dashed horizontal lines show the observed range of possible
mass ratios as shown in Table5.1. The dotted vertical lines are the estimated cooling-age
differences±50% (see Table5.1).

models the common envelope is supposed to occur on the short giant branch of stars that are
more massive than2 M⊙. If the secondary is slightly smaller and the orbital periodslightly
longer than it should be, the star can ignite helium in its core and start shrinking before it has
expanded sufficiently to fill its Roche lobe. When this star expands again after core helium
exhaustion, it has a much more massive helium core and produces a much more massive
white dwarf than desired (see Fig.5.1). Thus, a small offset in the parameters of the model
after the first mass-transfer phase can result in large differences after the spiral-in. Of the
270 stable models shown in Fig.5.14, 126 (47%) are in the group with lower mass ratios
(q2f ∼< 1.7).

The modelled mass ratios for the systems WD 0957–666 and WD 1101+364 are close to
the observed values, and we find that this is especially true for the models on the low-mass
end of the range in observed white-dwarf masses we used. Thiscan be understood, because
the maximum mass of a white dwarf that can be created with conservative mass transfer is
set by the total mass in the system. The system mass is determined by the spiral-in calcu-
lations in Sect.5.5.2, where we find that the total mass that is available to create these two
systems lies between about2 and3.5 M⊙. This system mass is simply insufficient to create
white dwarfs with the observed masses. If we would extend theuncertainty in the observed
masses to allow lower white-dwarf masses, it seems likely that we could explain these two
double white dwarfs with a conservative mass-transfer phase followed by a common en-
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velope with spiral-in. The same could possibly be achieved with stable, non-conservative
mass transfer. Losing mass from the system stabilises the mass transfer, so that it can still
be stable for slightly longer initial periods, and allows higher initial primary masses. Both
effects result in higher white-dwarf masses.

All 126 stable solutions in the lower group of mass ratios (q2f ∼< 1.7) haveαce > 1
and 83 (66%) haveαce < 5. If we become more demanding and insist thatαce should be
less than 2, we are left with 14 solutions, all for WD 0957–666. These solutions all have
αce > 1.6. If we additionally demand that the age difference of these models be less than
50% from the observed cooling-age difference, only 6 solutions are left with age differences
roughly between 190 and 410 Myr,αce > 1.8 and1.32 ≤ q2f ≤ 1.44.

We conclude that although the evolutionary channel of conservative mass transfer fol-
lowed by a spiral-in can explain some of the observed systems, evolution along this channel
cannot produce all observed double white dwarfs. We must therefore reject this formation
channel as the single mechanism to create the white-dwarf binaries. The reason that this
mechanism fails to explain some of the observed white dwarfsis that the observed masses
for the first white dwarfs in these systems are too high to be explained by conservative mass
transfer in a binary with the total mass that is set by the spiral-in calculations. Allowing for
mass loss from the system during mass transfer could result in better matches for this mech-
anism. However it is clear from Fig.5.12that this will certainly not work for at least 5 of the
10 observed systems because their orbital periods are too large. We will need to consider
other mechanisms in addition to stable mass transfer to produce the observed white-dwarf
primaries for these systems.

5.6.2 Unstable mass transfer

In this section we try to explain the formation of the first white dwarf in the intermediate
systems shown in Fig.5.10by unstable mass transfer. Mass transfer occurs on the dynam-
ical timescale if the donor is evolved and has a deep convective envelope. There are two
prescriptions that predict the change in orbital period in such an event. The first is a clas-
sical common envelope with a spiral-in, based on energy conservation as we have used in
Sect.5.5. The second prescription was introduced byNelemans et al.(2000) and further
explored byNelemans & Tout(2005) and uses angular-momentum balance to calculate the
change in orbital period. Where the first prescription results in a strong orbital shrinkage
(spiral-in) for all systems, in the second mechanism this isnot necessarily the case so that
the orbital period may hardly change while the envelope of the donor star is lost.

In both scenarios we are looking for an initial binary of which the components have
massesM1i and M2i. The primary will evolve fastest, fill its Roche lobe and eject its
envelope due to dynamically unstable mass loss, so that its core becomes exposed and forms
a white dwarf with massM1m. We assume that the mass of the secondary star does not
change during this process, so thatM2i = M2m. We use the model stars from Sect.5.4.1
as the possible progenitors for the first white dwarf. The orbital period before the envelope
ejection is again determined by setting the radius of the model star equal to the Roche-lobe
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radius and applying Eq.5.5, where the subscripts ‘m’ must be replaced by ‘i’.
Because we demand thatM1i > M2i, the original secondary can be any but the most

massive star from our grid and the total number of possible binaries in our grid is
∑198

n=1 n =
19701 for each system we want to model. The total number of systems that we try to model
is 121: the 11 observed systems (the 10 from Table5.1 plus the system WD 1704+481b)
times 11 different assumptions for the masses of the observed stars (between±0.05 M⊙

from the observed value). We have thus tried slightly less than 2.4 million initial binaries
to find acceptable progenitors to these systems. All these possible progenitor systems have
been filtered by the following criteria, in addition to the ones already mentioned in Sect.5.5:

1. the radius of the star is larger than the radius at the base of the giant branchR >
RBGB, which point is defined by Eq.5.7,

2. the mass ratio is larger than the critical mass ratio for dynamical mass transferq >
qcrit as defined by Eq. 57 ofHurley et al.(2002). Together with the previous criterium,
this ensures that the mass transfer can be considered to proceed on the dynamical
timescale,

3. the time since the ZAMS after which the first white dwarf is createdτ1 is less than
the same for the second white dwarf (τ2) and, additionally,τ2 < 13 Gyr.

After we filter the approximately 2.4 million possible progenitor systems with the crite-
ria above, about 204,000 systems are left in the sample (8.5%) for which two subsequent
envelope-ejection scenarios could result in the desired masses, provided that we can some-
how explain the change in orbital period that is needed to obtain the observed periods. For
each of the two prescriptions for dynamical mass loss we willsee whether this sample con-
tains physically acceptable solutions in the sections thatfollow.

Classical common envelope with spiral-in

The treatment of a classical common envelope with spiral-inbased on energy conservation
has been described in detail in Sect.5.5 and therefore need not be reiterated here. In the
calculations described above, Eq.5.4provides us with the parameterαce1 for the first spiral-
in. In order to use Eq.5.4the subscripts ‘m’ must be replaced by ‘i’ and the subscripts‘f’ by
‘m’. The values of the common-envelope parameter for the first spiral-in must be physically
acceptable and we demand that0.1≤αce1≤10. When we apply this criterion to the results
of our calculations, only 25 possible progenitors out of the204,000 binaries in our sample
survive. All 25 survivors are solutions for WD 0135–052 and haveαce1 ∼> 2.5.

We find that of the systems that pass the criterion in the second spiral-in and have0.1≤
αce2≤10, most (99%) need a negativeαce1 in order to satisfy Eq.5.4, so that we reject them.
We can clearly conclude that the scenario of two subsequent classical common envelopes
with spiral-in can be rejected as the formation mechanism for any of the observed double
white dwarfs. This confirms the conclusions ofNelemans et al.(2000) andNelemans &
Tout(2005), based on the value of the productαce λenv, whereλenv is the envelope-structure
parameter defined in Eq.5.2.
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Envelope ejection with angular-momentum balance

The idea to determine the change in orbital period in a commonenvelope from balance of
angular momentum originates fromPaczyński & Ziółkowski(1967). In Nelemans et al.
(2000) andNelemans & Tout(2005) the mechanism was used to model observed double
white dwarfs. The principle is similar to that of a classicalcommon envelope, here with
an efficiency parameter that we will callγ in the general case. In this section we will use
three slightly different prescriptions for mass loss with angular-momentum balance requir-
ing three different definitions ofγ. For all three mechanisms the mass loss of the donor is
dynamically unstable and its envelope is ejected from the system. Because not all of these
mechanisms necessarily involve an envelope that engulfs both stars, we shall refer to them
as envelope ejection or dynamical mass loss rather than common-envelope evolution. The
first mechanism is that defined byNelemans et al.(2000), where a common envelope is
established first, after which the mass is lost from its surface. The mass thus carries the
average angular momentum of the system and we will call the parameter for this mecha-
nismγs. In the second mechanism the mass is first transferred and then re-emitted with the
specific angular momentum of the accretor. We will designateγa for this mechanism. In
the third mechanism the mass is lost directly from the donor in an isotropic wind and the
corresponding parameter isγd. We will call the companion to the donor star ‘accretor’, even
if no matter is actually accreted.

The prescription for dynamical mass loss with the specific angular momentum of the
system as the mechanism for the first mass-transfer phase, using this and earlier subscript
conventions, is:

Ji − Jm

Ji

= γs1

M1i − M1m

M1i + M2i

, (5.8)

whereJ is the total orbital angular momentum (Nelemans et al. 2000). Our demands for a
physically acceptable solution to explain the observed binaries is now0.1≤γs1≤10 for the
first envelope ejection and0.1≤ αce2 ≤ 10 for the second. From the set of about 204,000
solutions we found above, almost 150,000 (72%) meet these demands and nearly 134,000
solutions (66%) have values forγs1 between 0.5 and 2, in which all observed systems are
represented.

We tried to constrain the ranges forγs1 andαce2 as much as possible, thereby keeping at
least one solution for each observed system. We can write these ranges as(γ0−

∆γ
2

, γ0+
∆γ
2

)

and(α0 −
∆α
2

, α0 + ∆α
2

), whereγ0 andα0 are the central values and∆γ and∆α are the
widths of each range. We independently variedγ0 andα0 and for each pair we took the
smallest values of∆γ and∆α for which there is at least one solution for each observed
system that lies within both ranges. The set of smallest ranges thus obtained is considered
to be the best range forγs1 andαce2 that can explain all systems. Because it is harder to
trifle with the angular-momentum budget than with that of energy, we kept the relative width
of the range forγs1 twice as small as that forαce2 (2∆γ

γ0
= ∆α

α0
). Our calculations show that

changing this factor merely redistributes the widths over the two ranges without affecting
the central values much and thus precisely which factor we use seems to be unimportant for
the result. We find that the set of narrowest ranges that contain a solution for each system is
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1.45≤γs1≤1.58 and0.61≤αce2≤0.72. These results are plotted in Fig.5.15.
We can alternatively treat the second envelope ejection with the angular-momentum

prescription as well, where we need to introduce a factorγs2 by replacing all subscripts ‘m’
by ‘f’ and all subscripts ‘i’ by ‘m’ in Eq.5.8. Again we search for the narrowest ranges
of γs1 andγs2 that contain at least one solution per observed system. We now force the
relative widths of the two ranges to be equal. The best solution is then1.16≤ γs1 ≤ 1.22
and1.62≤γs2≤1.69.

In both prescriptions above (γs1αce2 andγs1γs2) we find that the values forγ lie signif-
icantly above unity. This is in accordance with the findings of Nelemans et al.(2000) and
Nelemans & Tout(2005), but slightly discomforting because there is no obvious physical
mechanism that can transfer this extra angular momentum to the gas of the envelope. We
will therefore rewrite Eq.5.8 for the case where the mass is lost with the specific angular
momentum of one of the stars in the binary, so that we can expect thatγ ≈ 1. In order to do
this we use the equations derived bySoberman et al.(1997) in their Section 2.1. We ignore
the finite sizes of the star by puttingAw = 1 and assume that no matter is accreted, so that
αw + βw = 1 andǫw = 0, where we introduced the subscript ‘w’ to avoid confusion with
αce. Their Eq. 24 then gives (replacing their notation by ours):

Jm

Ji

=

(

qm

qi

)αw 1 + qi

1 + qm

, (5.9)

where we will consider the cases whereαw = 0 (henceβw = 1), describing isotropic re-
emission by the accretor, andαw = 1 for an isotropic wind from the donor. Theirq is
defined asmdonor/maccretor. We can now rewrite Eq.5.8for these two cases:

Ji − Jm

Ji

= γa1

M1i − M1m

M1m + M2m

(αw = 0), (5.10)

Ji − Jm

Ji

= γd1

M1i − M1m

M1m + M2m

M2i

M1i

(αw = 1). (5.11)

By comparing Eq.5.8 to Eq.5.10, we can directly see that for an envelope ejection with
given masses and angular momenta,γa < γs must hold in order to keep it satisfying the
equation. For Eq.5.11, this is not necessarily true for a first envelope ejection but the effect
is even stronger for all second envelope ejections considered in this chapter. The results of
the analysis described above, but now for the modified definitions ofγ, for theγα andγγ
scenarios, each withαw = 0 (isotropic re-emission) andαw = 1 (donor wind) are shown
in Table5.2and compared to the previous results.

We see that the values forγ change drastically, as may be expected. The fact that the
values forαce change slightly has to do with the fact that we now select different solutions
to the calculations than before. Numerically, the fifth solution in the table seems the most
attractive:γd1 ≈ 1.0 andαce2 ≈ 0.6. Although the value forαce2 is lower than unity, it
may not be unrealistic that 40 % of the freed orbital energy isemitted by radiation. This is
the scenario where the mass is lost in an isotropic wind by thedonor in the first dynamical
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Figure 5.15: Solutions for the double dynamical mass-loss scenario for each system. Each
dot represents one system that evolves through an episode ofdynamical mass loss with
γs1 and then a common envelope with spiral-in withαce2 to form one of the observed
white dwarfs.Upper panel:(a): the value forlog γs1 for the first envelope ejection for all
solutions with0.1 ≤ γs1 ≤ 10 and0.1 ≤ αce2 ≤ 10. Solutions with0.61 ≤ αce2 ≤ 0.72
(the dashed lines in (b)) are plotted as large dots, the rest as small ones.Lower panel:(b):
the value forlog αce2 for the second envelope ejection for the same set of solutions. Here,
the large dots have1.45 ≤ γs1 ≤ 1.58 (the dashed lines in (a)). The smallest set with at
least one solution for each system is the intersection of these two sets (the large dots that
lie between the dashed lines). The vertical position of eachdot within its line shows the
deviation from the observed secondary massM2: M2f = M2−0.05 M⊙ for the lower dots,
M2f = M2 + 0.05 M⊙ for the upper. The Figure is made afterNelemans & Tout(2005).
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Prescription γ1 γ0,1 γ2/αce2 γ0,2/α0,2

γs1αce2 1.45–1.58 1.52 α : 0.61–0.72 α : 0.66
γs1γs2 1.16–1.22 1.19 γ : 1.62–1.69 γ : 1.65
γa1αce2 0.81–0.94 0.88 α : 0.50–0.68 α : 0.59
γa1γa2 0.50–0.52 0.51 γ : 0.68–0.70 γ : 0.69
γd1αce2 0.92–1.08 1.00 α : 0.47–0.64 α : 0.56
γd1γd2 0.91–1.07 0.99 γ : 2.55–3.02 γ : 2.78

Table 5.2: Narrowest ranges forγ andαce that contain at least one solution to the envelope-
ejection scenario per observed system and their central values. The six different prescrip-
tions are explained in the main text.

mass-loss episode and the second mass loss is a canonical common envelope with spiral-in.
We also see that the best solutions with a second envelope ejection based on the angular-
momentum prescription obtained with this method has valuesfor γ that lie much farther
from unity than theγ-values for theγα-scenarios.

5.6.3 Formation by multiple mechanisms

So far, we assumed that all ten observed double white dwarfs were formed by one and the
same mechanism. Although some mechanisms are clearly better in explaining the formation
of all the observed systems than others, none of them is completely satisfactory, mainly
because the parametersγ or αce are far from the desired values. Furthermore, there is no
reason why the ten systems should all have been formed by the same mechanism in nature
if there are several options available. We therefore slightly change our strategy here by
assuming that different envelope-ejection prescriptions, described in Sect.5.6.2, can play a
role in the formation of the observed systems.

For the dynamical mass loss, we now demand thatγ andαce are close to unity. Because
angular momentum should be better conserved than energy, weaccept solutions with0.95<
γ < 1.05 and0.90 < αce < 1.10, except for the mechanism described by Eq.5.8, for which
Nelemans & Tout(2005) show that all systems can be explained with1.50 < γ < 1.75,
which we reduce to1.54 < γ < 1.71 to give it the same relative width. For each observed
system and each mechanism, we look whether there is at least one solution with a envelope-
ejection parameter within these ranges. The results are shown as the first symbol in each
entry of Table5.3. The plus signs show which mechanism can explain the mass ratio of
an observed double white dwarf. The table shows that although none of the mechanisms
can explain all observed systems within the chosen ranges ofγ andαce, the second-last
column shows that a combination of these mechanisms can. Thetable also indicates that
mechanisms containing onlyγs and none of the otherγ’s cannot explain all systems. The
same is true forγa andγd. If we expand the chosen ranges forγ andαce with a factor of
two, our calculations show that the mechanismsγsγs andγdγa can explain the mass ratios
of all systems. Expanding the allowed ranges in this way morethan quadruples the total
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System 1: 2: 3: 4: 5: 6: Opt. Best
γsαce γsγs γaαce γaγa γdαce γdγa res. mech.

0135 −/− +/∼ −/− −/− +/∼ +/− +/∼ 2,5
0136 +/+ +/+ +/∼ −/− +/+ −/− +/+ 1,2,5
0957 +/+ +/+ +/+ +/+ +/+ +/∼ +/+ 1–5
1101 +/∼ +/− +/∼ +/− −/− −/− +/∼ 1,3
1115 +/∼ +/∼ +/+ +/∼ +/+ −/− +/+ 3,5

1204 −/− −/− −/− −/− +/− +/− +/− 5,6
1349 +/+ +/+ +/+ −/− +/+ −/− +/+ 1,2,3,5
1414 −/− −/− −/− −/− −/− +/+ +/+ 6
1704a +/− +/− −/− +/− −/− +/− +/− 1,2,4,6
1704b +/− +/− +/− +/− +/− +/− +/− 1–6
2209 −/− +/+ −/− +/+ −/− +/∼ +/+ 2,4

Table 5.3: Comparison of the different mechanisms used to reconstruct the observed double
white dwarfs. The symbols+,∼ and− mean that the model solutions are in good, moderate
or bad agreement with the observations. The first of the two symbols in each column is
based on the mass ratio only and the second includes the age difference. The method for
obtaining the first symbol in each entry is described in Sect.5.6.3, that for the second symbol
in Sect.5.6.4. The symbols in the headers of the columns labelled 1–6 are explained in the
main text. The columns forγaγd andγdγd were left out because they do not contain any
solutions. The last two columns show the optimum result and the mechanisms that give this
result (1–6).

number of solutions from 7866 to 36 867.

5.6.4 Constraining the age difference

The large number of solutions found in the previous section allows us to increase the number
of selection criteria that we use to qualify a solution as physically acceptable. We now
include the age difference of the components in our model systems and demand that it is
comparable to the observed cooling-age difference for thatsystem. The age difference in
our models is the difference in age at which each of the components fills its Roche lobe and
causes dynamical mass loss.

Table5.4lists the number of model solutions for each mechanism and each system. The
columns labelled 1–6 are the same as those in Table5.3. The first number in each of these
columns is the number of solutions that is found within the same ranges forγ andαce as
we used in Table5.3. This means that a minus sign in that table corresponds to a zero in
Table5.4. Behind the entries with a positive number of solutions the range of age difference
that these solutions span is shown. Again, the columns forγaγd andγdγd are not displayed,
because they do not contain any solutions for any system. We have to expand theγ-ranges
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System Obs.∆τ Number of solutions and model age differences (Myr)

(Myr) 1: γsαce 2: γsγs 3: γaαce 4: γaγa 5: γdαce 6: γdγa

0135 175–525 0 1, 0 0 49, 56,
1131 1302–2610 2067–5620

0136 225–675 35, 32, 2, 0 58, 0
44–281 43–237 76–94 44–418

0957 163–488 36, 1925, 59, 292, 30, 1554,
352–818 144–3601 163–506 308–3387 352–851 490–12094

1101 108–323 318, 941, 242, 91, 0 0
995–10910 2202–10917 857–9124 5897–9577

1115 80–240 159, 80, 157, 378, 19, 0
368–1019 313–550 182–841 552–998 240–758

1204 40–120 0 0 0 0 46, 75,
1329–3780 2101–6161

1349 ? 13, 19, 5, 0 101, 0
64–235 64–235 64–134 64–905

1414 100–300 0 0 0 0 0 34,
36–385

1704a -30– -10 3, 98, 0 218, 0 17,
858-1020 216-1381 1565-3313 2735-5386

1704b 10–30 3, 17, 1, 43, 2, 237,
519–553 217–364 465 199–781 536–553 181–1771

2209 250–750 0 188, 0 206, 0 26,
87–781 456–1115 1012–2041

Table 5.4: Results for the various evolution scenarios for double white dwarfs with two unstable mass-transfer episodes. The
range of observed∆τ is the observed cooling-age difference± 50%. Columns labelled 1 through 6 give the number of model
solutions for each scenario followed by the range in age difference of these solutions in Megayears. The columns withγaγd and
γdγd were left out, because they do not contain any solutions. Forthe different mechanisms we demanded that1.54<γs<1.71,
0.95<γa<1.05, 0.95<γd<1.05 and0.90<αce<1.10.
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to 0.25–1.75 in order to get the first solution for just a single system with one of these two
mechanisms. All mechanisms that are listed in Table5.4 provide a solution for more than
one observed system, and each observed system has at least one mechanism that provides
it with a solution. The number of solutions per combination of mechanism and observed
system ranges from zero to several hundreds and the age differences of the accepted models
lie between 36 Myr and more than 12 Gyr.

We will use Table5.4to compare the age differences of the models to the observed val-
ues and use this comparison to judge the ‘quality’ of the model solutions. We will assume
that if the age difference in the model lies within 50% of the measured cooling-age differ-
ence (the range in the second column of Table5.4) that this is a good agreement which we
will assign the symbol ‘+’. If the difference is larger than that, but smaller than a factor of
five we will call it ‘close’ and assign a ‘∼’. Cases where the nearest solution has an age
difference that is more than a factor of five from the observedvalue is considered ‘bad’ and
assigned the symbol ‘−’. If we do this for all cases, we obtain the second symbol for each
entry in Table5.3, which we can use to directly compare the quality of the solutions for each
mechanism and each observed system.

We find that these results are robust, in the sense that if we expand the ranges forγ
andαce with a factor of two, the optimum result does not change, although there are more
mechanisms contributing to this result,i.e. the column ‘opt. result’ remains unchanged,
while the number of labels in the last column increases. The same is even true if we expand
the ranges forαce with a factor of ten instead of two. If we use a factor of 2 in stead of 5
for the upper limit of a ‘close solution’, we need to expand the ranges forγ andαce with
a factor of 2.6 to get tildes at the same places in the column ‘optimum result’ as shown in
Table5.3.

We conclude that our models can form double white dwarfs withthe observed masses
and orbital periods if we invoke multiple formation mechanisms. Our calculations show
that if we double the allowed ranges forγ andαce with respect to those used in Tables5.3
and5.4, it is even possible to form all observed systems with mechanismsγsγs only orγdγa

only. If we demand in addition that the age differences of themodel systems lie within 50%
of the observed value, we can still explain the formation of most observed systems, while
for some double white dwarfs this becomes difficult. This is the case with WD 0135–052,
WD 1204+450, WD 1704+481b and to a lesser extent WD 1101+364.These four systems
can usually either be explained with an acceptable age difference but a value forγ that is
off, or an acceptableγ and an age difference that lies (sometimes much) more that 50%
from the observed value.

5.6.5 Description of the individual solutions

The goal of this research is, of course, to find out whether we can somehow explain the
formation of the observed double white dwarfs. If this is thecase, we hope to learn firstly
which mechanisms govern this formation and secondly what the progenitor systems are that
evolve to the observed white-dwarf binaries. Although we donot find one mechanism that
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can explain all observed systems in a satisfying way, we present here the evolution of some
of the best solutions among our calculations. We list the fivemain parameters that describe
the evolutionary scenario of a solution (two initial masses, the initial period and the two
envelope-ejection parameters) and two minor ones (the actual final masses that the models
give) in a table. Because we present solutions for six different formation mechanisms and
eleven observed systems that may have more than one ‘best’ solution this table is quite large.
This is particularly the case because we want to remove the arbitrarily chosen boundaries
that we have used so far to qualify a solution. We therefore list at least one solution per
mechanism per system, independent of how far its parameterslie from the preferred values.
We chose to present the complete table as Table5.6 in Sect.5.9and give an excerpt of it in
Table5.5. In this way, the reader may verify how particular models do or do not work.

We manually picked the ‘best’ solutions for a given combination of formation mecha-
nism and observed system, in the sense that the solution has aγ close to unity (or, in case
of γs, close to 1.63), anαce close to the range of 0.5–1.0 and an age difference that is close
to the observed value. In the cases where there are differentsolutions that each excel in a
different one of these three properties, we may present morethan one solution. If there are
several solutions that are similar on these grounds, we prefer those with lower initial masses.
We then leave it to the reader to judge whether these solutions are acceptable. The values
for q2f andPf are identical to the value listed in Table5.1 and therefore not shown in Ta-
ble5.5. The intermediate masses are also left out of the table, because no matter is accreted
during the dynamical mass loss and thusM1m = M1f andM2m = M2i in our models. The
numbering of the solutions in the excerpted table is the sameas in the complete version.

We tabulate 120 solutions in total. The initial binaries have primary masses between
1.09M⊙ and 5.42M⊙, though there are only two solutions withM1i > 4 M⊙. Of the 120
solutions, 50% have an initial primary mass less than 2M⊙ and 87% of the primaries are
less massive than 3M⊙. Thus, the models suggest that the double white dwarfs are formed
by low-mass stars, as may be required to explain the observednumbers of these binaries.
Of the initial systems, 90% have orbital periods between 10 and 1000 days. All proposed
solutions undergo a first envelope ejection described by angular-momentumbalance of some
sort, which allows the orbital period to increase during such a mass-transfer phase. In 61%
of the selected solutions this is the case, and for 45% of the solutions the intermediate orbital
period is twice or more as long as the initial period. Of the 120 solutions listed, 51% have
initial mass ratiosq1i > 1.07 while only 17% haveq1i > 1.2. A bit worrying may be that
for 24% of the solutions,q1i < 1.03. It could be that these initial systems evolve into a
double common envelope, where the two white dwarfs are formed simultaneously and the
second white dwarf is undermassive. On the other hand, because the orbital period increases
in most of the first envelope ejections, the outcome of such a common envelope is uncertain.
One should treat these solutions with some scepticism.

We now briefly discuss the solutions for each observed systemthat are listed in the
excerpted Table5.5. For WD 0135–052 it is difficult to get bothγ’s close to the preferred
values. In solution 5,γa1 is off while αce2 is acceptable, solution 8 has aγa1 not too far
from unity butγa2 is off and for solution 9 the reverse is the case. The three solutions have
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Nr. WD Meth. γ1 γ2, ∆τ ∆(∆τ) τ2 M1i M2i q1i Pi q2m Pm M1f M2f

αce2 Myr % Gyr M⊙ M⊙ d d M⊙ M⊙

5 0135 γaαce 1.31 0.87 377 7.7 3.14 1.51 1.46 1.04 504.5 3.12 264.7 0.47 0.42
8 0135 γaγa 1.15 0.66 524 50. 1.36 2.46 2.06 1.20 429.8 3.56 110.9 0.58 0.52
9 0135 γaγa 1.40 0.99 454 30. 5.37 1.28 1.25 1.03 596.6 2.68 313.7 0.47 0.42

17 0136 γsγs 1.51 1.61 450 0.0 2.39 1.70 1.59 1.07 106.1 4.36 371.4 0.37 0.46
22 0136 γdαce 0.95 1.00 299 34. 2.68 1.59 1.53 1.04 75.88 4.50 269.5 0.34 0.43
28 0957 γaαce 1.02 0.97 321 1.2 1.65 1.90 1.79 1.07 20.15 6.31 27.07 0.28 0.32
30 0957 γdαce 1.00 1.00 427 31. 1.16 2.34 2.00 1.17 8.110 6.66 28.52 0.30 0.34
38 1101 γaαce 1.17 0.96 308 43. 1.57 1.95 1.81 1.08 127.1 4.63 45.28 0.39 0.34
50 1115 γaαce 1.01 1.00 239 49. 0.50 3.70 2.94 1.26 1693. 3.58 980.4 0.82 0.69
54 1115 γdαce 0.97 0.93 240 50. 0.32 5.42 3.42 1.58 201.2 3.84 1012. 0.89 0.75
55 1115 γdγa 1.45 1.00 214 34. 1.11 2.40 2.22 1.08 3567. 2.49 2032. 0.89 0.75

58 1204 γsγs 1.83 1.30 71 11. 0.25 3.94 3.47 1.14 69.23 5.92 56.81 0.59 0.51
65 1204 γdγa 1.10 0.34 74 7.8 0.26 3.89 3.42 1.14 38.82 5.96 51.85 0.57 0.50
68 1349 γsγs 1.51 1.63 426 0.0 2.68 1.61 1.53 1.05 115.0 4.20 385.7 0.37 0.46
74 1349 γdαce 0.97 0.98 64 0.0 2.45 1.59 1.57 1.01 120.4 4.31 373.4 0.37 0.46
84 1414 γdαce 0.95 0.71 188 5.9 0.43 3.51 3.09 1.14 70.81 5.99 358.3 0.52 0.66
92 1704a γaαce 1.01 0.60 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36
98 1704a γdγa 1.37 0.63 2 110. 1.48 1.93 1.86 1.04 294.5 3.33 120.2 0.56 0.39

103 1704b γaγa 0.98 0.99 199 895. 2.59 1.59 1.57 1.01 256.0 3.81 664.0 0.41 0.59
114 2209 γaαce 0.98 0.54 517 3.3 1.45 2.37 1.95 1.21 148.5 3.55 168.2 0.55 0.55
115 2209 γaγa 1.00 1.00 612 22. 1.65 2.28 1.86 1.23 968.0 2.95 1061. 0.63 0.63

Table 5.5: Selected model solutions for the double envelope-ejection scenario. This table is a excerpt of the total listof 120
entries. The first eight columns show the number of the entry,the double white dwarf that the model is a solution to, the
mechanism used, the two envelope-ejection parameters, theage difference of the two components in the model (∆τ ) in Myr,

the relative difference between the observed and model age difference, defined as∆(∆τ) ≡
∣

∣

∣

∆τmod−∆τobs

∆τobs

∣

∣

∣
in %, the time of

the formation of the double white dwarf since the ZAMS (τ2) in Gyr. The last eight columns list binary parameters: the initial
(ZAMS) masses, mass ratio and orbital period, the intermediate mass ratio and period and the final masses.
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acceptable age differences. The solutions 17 and 22 for WD 0136+768 and 28 and 30 for
WD 0957–666 have values close to desired for both envelope-ejection parameters and the
∆τ . Solution 38 is by far the best solution for WD 1101+364, thoughγa1 is not very close
to unity. Solutions 50 and 54 for PG 1115+116 have envelope-ejection parameters close
to the desired values and acceptable∆τ ’s, though the initial masses are high. This is in
accordance with the fact that these stars are required to form white dwarfs with masses as
high as 0.7M⊙. Solution 55 shows that one has to accept a large value forγd1 in order to
find a solution with significantly smaller initial masses.

Solutions 58 and 65 are the only two for WD 1204+450 from the complete table that
have age differences within 50% of the observed value, and still the envelope-ejection pa-
rameters are far from the desired values. There seems to be noconvincing solution for this
system in our models. For WD 1349+144 the cooling ages are notknown, although the
similar Balmer spectra of the two components (Karl et al. 2003a) seem to suggest that∆τ
is small. Solution 74 (which is the same as solutions 66, 69 and 70 in the complete table but
with a different definition ofγ) has a small age difference of 64 Myr but also a disturbingly
small initial mass ratio of 1.01. Since the orbital period issupposed to increase with more
than 200% during the first dynamical mass-loss episode, it isuncertain how this initial sys-
tem would evolve. Solution 68 has a larger initial mass ratio, but also a larger age difference.
The complete table shows solutions for WD 1349+144 with values for∆τ of about 64, 140,
230, 370 and 450 Myr, so that they span a large range within which the actual age difference
is likely to lie. For HE 1414–0848 we find an acceptable solution for almost all mechanisms
and 4 out of the 8 solutions listed in the complete table referto the same solution with
different values for the envelope-ejection parameters forthe different mechanisms. Since
the observed age difference of WD 1704+481a is−20Myr, we have introduced a system
with the reversed mass ratio (WD 1704+481b) and hence an age difference of+20Myr.
Interestingly enough, the solutions with closest age difference for WD 1704+481b have
∆τ ∼>180Myr, a factor of nine or more than observed, as is the case for solution 103. How-
ever, for WD 1704+481a we find solutions with good envelope-ejection parameters and an
age difference of around 50 Myr, like solution 92, and with parameters that are more off, but
with an age difference of only 2 Myr as in solution 98. The system WD 1704+481a seems
therefore better explained by our models than the system with the reverse mass ratio. Be-
cause the observed cooling-age difference is only in the order of a few per cent of the total
age of the system (see Table5.1), a change of 10% in the determined cooling age of one of
the two components is sufficient to alter the age difference from−20 Myr to +50Myr. For
HE 2209–1444, we present solutions 114 and 115, that have envelope-ejection parameters
close to the desired values and an age difference that agreesvery well with the observed
cooling-age difference.

Summarising, we find that for the ten observed systems, two can only be explained
with values forγ that differ appreciably from the desired values (WD 0135–052 (31%) and
WD 1204+450 (20%)). For two systems the values of the envelope-ejection parameters
and age difference may not be too convincing, partially due to uncertainties in the observa-
tions (WD 1101+364 (γ = 1.17) and WD 1704+481(a) (∆τ = 52 Myr)) and the other six
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systems (WD 0136+768, WD 0957–666, PG 1115+116, WD 1349+144, HE 1414–0848 and
HE 2209–1444) can be well explained (∆γ ≤ 5%, ∆(∆τ) ≤ 50%) by one or more of the
described mechanisms, although several of these mechanisms are needed to account for all
six observed systems.

5.7 Discussion

5.7.1 Comparison to other work

In this chapter we investigate the formation scenarios for double white dwarfs first put for-
ward byNelemans et al.(2000). Their paper is based on three double white dwarfs and we
expanded this to the set of ten that has been observed so far. Rather than using analytical
approximations, we used a stellar evolution code to do most of the calculations. One of
the advantages of this is that we calculate the binding energy of the donor star at the onset
of a common envelope, so that we can directly calculate the common-envelope parameter
αce without the need of the envelope-structure parameterλenv, that turns out to be far from
constant during the evolution of a star (see Fig.5.4). This allows us to demand physically
acceptable values forαce.

The use of an evolution code instead of analytical expressions obviously gives more
accurate values for instance for the core-mass–radius relation. Our main conclusions are
nevertheless the same as that ofNelemans et al.(2000), even though they are based on a
larger sample of observed binaries: stable, conservative mass transfer followed by a com-
mon envelope with spiral-in based on energy balance cannot explain the formation of the
observed systems, and neither can theαceαce scenario of two such spiral-ins. We therefore
arrive at the same conclusion, that a third mass-transfer mechanism is needed to explain the
first mass-transfer phase of these systems and we use their envelope-ejection prescription,
based on angular-momentum conservation (Eq.5.8).

Nelemans & Tout(2005) use more advanced fits to stellar models, but still need the
envelope-structure parameterλenv so that it is difficult to interpret the values they find for
the productαce λenv. They use the same ten observed double-lined white dwarfs aswe do,
next to a number of single-lined systems. They also concludethat aγ-envelope ejection
is needed for the first mass transfer and find, likeNelemans et al.(2000), that all observed
systems can be explained by1.50 < γs < 1.75, for both mass-transfer phases. Alternatively
the second mass-transfer episode can be reconstructed with0 < αce λenv < 4. However,
Nelemans & Tout(2005) do not discuss the coupling of the two solution sets for the two
phases,e.g. it is not described how many of the solutions with1.50 < γs1 < 1.75 have
γs2 in the same range. We introduced slightly different definitions for theγ-algorithm in
Eqs.5.10and5.11, so that we can demand thatγ is in the order of unity. We find indeed
that we can explain the observed masses and periods withγa, γd ∼ 1.0.

We add to the treatment byNelemans et al.(2000) andNelemans & Tout(2005) in de-
manding that, in addition to the masses and orbital period, the age difference of our models
must be comparable to the observed value. It turns out that this puts a strong constraint on
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the selection of model solutions for all three definitions ofγ. However, we can still explain
most systems, although we need mass loss described by bothγa andγd to do so.

The description for dynamical mass loss with the specific angular momentum of the
donor star (Eq.5.11) is similar to the scenario of a tidally-enhanced stellar wind (Tout &
Eggleton 1988b,a). In this scenario the mass loss from a (sub)giant due to stellar wind
increases up to a factor of 150 with respect to Reimers’ empirical law (Reimers 1975) when
the star is close to filling its Roche lobe.Tout & Eggleton(1988b) postulate the enhanced
wind to explain for instance observed pre-Algol systems such as Z Her. In this binary the
more evolved star is less massive than its main-sequence companion by 10%, while only
filling about half of its Roche lobe.

Han(1998) uses this tidally-enhanced stellar wind in his research onthe formation of
double degenerates and concludes, among others, that his models that include this enhanced
stellar wind give a better explanation of the observed double-degenerate binaries than mod-
els that do not include it. The enhanced mass loss makes subsequent mass transfer due to
Roche-lobe overflow dynamically more stable. Envelope ejection due to dynamical mass
loss is then more often prevented and binaries evolve to longer orbital periods before the
second mass transfer, which is then more likely to produce a CO white dwarf. Thus, the
enhanced-wind scenario increases the ratio of CO-helium double white dwarfs to helium-
helium binaries.

Envelope ejection described by Eq.5.11is essentially the same as the limiting case in
which most or all of the envelope is lost due to an enhanced wind. Tout & Eggleton(1988b)
show that the tidally-enhanced wind can indeed prevent Roche-lobe overflow altogether
because the envelope is completely lost by the wind and the core becomes exposed. Without
an enhanced wind, this happens for binaries with an initial mass ratio of 2 or less only if they
have initial periods of more than 1000 days. When the tidally-enhanced wind is included,
core exposure without Roche-lobe overflow occurs for these binaries with initial periods as
short as 10–30days.

5.7.2 Alternative formation scenario for massive white dwarfs

In the present research we have assumed that after envelope ejection occurs, the core of
the Roche-lobe filling giant becomes a helium or CO white dwarf with no further evolution
other than cooling. However, helium cores that are more massive than0.33 M⊙ are not
degenerate and those more massive than about0.5 M⊙ will burn most of the helium in their
cores and produce a CO core. If exposed, they are in effect helium stars. For helium stars
less massive than about0.75 M⊙ the radius hardly changes during the helium (shell) burn-
ing, but stars more massive than that experience a giant phase. This is shown in Fig.5.16a,
where the radius of a selection of helium-star models is plotted as a function of the CO-core
mass. For the more massive models in the Figure, the stars expand from the order of a few
tenths of a solar radius to a few hundred solar radii. Thus, helium stars with a core mass
MCO ∼> 0.7 M⊙ may and those withMCO ∼> 0.8 M⊙ must become giants and could fill
their Roche lobes as a consequence. The black dots in Fig.5.16a indicate the maximum
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Figure 5.16: Upper panel(a): The radius of a helium star as a function of its CO-core
mass, for a selection of 15 models with total masses between0.41 and1.43 M⊙. The dots
show where the maximum radii are obtained and are used for thelower panel. The dashed
line is the Roche-lobe radius for the intermediate primary of PG 1115+116 according to our
solution 54.Lower panel(b): The maximum radius of a low-mass helium star as a function
of its total mass, for a selection of 33 models with masses between0.33 and1.4 M⊙. The
dots are the data points, the solid line connects them to guide the eye.
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radius for a certain helium-star model and if we plot the maximum radii of these and other
models as a function of the total mass of the star, we obtain Fig.5.16b. This Figure shows
that a helium star more massive than about0.83 M⊙ must evolve through a giant phase (see
e.g. Paczyński 1971; Habets 1986).

There are two double white dwarfs in the observed sample thathaveM2 > 0.6 M⊙,
PG 1115+116 (both components) and HE 1414–0848 (the secondary). The evolutionary
scenarios in Table5.5suggest that all these stars emerge from the envelope ejection with a
CO core, except solution 54 for PG 1115+116, where the 5.42M⊙ primary progenitor pro-
duces a 0.89M⊙ helium core before helium ignites. The Roche-lobe radius ofthe 0.89M⊙

helium star in the intermediate binary is 187R⊙ according to this solution and shown as the
dashed line in Fig.5.16.

The Figure shows that the mass and Roche-lobe radius of this star are in the proper
range to fit the helium-giant scenario. We show a small numerical example to illustrate this
scenario. The dot in Fig.5.16a atMCO=0.88M⊙ andR = 171 R⊙, just below the dashed
line, is the point where the model of 0.93M⊙ from our grid of helium-star models reaches
its largest radius. The star thus has an envelope mass of only0.05M⊙ and with a mass ratio
of almost 4, mass transfer would be stable (Eq. 57 ofHurley et al.(2002)). If we assume
that this star would be the primary of solution 54 in Table5.5 and that 0.04M⊙ would be
transferred conservatively, the orbital period after the mass transfer would be 1115d, so that
the period would not change drastically and the ensuing second envelope ejection would be
similar to the one found in solution 54. If the mass were lost in a wind, which could be
triggered by the fact that the star expands, but for which theRoche lobe need not be filled,
the orbital period would change less than 2% to 1031 d. It seems that a complete, detailed
model could be found to explain this system along these lines.

Both components in HE 1414–0848 are DA white dwarfs (Napiwotzki et al. 2002), as
is the secondary of PG 1115+116. The hydrogen in the spectra of these stars suggests that
the surface layer that formed after the envelope was ejectedis still present. However, the
primary in PG 1115+116 is a DB white dwarf. AsMaxted et al.(2002a) point out, the giant
phase of a helium star could be the explanation for this and the scenario sketched above
might indeed describe the formation of this system.

5.8 Conclusions

We investigated several formation scenarios for the observed ten double white dwarfs listed
in Table5.1and present the best models in Table5.5. We draw four main conclusions:

• The scenario where the first mass-transfer phase is stable and conservative, followed
by a common envelope with spiral-in based on energy conservation (see Eq.5.4) can-
not explain the observed masses and periods of all double white dwarfs.

• The scenario with envelope ejection based on angular-momentum conservation fol-
lowed by ejection of the second envelope with either energy or angular-momentum
balance can explain the observed masses and orbital periodsvery well.
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• Including the age difference as a quality criterion for model solutions produces strong
restrictions to the selection of solutions and makes it muchmore difficult to find
acceptable solutions.

• By taking into account the possibilities that mass is lost either from the donor or from
the accretor, we show that the formation of the close double white dwarfs can be
explained if the mass carries the specific angular momentum of one of the two binary
members.

Acknowledgements We thank P.P. Eggleton for making his binary evolution code avail-
able to us.

5.9 Appendix: Table of model solutions

Nr. Meth. γ1 γ2, ∆τ ∆∆τ τ2 M1i M2i q1i Pi q2m Pm M1f M2f

αce2 Myr % Gyr M⊙ M⊙ d d M⊙ M⊙

WD 0135–052
1 γsαce 2.02 0.87 377 7.7 3.14 1.51 1.46 1.04 504.5 3.12 264.7 0.47 0.42
2 γsαce 0.81 0.61 899 157. 2.17 2.11 1.63 1.29 33.22 3.20 372.5 0.51 0.46
3 γsγs 1.88 1.62 610 74. 1.36 2.55 2.06 1.24 300.5 3.56 110.9 0.58 0.52
4 γsγs 2.00 1.74 523 49. 3.29 1.51 1.44 1.05 503.9 3.08 268.9 0.47 0.42
5 γaαce 1.31 0.87 377 7.7 3.14 1.51 1.46 1.04 504.5 3.12 264.7 0.47 0.42
6 γaαce 1.29 0.86 523 49. 3.29 1.51 1.44 1.05 503.9 3.08 268.9 0.47 0.42
7 γaαce 1.28 0.85 667 91. 3.43 1.51 1.42 1.07 503.3 3.04 272.3 0.47 0.42
8 γaγa 1.15 0.66 524 50. 1.36 2.46 2.06 1.20 429.8 3.56 110.9 0.58 0.52
9 γaγa 1.40 0.99 454 30. 5.37 1.28 1.25 1.03 596.6 2.68 313.7 0.47 0.42

10 γaγa 1.29 0.81 523 49. 3.29 1.51 1.44 1.05 503.9 3.08 268.9 0.47 0.42
11 γaγa 1.31 0.80 377 7.7 3.14 1.51 1.46 1.04 504.5 3.12 264.7 0.47 0.42
12 γdαce 1.36 0.89 261 25. 3.02 1.51 1.48 1.03 505.1 3.16 260.8 0.47 0.42
13 γdγa 1.40 0.89 341 2.6 4.07 1.38 1.35 1.03 553.8 2.89 288.6 0.47 0.42
14 γdγa 1.00 0.98 2067 491. 3.43 2.06 1.42 1.45 155.3 2.72 490.6 0.52 0.47

Table 5.6: Selected model solutions for the double envelope-ejection scenario. This is the
full table with 120 entries of which Table5.5is an excerpt. The first eight columns show the
number of the entry, the double white dwarf that the model is asolution to, the mechanism
used, the two envelope-ejection parameters, the age difference of the two components in the
model (∆τ ) in Myr, the relative difference between the observed and model age difference,

defined as∆∆τ ≡
∣

∣

∣

∆τmod−∆τobs

∆τobs

∣

∣

∣
in %, the time of the formation of the double white dwarf

since the ZAMS (τ2) in Gyr. The last eight columns list binary parameters: the initial
(ZAMS) masses, mass ratio and orbital period, the intermediate mass ratio and period and
the final masses. See Sect.5.6.5for more details.(continued on the next pages)
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Nr. Meth. γ1 γ2, ∆τ ∆∆τ τ2 M1i M2i q1i Pi q2m Pm M1f M2f

αce2 Myr % Gyr M⊙ M⊙ d d M⊙ M⊙

WD 0136+768
15 γsαce 1.48 1.01 449 0.2 3.73 1.44 1.38 1.04 72.27 4.16 265.9 0.33 0.42
16 γsγs 1.53 1.53 300 33. 2.68 1.59 1.53 1.04 64.22 4.60 235.6 0.33 0.42
17 γsγs 1.51 1.61 450 0.0 2.39 1.70 1.59 1.07 106.1 4.36 371.4 0.37 0.46
18 γaαce 0.91 0.99 317 30. 3.90 1.40 1.37 1.03 74.07 4.11 269.8 0.33 0.42
19 γaγa 0.92 0.99 321 29. 5.24 1.28 1.27 1.01 171.1 3.39 532.9 0.37 0.47
20 γaγa 0.90 1.01 460 2.2 5.37 1.28 1.25 1.03 170.9 3.35 540.8 0.37 0.47
21 γdαce 0.93 0.99 317 30. 3.90 1.40 1.37 1.03 74.07 4.11 269.8 0.33 0.42
22 γdαce 0.95 1.00 299 34. 2.68 1.59 1.53 1.04 75.88 4.50 269.5 0.34 0.43
23 γdγa 0.94 0.95 599 33. 4.67 1.35 1.30 1.04 162.5 3.48 517.9 0.37 0.47
24 γdγa 0.93 0.99 574 28. 5.24 1.30 1.27 1.03 168.8 3.39 532.9 0.37 0.47

WD 0957–666
25 γsαce 1.74 1.00 341 4.8 1.16 2.25 2.00 1.12 15.22 6.66 28.52 0.30 0.34
26 γsαce 1.62 1.00 427 31. 1.16 2.34 2.00 1.17 8.110 6.66 28.52 0.30 0.34
27 γsγs 1.67 1.62 328 0.9 7.77 1.14 1.13 1.01 27.78 3.99 56.90 0.28 0.32
28 γaαce 1.02 0.97 321 1.2 1.65 1.90 1.79 1.07 20.15 6.31 27.07 0.28 0.32
29 γaγa 1.04 1.00 309 4.9 9.19 1.09 1.07 1.01 100.2 3.19 195.1 0.34 0.38
30 γdαce 1.00 1.00 427 31. 1.16 2.34 2.00 1.17 8.110 6.66 28.52 0.30 0.34
31 γdαce 1.06 1.00 341 4.8 1.16 2.25 2.00 1.12 15.22 6.66 28.52 0.30 0.34
32 γdαce 1.02 0.71 334 2.8 2.25 1.70 1.61 1.05 13.89 5.70 35.74 0.28 0.32
33 γdγa 1.05 1.00 309 4.9 9.19 1.09 1.07 1.01 100.2 3.19 195.1 0.34 0.38

WD 1101+364
34 γsαce 1.95 0.89 487 126. 1.71 1.98 1.76 1.12 122.8 4.51 48.24 0.39 0.34
35 γsαce 2.08 1.00 208 3.3 2.38 1.63 1.59 1.03 118.7 4.33 39.18 0.37 0.32
36 γsγs 1.81 1.30 312 45. 0.80 2.72 2.28 1.20 44.86 5.82 30.61 0.39 0.34
37 γsγs 2.13 1.61 216 0.5 4.51 1.33 1.32 1.01 183.1 3.47 62.90 0.38 0.33
38 γaαce 1.17 0.96 308 43. 1.57 1.95 1.81 1.08 127.1 4.63 45.28 0.39 0.34
39 γaγa 1.40 0.74 208 3.3 6.12 1.22 1.20 1.01 164.1 3.27 55.68 0.37 0.32
40 γdαce 1.33 1.00 137 36. 3.27 1.46 1.44 1.01 112.2 4.04 35.90 0.36 0.31
41 γdαce 1.26 1.01 256 19. 1.52 1.95 1.83 1.07 127.2 4.69 43.20 0.39 0.34
42 γdαce 1.41 1.00 317 47. 8.09 1.13 1.12 1.01 91.07 3.35 28.96 0.33 0.29
43 γdγa 1.51 0.95 299 39. 9.18 1.09 1.07 1.01 265.0 2.74 96.55 0.39 0.34
44 γdγa 1.39 0.71 227 5.6 4.29 1.35 1.33 1.01 217.1 3.41 76.52 0.39 0.34

PG 1115+116
45 γsαce 1.79 1.00 239 49. 0.50 3.70 2.94 1.26 1693. 3.58 980.4 0.82 0.69
46 γsαce 1.95 1.00 203 27. 0.73 2.90 2.59 1.12 2088. 3.24 1017. 0.80 0.67
47 γsαce 1.90 1.00 165 2.9 0.50 3.38 2.94 1.15 1960. 3.58 980.4 0.82 0.69
48 γsγs 1.79 1.62 198 24. 0.42 3.94 3.13 1.26 2127. 3.56 1240. 0.88 0.74
49 γsγs 1.93 1.62 156 2.4 0.54 3.21 2.87 1.12 2075. 3.49 1020. 0.82 0.69
50 γaαce 1.01 1.00 239 49. 0.50 3.70 2.94 1.26 1693. 3.58 980.4 0.82 0.69
51 γaαce 1.18 1.00 228 42. 0.73 2.94 2.59 1.14 2057. 3.24 1017. 0.80 0.67
52 γaγa 1.39 1.00 150 6.2 1.16 2.31 2.19 1.05 3581. 2.49 1952. 0.88 0.74
53 γaγa 1.00 0.62 230 44. 0.47 3.84 3.02 1.27 1945. 3.52 1162. 0.86 0.72
54 γdαce 0.97 0.93 240 50. 0.32 5.42 3.42 1.58 201.2 3.84 1012. 0.89 0.75
55 γdγa 1.45 1.00 214 34. 1.11 2.40 2.22 1.08 3567. 2.49 2032. 0.89 0.75
56 γdγa 1.00 0.54 235 47. 0.32 5.28 3.42 1.54 190.8 3.89 758.6 0.88 0.74

Table 5.6: Selected model solutions for the double envelope-ejection scenario(continued)
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Nr. Meth. γ1 γ2, ∆τ ∆∆τ τ2 M1i M2i q1i Pi q2m Pm M1f M2f

αce2 Myr % Gyr M⊙ M⊙ d d M⊙ M⊙

WD 1204+450
57 γsαce 2.15 0.83 136 70. 5.37 1.27 1.25 1.01 630.3 2.65 274.3 0.47 0.41
58 γsγs 1.83 1.30 71 11. 0.25 3.94 3.47 1.14 69.23 5.92 56.81 0.59 0.51
59 γaαce 1.45 0.87 138 72. 4.66 1.32 1.30 1.01 606.6 2.76 263.4 0.47 0.41
60 γaγa 0.63 0.65 225 181. 1.58 2.06 1.81 1.14 32.89 3.58 256.2 0.51 0.44
61 γaγa 0.78 0.72 491 514. 1.85 2.06 1.72 1.20 86.06 3.33 312.4 0.52 0.45
62 γdαce 0.72 0.96 225 181. 1.58 2.06 1.81 1.14 32.89 3.58 256.2 0.51 0.44
63 γdαce 1.47 0.87 138 72. 4.66 1.32 1.30 1.01 606.6 2.76 263.4 0.47 0.41
64 γdγa 1.49 0.97 136 70. 5.37 1.27 1.25 1.01 630.3 2.65 274.3 0.47 0.41
65 γdγa 1.10 0.34 74 7.8 0.26 3.89 3.42 1.14 38.82 5.96 51.85 0.57 0.50

WD 1349+144
66 γsαce 1.56 0.98 64 0.0 2.45 1.59 1.57 1.01 120.4 4.31 373.4 0.37 0.46
67 γsαce 1.45 1.01 461 0.0 4.52 1.35 1.32 1.03 105.9 3.77 364.5 0.35 0.44
68 γsγs 1.51 1.63 426 0.0 2.68 1.61 1.53 1.05 115.0 4.20 385.7 0.37 0.46
69 γsγs 1.56 1.60 64 0.0 2.45 1.59 1.57 1.01 120.4 4.31 373.4 0.37 0.46
70 γaαce 0.96 0.98 64 0.0 2.45 1.59 1.57 1.01 120.4 4.31 373.4 0.37 0.46
71 γaαce 0.91 1.01 229 0.0 4.52 1.33 1.32 1.01 107.4 3.77 364.5 0.35 0.44
72 γaγa 0.91 1.00 143 0.0 5.37 1.27 1.25 1.01 173.1 3.35 540.8 0.37 0.47
73 γaγa 0.90 1.00 460 0.0 5.37 1.28 1.25 1.03 170.9 3.35 540.8 0.37 0.47
74 γdαce 0.97 0.98 64 0.0 2.45 1.59 1.57 1.01 120.4 4.31 373.4 0.37 0.46
75 γdαce 0.92 0.99 147 0.0 4.67 1.32 1.30 1.01 108.7 3.72 369.7 0.35 0.44
76 γdγa 0.93 0.94 368 0.0 4.67 1.33 1.30 1.03 164.7 3.48 517.9 0.37 0.47
77 γdγa 0.92 1.00 460 0.0 5.37 1.28 1.25 1.03 170.9 3.35 540.8 0.37 0.47
78 γdγa 0.92 1.00 143 0.0 5.37 1.27 1.25 1.01 173.1 3.35 540.8 0.37 0.47

HE 1414–0848
79 γsαce 1.52 0.71 188 5.9 0.43 3.51 3.09 1.14 70.81 5.99 358.3 0.52 0.66
80 γsγs 1.46 1.79 119 40. 0.90 2.52 2.40 1.05 467.4 4.09 1720. 0.59 0.75
81 γsγs 1.52 1.45 188 5.9 0.43 3.51 3.09 1.14 70.81 5.99 358.3 0.52 0.66
82 γaαce 0.83 0.71 188 5.9 0.43 3.51 3.09 1.14 70.81 5.99 358.3 0.52 0.66
83 γaγa 0.91 0.99 177 12. 1.33 2.19 2.08 1.05 712.2 3.51 2170. 0.59 0.76
84 γdαce 0.95 0.71 188 5.9 0.43 3.51 3.09 1.14 70.81 5.99 358.3 0.52 0.66
85 γdγa 0.95 0.99 219 9.5 1.33 2.22 2.08 1.07 701.3 3.51 2170. 0.59 0.76
86 γdγa 0.96 0.98 170 15. 1.28 2.22 2.11 1.05 702.1 3.55 2134. 0.59 0.76

WD 1704+481a
87 γsαce 1.67 0.60 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36
88 γsαce 1.88 0.62 15 175. 1.17 2.19 2.00 1.09 93.52 3.79 66.89 0.53 0.37
89 γsαce 2.05 0.43 7 135. 1.36 2.03 1.90 1.07 252.8 3.51 96.02 0.54 0.38
90 γsγs 1.67 1.52 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36
91 γsγs 1.88 1.50 15 175. 1.17 2.19 2.00 1.09 93.52 3.79 66.89 0.53 0.37
92 γaαce 1.01 0.60 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36
93 γaαce 1.13 0.62 15 175. 1.17 2.19 2.00 1.09 93.52 3.79 66.89 0.53 0.37
94 γaγa 1.01 0.55 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36
95 γdαce 1.11 0.60 52 360. 1.41 2.06 1.88 1.09 40.37 3.66 65.66 0.51 0.36
96 γdαce 1.24 0.62 15 175. 1.17 2.19 2.00 1.09 93.52 3.79 66.89 0.53 0.37
97 γdαce 1.37 0.34 2 110. 1.48 1.93 1.86 1.04 294.5 3.33 120.2 0.56 0.39
98 γdγa 1.37 0.63 2 110. 1.48 1.93 1.86 1.04 294.5 3.33 120.2 0.56 0.39

Table 5.6: Selected model solutions for the double envelope-ejection scenario(continued)
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Nr. Meth. γ1 γ2, ∆τ ∆∆τ τ2 M1i M2i q1i Pi q2m Pm M1f M2f

αce2 Myr % Gyr M⊙ M⊙ d d M⊙ M⊙

WD 1704+481b
99 γsαce 1.65 0.53 292 1360. 0.73 2.83 2.59 1.09 47.21 6.37 161.8 0.41 0.58
100 γsαce 1.74 0.76 285 1326. 0.75 2.76 2.55 1.08 49.12 6.40 107.3 0.40 0.57
101 γsγs 1.64 1.87 182 810. 2.23 1.68 1.65 1.01 212.1 4.08 478.6 0.41 0.58
102 γaαce 0.96 1.05 465 2223. 1.00 2.62 2.31 1.14 44.02 6.10 63.28 0.38 0.54
103 γaγa 0.98 0.99 199 895. 2.59 1.59 1.57 1.01 256.0 3.81 664.0 0.41 0.59
104 γaγa 0.94 0.97 181 805. 2.23 1.68 1.65 1.01 284.0 3.88 892.6 0.43 0.61
105 γdαce 1.03 0.15 182 810. 2.23 1.68 1.65 1.01 212.1 4.08 478.6 0.41 0.58
106 γdαce 1.00 0.76 332 1562. 0.75 2.87 2.55 1.12 33.29 6.40 107.3 0.40 0.57
107 γdγa 0.95 0.97 181 805. 2.23 1.68 1.65 1.01 284.0 3.88 892.6 0.43 0.61
108 γdγa 1.00 0.99 199 895. 2.59 1.59 1.57 1.01 256.0 3.81 664.0 0.41 0.59

HE 2209–1444
109 γsαce 1.69 0.54 517 3.3 1.45 2.37 1.95 1.21 148.5 3.55 168.2 0.55 0.55
110 γsαce 1.56 0.88 552 10. 0.75 3.79 2.55 1.49 87.01 4.48 113.8 0.57 0.57
111 γsγs 1.62 1.64 262 48. 1.20 2.37 2.16 1.09 150.0 3.93 304.6 0.55 0.55
112 γsγs 1.63 1.73 510 2.1 1.24 2.59 2.14 1.21 403.6 3.62 596.1 0.59 0.59
113 γaαce 1.19 0.90 42 92. 1.20 2.19 2.16 1.01 121.7 4.08 97.10 0.53 0.53
114 γaαce 0.98 0.54 517 3.3 1.45 2.37 1.95 1.21 148.5 3.55 168.2 0.55 0.55
115 γaγa 1.00 1.00 612 22. 1.65 2.28 1.86 1.23 968.0 2.95 1061. 0.63 0.63
116 γaγa 1.08 1.00 499 0.2 1.87 2.06 1.76 1.17 809.5 2.94 777.6 0.60 0.60
117 γdαce 1.06 0.53 347 31. 1.35 2.31 2.03 1.14 80.61 3.76 169.5 0.54 0.54
118 γdαce 1.12 0.88 559 12. 0.75 3.84 2.55 1.50 71.51 4.48 113.8 0.57 0.57
119 γdγa 1.15 0.86 744 49. 1.35 2.76 2.03 1.36 556.8 3.27 881.7 0.62 0.62
120 γdγa 1.00 0.81 731 46. 1.48 2.55 1.93 1.32 135.6 3.38 437.5 0.57 0.57

Table 5.6: Selected model solutions for the double envelope-ejection scenario(continued)



Hoofdstuk 6

Vorming en evolutie van compacte
dubbelsterren

In dit proefschrift wordt onderzoek naar een bepaald type dubbelsterren beschreven. In
hoofdstuk6.1geef ik een korte inleiding over het ontstaan en de evolutie van sterren in het
algemeen en in hoofdstuk6.2 beschrijf ik wat er verandert wanneer twee van deze sterren
samen een dubbelster vormen. Ik zeg kort iets over de zogenaamdebolvormige sterhopen,
in de centra waarvan sommige van de dubbelsterren die we hebben onderzocht voorkomen.
We hebben dan voldoende kennis van zaken om in hoofdstuk6.3 in wat meer detail in te
gaan op de wetenschappelijke inhoud van dit proefschrift.

6.1 Ontstaan en evolutie van enkele sterren

Sterren worden gevormd uit gaswolken die zich voornamelijkin de spiraalarmen van ster-
renstelsels bevinden. Een bekend voorbeeld is de Orionnevel, waarin sterren met leeftijden
tussen de 500 000 en 2 miljoen jaar (0.01–0.04% van de leeftijd van de Zon1) worden ge-
vonden en waar de stervorming nog steeds aan de gang is. Als zo’n gaswolk samentrekt
ontstaan lokale verdichtingen. In zo’n verdichting stijgtde temperatuur, totdat de tempera-
tuur en druk in het centrum voldoende hoog zijn om kernfusie te laten plaatsvinden. Water-
stofkernen worden gefuseerd tot heliumkernen en hierbij komt genoeg energie vrij om de
het gas te laten stralen. De verdichting is nu in evenwicht entrekt niet langer samen: er is
een ster gevormd. Sterren waarin de energieproductie wordtverzorgd door waterstoffusie
in de kern wordenhoofdreekssterrengenoemd.

De Zon is een voorbeeld van een hoofdreeksster en heeft na 4,5miljard jaar waterstof-
fusie ongeveer de helft van haar totale voorraad waterstof verbruikt. De Zon heeft een
massa die ruim 330 000 keer zo groot is als die van de Aarde, eendiameter van bijna 110
aarddiameters, een lichtkracht van bijna4 × 1026 Watt2 en een oppervlaktetemperatuur van
zo’n 5500◦C. Als we deze grootheden voor andere sterren beschrijven, maken we meestal
gebruik van deze zonne-eenheden: een zonsmassa (M⊙), een zonsstraal (R⊙) en een zons-

1De leeftijd van het zonnestelsel is aan de hand van meteorieten bepaald op ongeveer 4,5 miljard jaar.
24 × 1026 = 400 000 000 000 000 000 000 000 000, een 4 gevolgd door 26 nullen.



128 Hoofdstuk 6

M t R L To Tc ρc Aantal
(M⊙) (Mjr) (R⊙) (L⊙) (◦C) (miljn ◦C) (g cm−3) (t.o.v. 1M⊙)

0,5 52 600 0,50 0,05 4138 9,8 141 7,07
0,8 11 600 0,79 0,38 5380 13,4 156 2,34
1,0 4900 1,01 1,05 6080 15,9 157 1,00
1,5 1660 1,95 6,75 6930 20,9 102 0,131
2,0 582 2,23 20,4 8500 22,5 69,8 0,0232
2,5 405 2,80 57,8 9800 24,1 48,7 0,009 59
3,0 246 3,09 120 11 100 25,2 37,8 0,003 80
5,0 70,6 4,19 895 15 700 28,6 18,7 0,000 327

10,0 12,7 5,74 8590 23 500 32,8 8,53 0,000011 6
20,0 5,18 8,78 67 900 31 700 37,0 4,40 0,000 000 93
50,0 2,41 15,9 527 000 39 300 41,4 2,34 0,000 000 05

Tabel 6.1: Enkele eigenschappen van stermodellen met de samenstelling van de Zon, halver-
wege de hoofdreeks: de massaM , de leeftijdt in miljoenen jaren, de straalR, de lichtkracht
L, de temperatuur aan het oppervlak en in het centrum (To in ◦C enTc in miljoenen◦C), de
centrale dichtheidρc en het aantal sterren met deze massa voor iedere ster met 1M⊙. De
leeftijd van de 0,5M⊙-ster is bijna 4 keer de leeftijd van het heelal.

lichtkracht (L⊙). Andere hoofdreekssterren lijken vaak op de Zon, maar hun eigenschappen
schalen met de massa van die ster (zie Tabel6.1). Zo zijn lichtere hoofdreekssterren iets
kleiner, een stuk koeler en veel lichtzwakker dan de Zon, terwijl zwaardere sterren op de
hoofdreeks juist iets groter, een stuk heter en veel lichtkrachtiger zijn. Zo heeft een ster
van 10 zonsmassa’s (10 M⊙) op de hoofdreeks een straal van6 R⊙, een lichtkracht van cir-
ca10 000 L⊙ en een oppervlaktetemperatuur van zo’n 23 000◦C. Doordat zo’n zware ster
een ongeveer 10 keer grotere waterstofvoorraad heeft, maareen 10 000 keer hoger verbruik,
duurt de hoofdreeksfase dus slechts een duizendste van die van de Zon. Hoofdreekssterren
van0, 8 M⊙ of minder hebben meer dan de leeftijd van het heelal nodig om te evolueren en
deze zien we dus altijd ‘jong’. Zware sterren zijn zeldzaam (voor iedere 10M⊙-ster zijn er
bijna 100 000 ‘zonnen’), lichte sterren komen zeer veel voor(zie Tabel6.1).

De hoofdreeks is de langstdurende fase uit het actieve levenvan een ster (ongeveer 80%),
zodat de meeste sterren die we waarnemen hoofdreekssterrenzijn. Zolang waterstoffusie
plaatsvindt in de kern is de ster in evenwicht en veranderen zijn lichtkracht en oppervlak-
tetemperatuur maar weinig. Als het waterstof opraakt verandert de ster echter drastisch.
De kern bestaat nu helemaal uit helium en doordat er geen fusie meer plaatsvindt gaat de-
ze heliumkern samentrekken. Hierdoor nemen druk en temperatuur in de kern toe, zodat
net buiten de kern een schil ontstaat waarin de druk en temperatuur hoog genoeg worden
voor de zogenaamdeschilverbranding3 van waterstof. In dit proces wordt waterstof uit de
mantel van de ster omgezet in helium en toegevoegd aan de kern. Hierbij wordt de kern

3Het begripverbrandingwordt vaak gebruikt voorkernfusie.
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steeds zwaarder, compacter en heter. Door de hoge temperatuur in het centrum van zo’n
ster dijt de ster uit. De mantel koelt hierdoor af en wordt convectief, dat wil zeggen dat
het energietransport plaatsvindt door middel van opstijgende hete gasbellen. Als de mantel
helemaal convectief is, zwelt de ster nog verder op. Het oppervlak van de reuzenster ligt
zo ver van het hete centrum dat het koeler is dan voorheen en daardoor rood van kleur. Dit
type ster wordt eenrode reusgenoemd. Sterren die lichter zijn dan ongeveer 2,4M⊙ kun-
nen een straal tot 150R⊙ hebben op de rode-reuzentak, zwaardere sterren zwellen minder
op (zie bijvoorbeeld Figuur5.1 op pagina86). Als de Zon een rode reus wordt kan zij een
lichtkracht bereiken die 1000 keer haar huidige lichtkracht bedraagt. Er wordt aangenomen
dat deze reuzensterren door de hoge lichtkracht en de lage zwaartekracht aan het opper-
vlak veel materie verliezen in een zogenaamdesterrenwind, al is het moeilijk om uit de
waarnemingen of theorie te bepalen hoeveel dit precies is.

Voor alle sterren die zwaarder zijn dan 0,8M⊙ worden aan het einde van de rode-
reuzenfase de centrale druk en temperatuur hoog genoeg om heliumfusie mogelijk te maken.
Hierbij wordt helium gefuseerd tot koolstof en zuurstof. Bij sterren met lage massa (minder
dan 2,4M⊙) is de druk in de kern onafhankelijk van de temperatuur. Wanneer heliumfu-
sie begint neemt de temperatuur toe, maar de kern expandeertin eerste instantie nog niet
doordat de druk gelijk blijft. Hierdoor versnelt de heliumfusie totdat de ontkoppeling tus-
sen temperatuur en druk opgeheven wordt, de kern alsnog expandeert en de fusiesnelheid
omlaag gaat. Deze explosieve heliumverbranding wordt deheliumflitsgenoemd. Bij sterren
met een massa groter dan 2,4M⊙ komt de heliumfusie geleidelijk op gang.

De ster is nu aanbeland op dehorizontale tak. In de kern vindt heliumfusie plaats, om
de kern bevindt zich nog steeds de waterstoffusieschil. Alshet helium in de kern opraakt,
gaat de koolstof-zuurstofkern op zijn beurt krimpen en de buitenlagen van de ster gaan
weer uitzetten, net als aan het einde van de hoofdreeks. Sterren zwaarder dan ongeveer
10M⊙ kunnen vele van deze kernfusiestadia doorlopen. Bij ieder volgend stadium worden
zwaardere elementen geproduceerd en ieder volgend stadiumverloopt sneller. Zo heeft
een ster van 10M⊙ een hoofdreeksfase van ongeveer 20 miljoen jaar, de heliumfusie duurt
ongeveer 2 miljoen jaar, koolstoffusie zo’n 1000 jaar, zuurstoffusie 2 jaar en siliciumfusie
3 dagen. Uit silicium worden uiteindelijk ijzer en nikkel aangemaakt en door middel van
kernfusie kan uit deze elementen geen energie meer worden gehaald. Dit leidt tenslotte tot
het instorten van de ijzer-nikkelkern van de ster tot eenneutronensterof misschien een zwart
gat. Een neutronenster is een bal met een massa van ongeveer 1.4M⊙ en een diameter van
slechts 20 km, een zwart gat is iets zwaarder en kleiner. Bij de implosie van de kern komt
voldoende energie vrij om de buitenlagen van de ster de ruimte in te blazen. Zo’n explosie
van een zware ster staat bekend als eensupernova(zie Figuur6.1a).

In dit proefschrift bekijken we de evolutie van sterren die te licht zijn om een supernova-
explosie te ondergaan, al komen er ook neutronensterren voor, waarvan we dus weten dat
ze in het verleden door een supernova moeten zijn gevormd. Als een ster lichter dan on-
geveer 10M⊙ het helium in zijn kern verbrand heeft, trekt de koolstof-zuurstofkern samen
en wordt heter. Om deze kern ontstaat nu een nieuwe schil, waar heliumfusie plaatsvindt.
Daarbuiten bevindt zich nog steeds de waterstoffusieschil(zie Figuur6.2). Zo’n ster bevindt
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Figuur 6.1: De overblijfselen van sterren.Links (a): De Krabnevel is het restant van een
supernova, de explosie van een zware ster (Foto: European Southern Observatory).Rechts
(b): De Ringnevel is een planetaire nevel, het eindstadium vaneen lichte ster. In het centrum
is de centrale ster nog zichtbaar (Foto: The Hubble HeritageTeam (AURA/STScI/NASA)).

zich op deasymptotische reuzentak(asymptotic giant branch, AGB) en wordt een AGB-ster
genoemd. Doordat de twee verbrandingsschillen hun brandstof van de buitenkant halen en
het fusieproduct aan de binnenkant aan de kern toevoegen, ‘eten’ de schillen zich als het wa-
re een weg naar buiten. Intussen ontwikkelt de ster zogenaamde ‘Mira-pulsaties’, waarbij
de ster uitzet en samentrekt met een periode van ongeveer eenjaar. Als de ster expandeert
koelt het oppervlak sterk af. Hierdoor kan zich stof vormen,wat ervoor zorgt dat de ster zijn
buitenste laag snel verliest. Dit gaat zo door totdat de kernvan de ster overblijft, omgeven
door de ijle nevel die gevormd is uit de vroegere buitenlagenvan de ster.

De sterkern bestaat uit koolstof en zuurstof, of — voor de zwaardere sterren — uit
zuurstof en neon. De vroegere buitenlagen van zo’n ster worden nog een tijd aangestraald
door het energierijke licht van de centrale ster en zijn zichtbaar als eenplanetaire nevel
(Figuur6.1b) om de kern van de ster. In de voormalige sterkern vindt nu geen fusie meer
plaats. De ‘ster’ straalt nog door zijn hoge temperatuur, maar koelt hierdoor af en wordt dus
steeds zwakker. Zo’n overblijfsel van een ster wordt eenwitte dwerggenoemd. Het over-
blijfsel van de Zon zal vermoedelijk een koolstof-zuurstofwitte dwerg zijn met een massa
van ongeveer 0,6M⊙, al is dit getal onzeker door de onzekerheid in het massaverlies door
de sterrenwind tijdens de reuzenfase en de AGB-fase. Een witte dwerg van 0,6M⊙ heeft
een diameter van ongeveer 0,015R⊙, zo’n 10 000 km. Zwaardere witte dwergen hebben
een sterkere zwaartekracht en zijn door de grotere compressie kleiner.

Figuur7.1 op pagina143 toont een kleur-magnitude-diagram waarin de ‘kleur’B−V
en visuele magnitudeV van 20 546 nabije sterren is uitgezet. Van rechtsonder naar links-
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Figuur 6.2: Schematische doorsnede van de kern van een AGB-ster, van binnen naar buiten:
de inerte koolstof-zuurstofkern (C,O), de heliumfusieschil, de inerte heliumlaag (He), de
waterstoffusieschil en de waterstofmantel (H).

boven is de hoofdreeks (MS). GB is de reuzentak, HB de horizontale tak en WDs zijn witte
dwergen. De lijnen zijn evolutiesporen van stermodellen voor 0,5, 1,0, 2,5, 5 en 10M⊙. De
gestreepte lijn toont het einde van de evolutie van de 1M⊙-ster, die uiteindelijk een witte
dwerg wordt. De lichtkrachtL en temperatuurTeff geven een indicatie, maar gelden strikt
genomen voor de hoofdreeks.

6.2 Evolutie van dubbelsterren

Van de circa 5000 sterren die men met het blote oog kan waarnemen blijken zo’n 2000
eigenlijk dubbelsterren of meervoudige sterren te zijn. Men denkt dat globaal geldt dat
ongeveer 60% van alle sterren zich in een dubbelster bevindt. De ster die het dichtst bij
de Zon staat, Proxima Centauri, maakt deel uit van een ‘driedubbelster’, als begeleider
van het veel nauwere paarα Centauri, dat met het blote oog kan worden waargenomen.
Sterren in een dubbelster zijn gebonden door elkaars zwaartekracht en draaien in banen
om elkaar heen. Wanneer de sterren ver van elkaar staan, zoals in het geval van Proxima
Centauri, merken zij weinig van hun begeleiders en zo’n sterzal zijn evolutie effectief als
enkele ster doorlopen. Zulke dubbelsterren hebben baanperiodes van 10 jaar of meer. Voor
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Figuur 6.3: Driedimensionale weergave van het potentiaalveld van een dubbelster met een
massaverhouding van 2, in een stelsel dat coroteert met de dubbelster. De druppelvormige
gebieden in de equipotentiaalplot op de bodem van de figuur zijn de Roche-lobben van de
twee sterren (dikke lijnen). De puntenL1, L2 en L3 zijn de punten van Lagrange waar
de krachten elkaar opheffen. Via het zadelpuntL1 kan gas van de ene ster naar de andere
vloeien als deze zijn Roche-lob vult.

dubbelsterren met een baanperiode van minder dan 10 jaar geldt dat de sterren tijdens de
reuzenfase of op de AGB ongeveer zo groot kunnen worden als deafstand tussen de twee
sterren. Het duidelijk dat de twee sterren elkaar dan sterk zullen beı̈nvloeden en dat de
situatie in zo’n geval totaal anders is dan het geval van een enkele ster.

Om te bedenken wat er in een nauwe dubbelster zoal kan gebeuren, stellen we ons een
deeltje voor dat zich in de buurt van een van de twee sterren bevindt. Het deeltje wordt
dan aangetrokken door de zwaartekracht van de ster en zal naar de ster toe vallen. Als het
deeltje zich van de eerste ster af beweegt, in de richting vande tweede ster, dan wordt de
zwaartekracht van de eerste ster steeds zwakker en die van detweede ster steeds sterker.
Vanaf een bepaald punt zal het deeltje dus eerder naar de tweede ster vallen dan naar de
eerste ster. In werkelijkheid speelt hierbij niet alleen dezwaartekracht van de twee sterren
een rol, maar ook de centrifugaalkracht die wordt geı̈ntroduceerd door de baanbeweging in
de dubbelster. Het deeltje beweegt dus in het potentiaalveld van deze drie krachten en dit is
weergegeven in Figuur6.3.

DeRoche-lobbendie in de Figuur worden getoond vormen het gebied waar een ster bin-
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nen moet blijven om zijn gas aan zich gebonden te houden. In Tabel6.1zagen we dat een
zwaardere ster sneller evolueert. Van de twee sterren in eendubbelster zal de zwaarste ster
dus als eerste van de hoofdreeks afkomen en gaan opzwellen tot een rode reus. Wanneer
de ster groter wordt dan zijn Roche-lob, kan het gas van deze ster, via het eerste punt van
Lagrange (L1 in Figuur6.3), naar de tweede ster vloeien. Er vindt dus materie-overdracht
plaats van de zwaardere ster naar zijn begeleider. Aangezien de massa de belangrijkste
factor is die de eigenschappen van een ster bepaalt, kan de evolutie van zo’n ster dras-
tisch veranderen. Wanneer de donorster zijn waterstofmantel al voor de AGB verliest door
materie-overdracht naar zijn begeleider, ontstaat een witte dwerg die veel lichter is dan de
witte dwerg die zou zijn gevormd wanneer de ster zich niet in een dubbelster zou bevinden.
Als de materie-overdracht voor of op de rode-reuzentak gebeurt, ontstaat bovendien een he-
lium witte dwerg, in plaats van een koolstof-zuurstof wittedwerg. Daarnaast verandert de
baanperiode van een dubbelster aanzienlijk bij materie-overdracht, doordat met de materie
impulsmoment4 wordt overgedragen.

Wanneer de begeleider van de donorster voldoende groot is ende materie-overdracht-
snelheid niet te hoog, dan zal de begeleider het overgedragen gas kunnen invangen. Als
deze ster een hoofdreeksster is, dan kan hij behoorlijk aan massa winnen en zich gaan ge-
dragen als een zwaardere ster. Materie-overdracht kan vervolgens in de omgekeerde richting
plaatsvinden, nadat de begeleider zelf ook van de hoofdreeks af geëvolueerd is. Echter, in
het geval dat de begeleider een compacte ster is, zoals een neutronenster, dan draagt de ma-
terie te veel impulsmoment om de ster direct te raken en er vormt zich eenaccretieschijfom
het compacte object (zie afbeeldingena enb op de voorplaat). Het gas in de accretieschijf
wordt versneld door de sterke zwaartekracht van het compacte object, wordt verhit en zendt
grote hoeveelheden röntgenstraling uit. We zien deze dubbelsterren alsröntgendubbelster-
ren (X-ray binaries). Als de materie-overdrachtsnelheid hooggenoeg is kan een deel van de
materie zelfs de dubbelster verlaten.

Wanneer een reuzenster zijn Roche-lob vult is de materie-overdrachtsnelheid vaak erg
hoog. De ster heeft dan een diepe convectieve mantel en wanneer zo’n ster een beetje gas
verliest doordat hij zijn Roche-lob overvult, dan zet de ster uit en overvult zijn Roche-
lob nog meer. Hierdoor neemt de materie-overdrachtsnelheid toe, de ster zet verder uit,
enzovoorts. De materie-overdracht is in dat geval instabiel en de begeleider van zo’n ster
is in het algemeen niet in staat zoveel gas in zo korte tijd in te vangen. Men denkt dat de
mantel van de donor zo snel uitzet, dat deze de begeleider ookomhult en er sprake is van
eengemeenschappelijke mantel(common envelope). De kern van de donor en de begeleider
draaien nu rond binnen deze mantel. Door de wrijving van het gas spiraliseren de twee
sterren naar elkaar toe (spiral-in) en de baanperiode neemt dus (sterk) af (zie Figuur6.4).

Een andere methode waarmee dubbelsterren kunnen worden herkend is door de snel-

4Met het begripimpulsmomentwordt in de natuurkunde de hoeveelheid draaiing aangegeven. Impulsmoment
kan net als energie niet verloren gaan, maar wel worden overgedragen. Een voorwerp heeft meer impulsmoment
wanneer het sneller draait, zwaarder is of een grotere draairadius heeft. Een bekend voorbeeld van impulsmoment-
behoud is de ijsdanser die al draaiende zijn armen intrekt; de draairadius wordt kleiner en dus moet de draaisnelheid
groter worden. Als de draaisnelheid niet groter zou worden,zou er impulsmoment verloren zijn gegaan. Als de
ijsdanser spontaan sneller zou gaan draaien, zou er impulsmoment worden geproduceerd.
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Figuur 6.4: Wanneer een reuzenster zijn Roche-lob vult kan de materie-overdracht instabiel
zijn. Er ontwikkelt zich dan een gemeenschappelijke mantelwaarbinnen de twee sterren
naar elkaar spiraliseren, zodat een zeer nauwe dubbelster kan ontstaan (zie de hoofdtekst en
afbeeldingenc end op de voorplaat).

heid van sterren te meten. Wanneer twee sterren om elkaar heen draaien, beweegt over het
algemeen immers de ene ster naar ons toe terwijl de andere vanons af beweegt en omge-
keerd. Dit gedrag herhaalt zich met een periode die gelijk isaan de baanperiode van de
dubbelster. Door middel van het Doppler-effect5 kan deze periodieke verandering worden
gevonden en de verhouding in radiële snelheden van de twee sterren is een maat voor hun
massaverhouding. Een voorbeeld van zo’n waarneming en de radiële snelheden die hieruit
gemeten worden is te vinden in Figuur1.3op pagina11.

In de buurt van de Zon is de gemiddelde afstand tussen sterrenvrij groot; in de orde
van eenparsec6. De kans dat een (dubbel)ster door een andere ster wordt beı̈nvloed is
daardoor zeer gering en het is aannemelijk dat (dubbel)sterren een geı̈soleerd bestaan lei-
den. Dit is echter anders in gebieden met een hoge sterdichtheid, zoals in het centrum van
een sterrenstelsel of in eenbolvormige sterhoop(zie Figuur6.5). In het centrum van een
bolvormige sterhoop, of bolhoop, kan de sterdichtheid een miljoen keer hoger zijn dan in
de buurt van de Zon en hierdoor is de kans op ‘botsingen’ tussen sterren een biljoen keer
groter. Zo’n botsing kan een fysieke botsing zijn tussen twee sterren, maar bijvoorbeeld
ook een ‘ontmoeting’ tussen een ster en een dubbelster of twee dubbelsterren. Bij zo’n
ontmoeting kan uitwisseling plaatsvinden tussen de sterren van de dubbelster en de ont-
moetende sterren, zodat een totaal andere dubbelster kan ontstaan. Het blijkt dat het aantal
heldere röntgendubbelsterren in bolhopen naar verhouding veel groter is dan elders in ons

5Het Doppler-effect is ook verantwoordelijk voor de verschuiving in toon van de sirene van een ambulance bij
naderen of verwijderen.

6Een parsec is 3,26 lichtjaar, ongeveer 30 biljoen kilometer(30 000 000 000 000 km).
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Figuur 6.5: De bolvormige sterhoop M15 in het sterrenbeeld Pegasus is net niet zichtbaar
met het blote oog. De bolhoop herbergt twee heldere röntgenbronnen. In 2005 werd ontdekt
dat een van deze twee bronnen een ultracompacte röntgendubbelster is met een baanperiode
van slechts 23 minuten. (Foto: NOAO/AURA/NSF).

Melkwegstelsel en men vermoedt dan ook dat dit te maken heeftmet de hoge sterdichtheid
in de bolhopen, bijvoorbeeld doordat deze dubbelsterren zijn ontstaan uit botsingen tussen
(sub)reuzensterren en neutronensterren.

6.3 Dit proefschrift

In dit proefschrift worden twee typen compacte dubbelsterren onderzocht. In hoofdstuk2 en
3 onderzoeken we het ontstaan van de heldere röntgendubbelsterren in bolvormige sterho-
pen. We laten zien dat een van de drie scenario’s die zijn bedacht om het ontstaan van deze
dubbelsterren te verklaren te weinig of zelfs helemaal geenheldere röntgendubbelsterren
oplevert binnen de leeftijd van het heelal. In hoofdstuk4 wordt een heldere röntgendubbel-
ster in ons Melkwegstelsel onderzocht. Aan de hand van waargenomen uitbarstingen op de
neutronenster en een hoog gehalte van neon ten opzichte van zuurstof tonen we aan dat de
donorster waarschijnlijk het overblijfsel is van een helium witte dwerg die mogelijk door
een inspiralisering in een nauwe baan om de neutronenster isgekomen. In hoofdstuk5 on-
derzoeken we de vorming van dubbele witte dwergen, die twee fases van materie-overdracht
moeten hebben doorlopen. We concluderen dat onze modellen de waargenomen massa’s en
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baanperiodes goed verklaren, maar dat het moeilijk is om hetleeftijdsverschil tussen de
componenten ook te verklaren.

6.3.1 Ontstaan en evolutie van compacte röntgendubbelsterren

In de bolvormige sterhopen die bij ons Melkwegstelsel horenworden 13 heldere röntgen-
bronnen waargenomen. Dit zijn röntgendubbelsterren en van deze 13 dubbelsterren hebben
er zeker 3, waarschijnlijk 5 en mogelijk 6 – 8 een ultrakorte baanperiode van minder dan
ongeveer 40 minuten (zie Tabel1.1op pagina5). Dit zijn er in verhouding veel meer dan in
ons Melkwegstelsel en de verklaring wordt gezocht in het feit dat de sterdichtheid veel hoger
is in de bolhopen dan in het vlak van de Melkweg. In (de centra van) bolhopen vinden veel
meer botsingen tussen sterren plaats dan in het galactisch vlak, en een van de theorieën luidt
dan ook dat de ultracompacte dubbelsterren ontstaan uit de botsing van een (sub)reuzenster
met een neutronenster. In zo’n geval ontstaat een witte dwerg die materie kan overdragen
naar de neutronenster en tijdens de materie-overdracht wordt de baanperiode altijd groter.

Een andere theorie zegt dat een ster van ongeveer 1M⊙, die zijn Roche-lob vult aan het
einde van de hoofdreeks en zijn materie overdraagt naar een neutronenster, ook kan leiden
tot een ultracompacte röntgendubbelster. Normaal gesproken wordt de baanperiode in zo’n
geval langer, maar wanneer de ster een ster magnetisch veld heeft en een sterke sterrenwind,
dan kan dit leiden tot een kortere periode. Het gas dat de sterin de wind verlaat wordt in
dit geval namelijk meegesleurd door de magnetische veldlijnen, die ervoor zorgen dat de
wind tot op grote afstand nog coroteert met de ster. Het effect is dan vergelijkbaar met een
ijsdanser die zijn armen langzaam uitstrekt; hij gaat langzamer roteren, in dit geval doordat
er impulsmoment van de ster wordt afgevoerd door de wind. Ditis slechts een zwak effect,
maar het kan miljarden jaren aanhouden. De ster gaat hierdoor langzamer om zijn as draaien
en dit proces wordtmagnetische remming(magnetic braking) genoemd.

De rotatie van een ster die materie overdraagt in een dubbelster is door getijdenkrachten
gekoppeld aan de baanbeweging van de dubbelster (net als in het geval van de Maan die
altijd met dezelfde zijde naar de Aarde gekeerd is). Het impulsmoment dat wordt verloren
door magnetische remming wordt hierdoor effectief uit de baan onttrokken, waardoor de
dubbelster nauwer wordt en de baanperiode dus korter! De periode bereikt bij een bepaalde
waarde een minimum en neemt vervolgens weer toe. Andere onderzoekers hebben aange-
toond dat op deze manier ultracompacte dubbelsterren kunnen worden gevormd waarvan de
minimumperiode rond de 5 minuten ligt. Dit scenario wordt ook wel magnetische vangst
genoemd. Het voordeel van deze theorie is dat het een waargenomen dubbelster in een bol-
hoop zou kunnen verklaren, waarvan de baanperiode 11 minuten is en lijkt af te nemen. Ons
onderzoek toont echter aan dat om een baanperiode van 5 minuten te bereiken meer tijd no-
dig is dan het heelal oud is. Een periode van 11 minuten lukt net, maar wij vinden dat er zeer
specifieke beginomstandigheden vereist zijn om zo’n periode te kunnen bereiken. Dit bete-
kent dat de kans zeer gering is dat deze sterren in de natuur daadwerkelijk gevormd worden,
en dat we dit ontstaansscenario dus waarschijnlijk kunnen verwerpen (hoofdstuk2).

In hoofdstuk3 zetten we het onderzoek naar het scenario van de magnetischevangst
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voort. We gebruiken nu een modernere wet om de magnetische remming te beschrijven,
die empirisch is bepaald uit waarnemingen van roterende sterren in de sterhopen Pleiaden
en Hyaden. Dit resulteert in een zwakkere afremming, waardoor de kortste minimumperi-
oden verschuiven van ongeveer 11 minuten naar 70 minuten. Hiermee is het scenario van
de magnetische vangst definitief van de baan. Dit betekent dat het afnemen van de baan-
periode van de 11-minuten dubbelster op een andere manier verklaard moet worden. Het
is inderdaad mogelijk dat de dubbelster versneld wordt in het zwaartekrachtsveld van de
bolhoop waarin hij zich bevindt en dat hierdoor een schijnbare periode-afname veroorzaakt
wordt. Daarnaast werd enkele maanden na het uitbrengen van dit artikel een artikel van een
andere onderzoeksgroep gepubliceerd, waarin de onderzoekers laten zien dat ze met behulp
van de eerder genoemde botsingen alle waargenomen röntgenbronnen in bolhopen kunnen
verklaren.

De heldere röntgendubbelsterren in bolhopen kunnen dus worden verklaard door bot-
singen. Zo’n botsing is het meest waarschijnlijk wanneer een ster een (sub)reus is en in
dat geval zal de begeleider van de neutronenster zeer waarschijnlijk een helium witte dwerg
zijn. In het galactisch vlak is de sterdichtheid te gering voor zulke botsingen. Men vermoedt
dat de heldere röntgendubbelsterren die daar worden waargenomen ontstaan zijn uit een in-
spiralisering van een ster met een neutronenster. In zo’n geval kan een helium witte dwerg,
een koolstof-zuurstof witte dwerg of zelfs een zuurstof-neon witte dwerg ontstaan. Na de
inspiralisering wordt impulsmoment verloren door gravitatiestraling, totdat de baanperiode
zo kort is dat de witte dwerg zijn Roche-lob vult en materie gaat overdragen. Vanaf dat
moment gaat de dubbelster röntgenstraling uitzenden en wordt de baanperiode weer langer.

Zo’n röntgendubbelster in het galactisch vlak is 2S 0918–549. Doordat dit systeem in
optisch licht relatief zwak is en in röntgenstraling erg helder, bestaat het vermoeden dat
het hier om een ultracompacte dubbelster gaat. Uit het röntgenspectrum van de dubbelster
volgt dat de verhouding neon/zuurstof hoger is dan in bijvoorbeeld de Zon. Hieruit trokken
onderzoekers de conclusie dat het hier om een zuurstof-neonwitte dwerg zou gaan. In
hoofdstuk4 wordt echter de waarneming van een lange uitbarsting op de neutronenster van
2S 0918–549 besproken. Zulke lange röntgenuitbarstingenkunnen alleen worden verklaard
wanneer helium en eventueel waterstof op het oppervlak van de neutronenster aanwezig is
en dit kan weer alleen het geval zijn wanneer de begeleider helium (en eventueel waterstof)
overdraagt naar de neutronenster. In een witte dwerg komt geen waterstof voor en helium is
(nog) niet waargenomen. De vraag die we proberen te beantwoorden in hoofdstuk4 is dus:
wat is de donorster van 2S 0918–549?

Een zuurstof-neon witte dwerg lijkt uitgesloten, ten eerste omdat deze erg zeldzaam
zijn (en er nog drie van deze dubbelsterren zijn waargenomen) en ten tweede omdat deze
witte dwergen zwaarder zijn dan 1M⊙ en om die reden waarschijnlijk uit elkaar worden ge-
scheurd wanneer ze materie zouden overdragen naar een neutronenster. Dan blijven dus een
helium witte dwerg en een koolstof-zuurstof (CO) witte dwerg over. We hebben modellen
berekend voor sterren van verschillende massa’s die eerst een heliumkern en later een CO-
kern ontwikkelen. Hierin tonen we aan dat tijdens de waterstoffusie, die moet leiden tot de
vorming van de heliumkern, zuurstof wordt afgebroken, terwijl er met neon niets gebeurt.
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Om die reden is de neon/zuurstof-verhouding in een heliumkern of een helium witte dwerg
dus hoog. Tijdens heliumfusie wordt juist veel zuurstof aangemaakt. In een CO-kern is de
verhouding neon/zuurstof dus juist erg laag (zie Tabel4.4 op pagina76). We concluderen
dat de donorster in 2S 0918–549 dus waarschijnlijk een helium witte dwerg is, gebaseerd
op de lange röntgenuitbarsting en de hoge neon/zuurstof-verhouding. We stellen daarom in
hoofdstuk4 voor dat wanneer de materie-overdrachtsnelheid in 2S 0918–549 niet al te hoog
is, er een grote hoeveelheid helium kan worden opgespaard voordat deze ontbrandt. Als de
heliumlaag dan ontbrandt gebeurt dit in een lange uitbarsting, zoals is waargenomen. Wat
we niet kunnen verklaren is dat er geen helium wordt waargenomen in het spectrum. Er is
echter ook niet onomstotelijk bewezen dat er geen helium aanwezig is en dus zou een toe-
komstige waarneming van helium in 2S 0918–549 het bestaan van een heliumdonor kunnen
bevestigen.

6.3.2 De vorming van dubbele witte dwergen

Wanneer een reuzenster zijn Roche-lob vult is de materie-overdracht vaak instabiel en kan
een gemeenschappelijke mantel ontstaan, gevolgd door een inspiralisering van de twee ster-
ren binnen de mantel (zie Figuur6.4). Bij de inspiralisering komt baanenergie vrij uit de
dubbelster. Om te schatten hoeveel de baanperiode korter wordt tijdens dit proces neemt
men vaak aan dat er voldoende baanenergie vrij moet komen om de mantel te ontbinden en
de ruimte in te sturen. De bindingsenergie van de stermantel, die we kunnen uitrekenen met
behulp van een sterevolutiecode, geeft dus een idee van de hoeveelheid energie die moet
worden vrijgemaakt uit de baan van de dubbelster en hieruit kunnen we de verandering in
baanperiode tijdens de inspiralisering berekenen. Dit is de methode van ‘energiebalans’.

In hoofdstuk5 gebruiken we deze methode om te evolutie van dubbele witte dwergen
te reconstrueren. Aangezien deze witte dwergen vrijwel allemaal te licht zijn om niet in
een dubbelster te zijn gevormd, en aangezien de dubbelsterbanen slechts enkele zonsstralen
groot zijn (zie Tabel5.1op pagina83), veel minder groot dus dan de reuzenster die zo’n wit-
te dwerg produceert, weten we dat al deze witte dwergen gevormd moeten zijn na materie-
overdracht in de dubbelster en dat de baanperiode tijdens delaatste materie-overdrachtsfase
behoorlijk moet zijn geslonken. We proberen een aantal scenario’s, zoals stabiele materie-
overdracht waarbij de begeleider al het gas invangt en we laten zien dat dit proces niet alle
waargenomen dubbelsterren kan verklaren. Ook de inspiralisering met energiebalans blijkt
niet voldoende te zijn om alle dubbelsterren te produceren.We gebruiken daarom de ver-
onderstelling van andere onderzoekers dat in een inspiralisering niet de energie, maar het
impulsmoment behouden is. Het blijkt dat een variant op dezemethode inderdaad de waar-
genomen massa’s en baanperiodes van de dubbele witte dwergen kan verklaren, zonder dat
er impulsmoment verloren gaat of geproduceerd wordt. We vinden ook dat het reproduceren
van het gemeten leeftijdsverschil van de twee componenten in de dubbelster een stuk las-
tiger is. Een voorbeeld van een scenario waarin een dubbele hoofdreeksster via twee fases
van een inspiralisering evolueert tot een dubbele witte dwerg is te vinden in Figuur1.4 op
pagina13.



Kapitel 7

Formation und Evolution von
kompakten Doppelsternen

In dieser Dissertation werden Untersuchungen einer bestimmten Klasse von Doppelsternen
beschrieben. In Kapitel7.1gebe ich eine kurze Einführung über das Entstehen und die Evo-
lution von Sternen im Allgemeinen und in Kapitel7.2 beschreibe ich die Veränderungen,
die sich ergeben, wenn zwei solche Sterne einen Doppelsternbilden. Ich beschreibe kurz
dieKugelsternhaufen, in deren Zentren manche der untersuchten Doppelsterne vorkommen.
Wir haben dann genügend Hintergrundwissen um uns in Kapitel 7.3den wissenschaftlichen
Inhalt der Dissertation im Detail anzuschauen.

7.1 Entstehung und Evolution von einzelnen Sternen

Sterne entstehen aus Gaswolken, die sich hauptsächlich inden Spiralarmen von Galaxi-
en befinden. Ein bekanntes Beispiel ist der Orionnebel, in dem Sterne im Alter zwischen
500 000 und 2 Millionen Jahren (0.01–0.04% des Alters der Sonne1) gefunden werden und
wo Sternentwicklung immer noch stattfindet. Wenn sich eine solche Wolke zusammenzieht
entstehen Verdichtungen. Die Temperatur in einer solchen Verdichtung steigt, bis die Tem-
peratur und der Druck hoch genug sind um Kernfusion zu ermöglichen. Wasserstoffkerne
verschmelzen zu Heliumkernen und bei diesem Prozess kommt genügend Energie frei um
das Gas leuchten zu lassen. Die Verdichtung ist jetzt im Gleichgewichtszustand und zieht
sich nicht länger zusammen: Ein Stern ist entstanden. Sterne, die ihre Energie durch Was-
serstofffusion im Zentrum produzieren, werdenHauptreihensternegenannt.

Die Sonne ist ein Hauptreihenstern und hat nach 4,5 Milliarden Jahren von Wasserstoff-
fusion etwa die Hälfte ihres Vorrates aufgebraucht. Ihre Masse ist mehr als 330 000 mal so
gross wie die der Erde, ihr Durchmesser misst fast 110 Erddurchmesser, ihre Leuchtkraft ist
fast4 × 1026 Watt2 und ihre Oberflächentemperatur beträgt circa 5500◦C. Andere Sterne
beschreiben wir meistens mit Sonneneinheiten: der Sonnenmasse (M⊙), dem Sonnenradius
(R⊙) und der Sonnenleuchtkraft (L⊙). Hauptreihensterne sind der Sonne oft ähnlich, aber

1Das Alter des Sonnensystems ist durch Meteoritendatierungauf circa 4,5 Milliarden Jahre bestimmt.
24 × 1026 = 400 000 000 000 000 000 000 000 000, eine 4 gefolgt von 26 Nullen.
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die genauen Eigenschaften hängen von der Sternmasse ab. Leichtere Sterne sind ein bis-
schen kleiner, etwas kühler und viel leuchtkraftschwächer als die Sonne, während schwe-
rere Sterne ein bisschen grösser, etwas heisser und viel heller sind. Ein Stern von 10 Son-
nenmassen (10 M⊙) auf der Hauptreihe hat einen Radius von6 R⊙, eine Leuchtkraft von
10 000 L⊙ und eine Oberflächentemperatur von 23 500◦C. Weil ein solcher Stern einen et-
wa 10 mal grösseren Wasserstoffvorrat hat, aber auch einen10 000 mal höheren Verbrauch,
dauert seine Hauptreihenphase nur ein Tausendstel von der der Sonne. Sterne von0, 8 M⊙

oder weniger brauchen mehr Zeit für die Hauptreihenphase,als das Universum alt ist und
wir sehen sie deswegen immer jung. Schwere Sterne sind selten (auf jeden 10M⊙-Stern
gibt es fast 100 000 ‘Sonnen’), leichte Sterne kommen sehr h¨aufig vor. Tabelle6.1auf Sei-
te128zeigt von einigen Sternmodellen mit der Zusammenstellung der Sonne die MasseM
in M⊙, das Altert in Millionen Jahren, den RadiusR in R⊙, die LeuchtkraftL in L⊙,
die OberflächentemperaturTo in ◦C, die ZentraltemperaturTc in Millionen ◦C, die zentrale
Dichteρc in g cm−3 und die Anzahl von Sternen mit dieser Masse für jeden Stern mit 1 M⊙.

Die Hauptreihe ist die längste Phase im aktiven Leben einesSterns (etwa 80%) und
deswegen sind die meisten Sterne, die wir beobachten können, Hauptreihensterne. Solange
Wasserstofffusion im Kern stattfindet, ist der Stern im Gleichgewicht und die Leuchtkraft
und Oberflächentemperatur ändern sich nur wenig. Wenn derWasserstoff im Kern aufge-
braucht ist, ändert sich der Stern dagegen drastisch. Der Kern besteht jetzt völlig aus Helium,
und da keine Fusion mehr stattfindet, zieht sich der Heliumkern zusammen. Dabei steigen
Druck und Temperatur im Zentrum und demzufolge entwickelt sich um den Kern eine Scha-
le, in der Temperatur und Druck hoch genug sind für dasSchalenbrennen3 von Wasserstoff.
Beim Wasserstoffschalenbrennen wird Wasserstoff aus dem Mantel zu Helium fusioniert
und zum Kern zugefügt. Dabei wird der Kern immer schwerer, dichter und heisser. Wegen
der hohen Temperatur des Sternzentrums dehnt der Stern sichaus. Der Mantel wird da-
durch konvektiv, das heisst, dass der Energietransport durch heisse aufsteigende Gasklum-
pen stattfindet. Wenn der Mantel ganz konvektiv ist, dehnt der Stern sich noch weiter aus.
Die Oberfläche des Sterns befindet sich jetzt so weit weg vom heissen Kern, dass sie kühler
ist als vorher und deswegen rot erscheint. Diese Sterne werdenRote Riesengenannt. Sterne
leichter als circa 2,4M⊙ können Radien bis 150R⊙ am Rote-Riesen-Ast haben, schwere-
re Sterne dehnen sich weniger aus (siehe Abbildung5.1auf Seite86). Wenn die Sonne ein
Roter Riese wird, kann ihre Leuchtkraft das hundertfache ihrer heutigen Leuchtkraft betra-
gen. Wahrscheinlich verlieren diese Riesensterne durch ihre grosse Leuchtkraft und geringe
Oberflächengravitation viel Materie durch einenSternwind, obwohl schwer festzustellen ist,
wie gross dieser Verlust genau ist.

Für alle Sterne schwerer als 0,8M⊙ werden am Ende der Rote-Riesen-Phase der zen-
trale Druck und die Temperatur hoch genug um Heliumfusion zuermöglichen. Dabei wird
Helium zu Kohlenstoff und Sauerstoff fusioniert. Für Sterne mit geringer Masse (weniger
als 2,4M⊙) ist der Druck im Zentrum unabhängig von der Temperatur. Wenn die Helium-
fusion beginnt, steigt die Temperatur, aber der Kern expandiert anfänglich noch nicht, da
der Druck gleich bleibt. Demzufolge beschleunigt die Heliumfusion, bis die Entkoppelung

3Der Begriff Brennenwird oft für Kernfusionverwendet.
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zwischen Temperatur und Druck aufgehoben wird. Der Kern expandiert nachträglich und
die Fusionsgeschwindigkeit sinkt. Dieses explosive Heliumbrennen wirdHeliumblitzge-
nannt. Für Sterne mit einer Masse höher als 2,4M⊙ findet die Heliumfusion von Anfang an
gemächlich statt.

Der Stern ist jetzt auf demhorizontalen Astangelangt. Im Kern findet Heliumfusion
statt, um den Kern herum befindet sich immer noch die Wasserstofffusionsschale. Wenn das
Helium im Kern aufgebraucht ist, zieht sich der Kohlenstoff-Sauerstoff-Kernzusammen und
der äussere Mantel expandiert wieder, so wie am Ende der Hauptreihenphase. Sterne schwe-
rer als ungefähr 10M⊙ können viele von diesen Kernfusionsstadien durchlaufen.Bei jeder
folgenden Phase werden schwerere Elemente produziert und jede nächste Phase verläuft
schneller. Für einen Stern von 10M⊙ dauert die Heliumfusion im Kern etwa 20 Millionen
Jahre, die Heliumfusion 2 Millionen Jahre, die Kohlenstofffusion etwa 1000 Jahre, die Sau-
erstofffusion 2 Jahre und die Siliziumfusion 3 Tage. Aus Silizium werden schliesslich Eisen
und Nickel produziert und aus diesen Elementen kann durch Kernfusion keine weitere Ener-
gie gewonnen werden. Dadurch kollabiert der Eisen-Nickelkern des Sterns zu einemNeu-
tronensternoder einem schwarzen Loch. Ein Neutronenstern ist ein Kugelmit einer Masse
von circa 1.4M⊙ und einem Durchmesser von etwa 20 km, ein schwarzes Loch ist etwas
schwerer und kleiner. Bei der Implosion des Sternkerns wirdgenügend Energie frei um den
äusseren Mantel ins Weltall wegzuschleudern. Eine solcheExplosion eines schweren Sterns
wird eineSupernovagenannt. Abbildung6.1a auf Seite130zeigt den Krebsnebel, den Rest
einer Supernova, die im Jahre 1054 sichtbar war.

In dieser Dissertation untersuchen wir die Entwicklung vonSternen, die zu leicht sind
um eine Supernova-Explosion zu verursachen. Es kommen allerdings auch Neutronenster-
ne vor, von denen wir wissen, dass sie aus Supernova-Explosionen entstanden sein müssen.
Wenn ein Stern, der leichter als etwa 10M⊙ ist, sein Helium im Kern aufgebraucht hat, zieht
sich der Kohlenstoff-Sauerstoff-Kern zusammen und wird heisser. Um diesen Kern herum
entsteht eine neue Schicht, in der Helium fusioniert, ausserhalb gibt es immer noch die Was-
serstofffusionsschale. Ein solcher Stern liegt auf demasymptotischen Riesenast(asymptotic
giant branch, AGB) und wird AGB-Stern genannt. Abbildung6.2 auf Seite131zeigt sche-
matisch den Aufbau eines AGB-Sterns, von innen nach aussen:den Kohlenstoff-Sauerstoff-
Kern (C,O), die Heliumfusionsschale, die inerte Heliumschicht (He), die Wasserstofffusi-
onsschale und den Wasserstoffmantel (H). Weil beide Fusionsschalen ihren Brennstoff von
ausserhalb der Schale entnehmen und das Fusionsprodukt aufder Innenseite deponieren,
‘essen’ die Schalen sich einen Weg hinaus durch den Mantel. Währenddessen entwickelt
der Stern ‘Mira-Pulse’, wobei er sich mit einer Periode von etwa einem Jahr ausdehnt und
zusammenzieht. Bei jedem Puls kühlt die Oberfläche stark ab, es bildet sich Staub und da-
durch verliert der Stern schnell seine äussere Schicht. Schliesslich bleibt nur der Kern übrig,
umgeben von einem dünnen Nebel, der aus dem Sternmantel gebildet wurde.

Der Sternkern ist aus Kohlenstoff und Sauerstoff aufgebaut, oder — bei schwereren
Sternen — aus Sauerstoff und Neon. Der frühere Sternmantelwird noch von dem ener-
getischen Licht des Zentralsterns angestrahlt und ist als ein Planetarischer Nebelsichtbar.
Abbildung6.1b auf Seite130zeigt den Ringnebel, einen Planetarischen Nebel, dessen Zen-
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tralstern noch sichtbar ist. In dem ehemaligen Sternkern findet jetzt keine Kernfusion mehr
statt. Der ‘Stern’ strahlt noch wegen seiner hohen Temperatur, aber kühlt dabei ab und wird
immer schwächer. Ein solcher Rest von einem leichten Sternwird ein Weisser Zwergge-
nannt. Von der Sonne wird vermutlich ein Kohlenstoff-Sauerstoff Weisser Zwerg mit einer
Masse von 0,6M⊙ übrig bleiben. Diese Zahl ist allerdings wegen der Unsicherheit im Mas-
senverlust durch den Sternwind während der Rote-Riesen-Phase und der AGB-Phase nicht
genau bekannt. Ein Weisser Zwerg von 0,6M⊙ hat einen Durchmesser von etwa 0,015R⊙,
circa 10 000 km. Schwerere Weisse Zwerge haben eine grössere Gravitation und sind durch
die stärkere Kompression kleiner. Abbildung7.1zeigt die verschiedenen Evolutionsstadien
in einem Farben-Helligkeits-Diagramm.

7.2 Evolution von Doppelsternen

Von den circa 5000 Sternen, die man mit dem blossen Auge sehenkann, sind etwa 2000
eigentlich Doppelsterne oder Sterne in einem Mehrfachsystem. Man nimmt an, dass sich
etwa 60% von allen Sternen in einem Doppelsternsystem befinden. Der nächste Stern nach
der Sonne, Proxima Centauri, ist Mitglied von einem ‘Drei-Doppelsternsystem’ und ist der
Begleiter von dem viel engeren Paarα Centauri, das mit dem blossen Auge sichtbar ist.
Sterne in einem Doppelsternsystem sind durch die Schwerkraft gebunden und umkreisen
einander. Wenn die zwei Sterne weit entfernt von einander stehen, so wie bei Proxima Cen-
tauri, merken sie wenig von ihrem Begleiter und evoluieren praktisch wie einzelne Sterne.
Solche Doppelsterne haben Bahnperioden von 10 Jahren oder mehr. Für Doppelsterne mit
Perioden von weniger als etwa 10 Jahren gilt, dass die Sterneauf dem Rote-Riesen-Ast oder
AGB ungefähr so gross werden wie der Abstand zwischen den zwei Sternen. In diesem Fall
können beide Sterne einander natürlich stark beeinflussen und die Situation ist ganz anders
als im Fall eines einzelnen Sterns.

Um zu überlegen was in einem engen Doppelsternsystem geschehen kann, stellen wir
uns ein Teilchen vor, das sich in der Nähe von einem der zwei Sterne befindet. Das Teilchen
wird von der Gravitation dieses Sterns angezogen und beginnt auf ihn zu stürzen. Wenn sich
das Teilchen vom ersten Stern entfernt und sich dem zweiten Stern nähert, wird die Schwer-
kraft vom ersten Stern immer schwächer und die vom zweiten Stern immer stärker. Ab
einem bestimmten Punkt wird das Teilchen stärker vom zweiten Stern angezogen als vom
ersten. In Wirklichkeit spielt nicht nur die Gravitation, sondern auch die Zentrifugalkraft
durch die Rotation des Doppelsternsystems eine Rolle. Das Teilchen bewegt sich im Poten-
tialfeld von diesen drei Kräften. Eine dreidimensionale Wiedergabe eines solchen Potenti-
alfelds für einen Doppelstern mit Massenverhältnis 1:2 wird in Abbildung6.3auf Seite132
dargestellt. Die tropfenförmigen Gebiete in derÄquipotentialfigur am Boden der Abbildung
(fette Linien) sind dieRoche-Lobesder Sterne. Die PunkteL1, L2 undL3 sind die Punk-
te von Lagrange, in denen die Kräfte einander aufheben. Wenn ein Stern sein Roche-Lobe
füllt, kann Gas durch den SattelpunktL1 vom einen zum anderen Stern strömen.

Das Roche-Lobe des Sterns ist das Gebiet, innerhalb dessen der Stern beschränkt blei-
ben soll um sein Gas an sich gebunden zu lassen. Wir haben abervorher schon gesehen,
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Abbildung 7.1: Ein Farben-Helligkeits-Diagramm zeigt die‘Farbe’B−V und visuelle Ma-
gnitudeV von 20 546 nahen Sternen. Von rechts unten bis links oben verläuft die Hauptrei-
he (MS). GB ist der Riesenast, HB der horizontale Ast und WDs sind Weisse Zwerge. Die
Linien sind Evolutionsspuren von Sternmodellen von 0,5, 1,0, 2,5, 5 und 10M⊙. Die ge-
strichelte Linie zeigt das Ende des 1M⊙-Modelles, wo der Stern schliesslich ein Weisser
Zwerg wird. Es wird ein Hinweis auf die LeuchtkraftL und TemperaturTeff gegeben, die
Zahlenwerte gelten aber genau genommen für die Hauptreihe.
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dass evoluierende Sterne aufschwellen und dass sich schwerere Sterne schneller entwickeln.
Von den zwei Sternen in einem Doppelsternsystem wird also der schwerere als erster von
der Hauptreihe evoluieren und zu einem Roten Riesen werden.Wenn der Stern grösser wird
als sein Roche-Lobe, kann das Gas von diesem Stern über den SattelpunktL1 zum zweiten
Stern strömen. Es findet dann Massenübertragung vom schwereren Stern zu seinem Be-
gleiter statt. Da hauptsächlich die Masse des Sterns seineEvolution bestimmt, ändert sich
die Evolution von einem solchen Stern drastisch. Wenn der Donorstern seinen Wasserstoff-
mantel schon vor dem AGB durch Massenübertragung verliert, entsteht ein Weisser Zwerg,
der viel leichter ist als ein resultierender Weisser Zwerg eines Einzelsterns mit der selben
ursprünglichen Masse. Wenn Massenübertragung vor oder während der Rote-Riesen-Phase
stattfindet, entsteht ausserdem ein Weisser Zwerg aus Helium statt aus Kohlenstoff und Sau-
erstoff. Zusätzlich ändert sich die Bahnperiode während der Massenübertragung, da mit der
Materie auch Drehimpuls4 übertragen wird.

Falls der Begleiter des Donorsterns gross genug ist und die Geschwindigkeit der Mas-
senübertragung nicht zu hoch, dann kann der Begleiter das ¨ubertragene Gas einfangen. Ist
dieser Stern ein Hauptreihenstern, dann nimmt seine Masse signifikant zu und der Stern
wird sich wie ein schwererer Stern verhalten. Massenübertragung kann daraufhin in die an-
dere Richtung stattfinden, wenn der Begleiter selbst auch von der Hauptreihe evoluiert. Falls
der Begleiter aber ein kompakter Stern ist, wie etwa ein Neutronenstern, dann hat die Mate-
rie zu viel Drehimpuls um den Begleiter direkt zu treffen. Umdas kompakte Objekt herum
entsteht in dem Fall eineAkkretionsscheibe(siehe vorderer Buchumschlag, Abbildungena
undb). Das Gas in der Akkretionsscheibe wird durch die starke Gravitation des kompakten
Objekts beschleunigt, wird erhitzt und sendet viel Röntgenstrahlung aus. Wir sehen solche
Doppelsterne alsRöntgendoppelsterne(X-ray binaries). Wenn die Massenübertragungsge-
schwindigkeit hoch genug ist, kann ein Teil der Materie den Doppelstern verlassen.

Füllt ein Riesenstern sein Roche-Lobe, dann ist die Massenübertragungsgeschwindig-
keit oft sehr gross. Der Stern hat dann einen tiefen konvektiven Mantel. Verliert ein solcher
Stern etwas Gas, weil er sein Roche-Lobe überfüllt, dann dehnt sich der Stern aus und
überfüllt sein Roche-Lobe noch mehr. Dadurch steigt die Massenübertragungsgeschwin-
digkeit, der Stern dehnt weiter aus, und so weiter. Die Massenübertragung ist in diesem Fall
instabil und der Begleiter eines solchen Sterns kann im Allgemeinen nicht soviel Gas in so
kurzer Zeit einfangen. Der Mantel des Donorsterns dehnt so schnell aus, dass er auch den
Begleiter umhüllt und so entsteht eingemeinsamer Mantel(common envelope). Der Kern
des Donors und der Begleiter umkreisen einander jetzt innerhalb dieses Mantels. Durch
den Widerstand vom Gas spiralisieren beide Sterne aufeinander zu (spiral-in) und wird die
Bahnperiode (viel) kürzer. Abbildung6.4 auf Seite134zeigt eine Skizze dieses Prozesses
der Einspiralisierung, siehe auch Abbildungenc undd auf dem vorderen Buchumschlag.

4Mit dem Begriff Drehimpulswird in der Physik die Quantität der Rotation ausgedrückt. Drehimpuls geht
wie Energie nicht verloren, kann aber übertragen werden. Ein Körper hat mehr Drehimpuls, wenn er schneller
rotiert, schwerer ist oder einen grösseren Drehradius hat. Ein bekanntes Beispiel von Drehimpulserhaltung ist der
Eistänzer, der seine Arme einzieht; der Drehradius wird kleiner und deswegen muss er schneller rotieren. Wenn die
Rotationsgeschwindigkeit nicht grösser würde, ginge Drehimpuls verloren. Wenn der Eistänzer spontan schneller
rotierte, würde Drehimpuls produziert.
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Die Messung der Geschwindigkeit von Sternen ist eine andereMethode um Doppel-
sterne zu erkennen. Wenn zwei Sterne einander umkreisen, bewegt nämlich ein Stern auf
uns zu, während der andere von uns weg bewegt, und umgekehrt. Dies wiederholt sich mit
einer Periode, die gleich der Bahnperiode des Doppelsternsist. Durch den Doppler-Effekt5

kann diese periodischëAnderung gefunden werden und das Verhältnis der Radialgeschwin-
digkeiten der beiden Sterne ist ein Mass für das Massenverhältnis. Ein Beispiel für eine
solche Beobachtung und die Radialgeschwindigkeiten, die daraus abgeleitet wurden, wird
in Abbildung1.3auf Seite11gezeigt.

In der Nähe der Sonne ist die Durchschnittdistanz zwischenden Sternen mit ungefähr
einemParsec6 relativ gross. Die Chance, dass ein Doppelstern von einem anderen Stern be-
einflusst wird, ist dadurch sehr gering und man kann annehmen, dass Doppelsterne isoliert
evoluieren. Das ist aber anders in Gebieten mit viel höheren Sterndichten, so wie im Zen-
trum einer Galaxie oder in einemKugelsternhaufen(siehe Abbildung6.5 auf Seite135).
Im Zentrum eines Kugelsternhaufens kann die Sterndichte eine Million mal dichter sein
als in der Nähe der Sonne und dadurch ist die Chance auf ‘Kollisionen’ zwischen Sternen
eine Billion mal grösser. Eine sogenannte Kollision kann eine direkte Kollision zwischen
zwei Sternen sein, aber auch eine ‘Begegnung’ von einem Stern mit einem Doppelstern
oder zwischen zwei Doppelsternen. Bei einer solchen Begegnung können Sterne des Dop-
pelsternsystems mit den begegnenden Sternen ausgetauschtwerden und es kann ein ganz
anderer Doppelstern entstehen. Man beobachtet, dass die Zahl von hellen Röntgendoppel-
sternen in Kugelsternhaufen im Verhältnis grösser ist als sonstwo in unserer Milchstrasse.
Dies ist vermutlich die Folge der höheren Sterndichte in Kugelsternhaufen, da ein solcher
Doppelstern beispielsweise durch eine direkte Kollision zwischen einem Riesenstern und
einem Neutronenstern gebildet wird.

7.3 Diese Dissertation

In dieser Dissertation werden zwei Typen von kompakten Doppelsternen erforscht. In den
Kapiteln2 und3 untersuchen wir das Entstehen von hellen Röntgendoppelsternen in Kugel-
sternhaufen. Wir zeigen, dass eines der drei Szenarios, dieerstellt wurden um das Entste-
hen dieser Doppelsterne zu erklären, zu wenig oder gar keine Röntgendoppelsterne inner-
halb des Alters des Weltalls produziert. In Kapitel4 wird ein heller Röntgendoppelstern in
unserer Milchstrasse untersucht. Aufgrund von beobachteten Röntgenausbrüchen auf dem
Neutronenstern und einem hohen Neon/Sauerstoff-Verhältnis zeigen wir, dass der Donor-
stern wahrscheinlich der Rest eines Helium Weissen Zwergesist, der möglicherweise durch
eine Einspiralisierung in eine enge Bahn um den Neutronenstern gekommen ist. In Ka-
pitel5 untersuchen wir die Formation von doppelten Weissen Zwergen, die zwei Phasen
von Massenübertragung durchlaufen haben. Wir konkludieren, dass unsere Modelle die be-
obachteten Massen und Bahnperioden gut erklären, aber dass es schwieriger ist auch den

5Der Doppler-Effekt ist auch die Ursache, dass sich der Ton der Sirene verschiebt, wenn sich eine Ambulanz
nähert oder entfernt.

6Ein Parsec sind 3,26 Lichtjahre, etwa 30 Billionen Kilometer (30 000 000 000 000 km).
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Altersunterschied zwischen den Sternen zu erklären.

7.3.1 Formation und Evolution von kompakten R̈ontgendoppelsternen

In den Kugelsternhaufen unserer Galaxie sind 13 helle Röntgenquellen beobachtet wor-
den. Diese sind Röntgendoppelsterne und von den 13 Doppelsternen haben sicher 3, wahr-
scheinlich 5 und möglicherweise 6 bis 8 eine ultrakurze Bahnperiode von weniger als circa
40 Minuten (siehe Tabelle1.1 auf Seite5). Das ist im Verhältnis mehr als in unserer Gala-
xie und die Erklärung liegt vermutlich in der viel höherenSterndichte in Kugelsternhaufen.
In einem Kugelsternhaufen finden mehr Kollisionen zwischenSternen statt als in der ga-
laktischen Ebene und eine der Theorien sagt, dass ein solcher ultrakompakter Doppelstern
durch die Kollision von einem (Unter-)Riesenstern mit einem Neutronenstern entsteht. In
diesem Fall entsteht ein Weisser Zwerg, der sein Gas zum Neutronenstern übertragen kann.
Während einer solchen Massenübertragung nimmt die Bahnperiode immer zu.

Laut einer anderen Theorie kann ein Stern von ungefähr 1M⊙, der sein Roche-Lobe am
Ende der Hauptreihe füllt und sein Gas zu einem Neutronenstern überträgt, auch zu einem
ultrakompakten Röntgendoppelstern werden. Normalerweise wird die Bahnperiode in so
einem Fall länger, aber falls der Stern ein starkes Magnetfeld und einen starken Sternwind
hat, kann das zu kürzeren Perioden führen. Das Gas, das denStern im Sternwind verlässt,
wird von den magnetischen Feldlinien mitgeführt und bis auf grosse Distanz zu Korotation
mit dem Stern gezwungen. Dieser Effekt ist ähnlich wie bei einem Eistänzer, der seine Arme
ausstreckt; er wird langsamer rotieren. Im Fall des Sterns ist der Grund, dass Drehimpuls
durch den Wind vom Stern abtransportiert wird. Dieser Effekt ist nur schwach, er kann
aber Milliarden Jahre lang anhalten. Der Stern wird dadurchlangsamer rotieren und dieser
Prozess wirdmagnetisches Bremsen(magnetic braking) genannt.

Die Rotation eines Sterns, der Masse in einem Doppelsternsystem überträgt, ist durch
Gezeitenkräfte an die Bahnbewegung vom Doppelstern gekoppelt (wie der Mond, der im-
mer die gleiche Seite zur Erde gekehrt hat). Der Drehimpuls,der durch das magnetische
Bremsen verloren geht, wird dadurch effektiv aus der Bahn entnommen, wodurch die Bahn
enger wird und die Periode kürzer. Die Bahnperiode erreicht bei einem bestimmten Wert ein
Minimum und nimmt daraufhin wieder zu. Andere Forscher haben gezeigt, dass auf diese
Weise Doppelsterne mit Minimumperioden von 5 Minuten gebildet werden können. Dieses
Szenario wirdmagnetischer Fanggenannt. Der Vorteil dieser Theorie ist, dass sie ein beob-
achtetes Doppelsternsystem erklären könnte, von dem dieBahnperiode 11 Minuten beträgt
und abzunehmen scheint. Unsere Untersuchungen dagegen zeigen, dass ein Doppelstern
länger braucht, als das Weltall alt ist, um eine Bahnperiode von 5 Minuten zu erreichen.
Eine Minimumperiode von 11 Minuten ist gerade noch möglich, aber eine sehr spezifische
Anfangssituation ist für eine so kurze Periode notwendig.Folglich ist die Chance sehr ge-
ring, dass diese Sterne in der Natur tatsächlich gebildet werden und daher können wir dieses
Entstehungsszenario wahrscheinlich ausschliessen (Kapitel2).

In Kapitel3 führen wir die Untersuchungen des Szenarios des magnetischen Fangs fort.
Wir verwenden jetzt ein neueres Gesetz um das magnetische Bremsen zu beschreiben,
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das aus Beobachtungen von rotierenden Sternen empirisch bestimmt wurde. Die Folge ist
ein schwächeres magnetisches Bremsen und eine Verschiebung der kürzesten Minimum-
perioden von circa 11 Minuten bis zu 70 Minuten. Damit ist dasSzenario vom magneti-
schen Bremsen nicht mehr zutreffend. Das heisst aber, dass das Abnehmen der 11 Minuten-
Periode auf eine andere Weise erklärt werden soll. Es ist tatsächlich möglich, dass der Dop-
pelstern im Gravitationsfeld des Kugelsternhaufens, in dem er sich befindet, beschleunigt
wird. Ausserdem wurde vor einigen Monaten ein Artikel von anderen Forschern publiziert,
in dem gezeigt wird, dass man mit Sternkollisionen alle beobachteten Röntgenquellen in
Kugelsternhaufen erklären kann.

Die hellen Röntgendoppelsterne in Kugelsternhaufen können also durch Kollisionen er-
klärt werden. Eine solche Kollision ist mit einem (Unter-)Riesen am wahrscheinlichsten und
in diesem Fall wird der Begleiter des Neutronensterns ein Weisser Zwerg sein. In der galak-
tischen Ebene ist die Sterndichte zu gering für Sternkollisionen. Man vermutet, dass die hel-
len Röntgendoppelsterne hier durch eine Einspiralisierung in einem Doppelsternsystem mit
einem Neutronenstern entstehen. So kann ein Weisser Zwerg aus Helium, Kohlenstoff und
Sauerstoff, oder sogar Sauerstoff und Neon entstehen. Nachder Einspiralisierung verliert
der Doppelstern durch Gravitationsstrahlung Drehimpuls,bis die Bahnperiode so kurz ist,
dass der Weisse Zwerg sein Roche-Lobe füllt und Materie zumNeutronenstern überträgt.
Ab diesem Moment sendet der Doppelstern Röntgenstrahlungaus und die Bahnperiode wird
wieder länger.

Ein solcher Röntgendoppelstern in der galaktischen Ebeneist 2S 0918–549. Weil dieses
System im optischen relativ schwach ist und im Röntgenbereich sehr hell, vermutet man,
dass es sich um einen ultrakompakten Doppelstern handelt. Aus dem Röntgenspektrum des
Doppelsterns schliesst man auf ein Verhältnis Neon/Sauerstoff, das höher ist als zum Bei-
spiel in der Sonne. Daraus wird gefolgert, dass es sich um einen Weissen Zwerg aus Sauer-
stoff und Neon handelt. In Kapitel4 wird die Beobachtung eines langen Ausbruchs auf dem
Neutronenstern von 2S 0918–549 beschrieben. Solche lange Röntgenausbrüche können nur
erklärt werden, wenn sich Wasserstoff und Helium auf dem Neutronenstern befinden. Das
kann nur der Fall sein, wenn sein Begleiter Wasserstoff und Helium zum Neutronenstern
überträgt. In einem Weissen Zwerg kommt kein Wasserstoffvor und Helium wurde (noch)
nicht beobachtet. Die Frage, die wir in Kapitel4 beantworten wollen, ist also: Was ist der
Donorstern von 2S 0918–549?

Ein Sauerstoff-Neon Weisser Zwerg scheint ausgeschlossen, erstens weil diese Art sehr
selten ist (und es wurden insgesamt vier dieser Doppelsterne gefunden) und zweitens weil
diese Weissen Zwerge schwerer sind als 1M⊙ und deswegen wahrscheinlich auseinander
gerissen werden, wenn sie Masse zu einem Neutronenstern übertragen. Damit bleiben also
ein Helium Weisser Zwerg und ein Kohlenstoff-Sauerstoff (CO) Weisser Zwerg übrig. Wir
berechneten Modelle für Sterne mit verschiedenen Massen,die zuerst einen Heliumkern
und später einen CO-Kern produzieren. Wir zeigen, dass während der Wasserstofffusion,
die zu der Formation eines Heliumkernes führen soll, Sauerstoff zerstört wird und mit Ne-
on nichts passiert. Deswegen ist das Neon/Sauerstoff-Verhältnis in einem Heliumkern oder
Helium Weissen Zwerg hoch. Während der Heliumfusion wird viel Sauerstoff produziert,
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wodurch das Neon/Sauerstoff-Verhältnis in CO Weissen Zwergen sehr gering ist (siehe Ta-
belle4.4 auf Seite76). Wir folgern, dass der Donorstern in 2S 0918–549 wahrscheinlich
ein Helium Weisser Zwerg ist, basierend auf dem langen Röntgenausbruch und dem hohen
Neon/Sauerstoff-Verhältnis. Daher schlagen wir in Kapitel4 vor, dass ein grosser Helium-
vorrat aufgebaut werden kann, wenn die Massenübertragungsgeschwindigkeit nicht allzu
hoch ist. Wenn die Heliumschicht dann schliesslich entzündet, gibt es einen langen Aus-
bruch, wie auch beobachtet wurde. Was wir nicht erklären k¨onnen ist, dass kein Helium im
Spektrum beobachtet wird. Es ist aber auch nicht eindeutig bewiesen, dass sich kein Helium
im Doppelstern befindet und eine zukünftige Beobachtung von Helium könnte die Existenz
vom Heliumdonor in 2S 0918–549 bestätigen.

7.3.2 Die Formation von doppelten Weissen Zwergen

Wenn ein Riesenstern sein Roche-Lobe füllt, ist die Massenübertragung oft instabil und
ein gemeinsamer Mantel kann entstehen, gefolgt von einer Einspiralisierung der zwei Ster-
ne innerhalb des Mantels (siehe Abbildung6.4 auf Seite134). Beim Einspiralisieren wird
Bahnenergie aus dem Doppelsternsystem frei. Um abzuschätzen um wieviel die Bahnperi-
ode bei einer Einspiralisierung kürzer wird, wird oft angenommen, dass genügend Bahn-
energie freigemacht werden soll um den Mantel loszulösen und ins Weltall zu schicken. Die
Bindungsenergie des Sternmantels, die wir mit dem Evolutionscode ausrechnen können,
gibt also einen Hinweis auf die Quantität der Energie, die aus der Bahn des Doppelsterns
freigemacht werden soll. Daraus können wir dieÄnderung der Bahnperiode während der
Einspiralisierung berechnen. Dies nennt man die Methode der Energiebilanz.

In Kapitel5 verwenden wir diese Methode um die Evolution von doppelten Weissen
Zwergen zu rekonstruieren. Fast alle dieser Weissen Zwergesind zu leicht um nicht in ei-
nem Doppelstern formiert zu sein. Die Bahnen der Doppelsterne sind nur einige Sonnen-
radien gross (siehe Tabelle5.1 auf Seite83) — viel kleiner also als der Riesenstern, der
einen solchen Weissen Zwerg produziert. Daher wissen wir, dass alle dieser Weissen Zwer-
ge nach der Massenübertragung im Doppelstern gebildet sind und dass die Bahnperiode
während der letzten Massenübertragungsphase bedeutendkleiner geworden ist.Wir probie-
ren verschiedene Szenarios aus, so wie stabile Massenübertragung, wobei der Begleiter das
ganze Gas einfängt und wir zeigen, dass der Prozess nicht alle beobachteten Doppelsterne
erklären kann. Auch die Einspiralisierung mit Energiebilanz reicht nicht aus um alle Dop-
pelsterne zu produzieren. Wir verwenden darum die Annahme von anderen Forschern, dass
während einer Einspiralisierung nicht die Energie, sondern der Drehimpuls erhalten wird.
Wir finden, dass eine Variante dieser Methode die beobachteten Massen und Bahnperioden
der doppelten Weissen Zwerge tatsächlich erklären kann,ohne dass Drehimpuls verloren
geht oder produziert wird. Wir finden auch, dass es viel schwieriger ist die beobachtete
Altersdifferenz der beiden Komponenten zu reproduzieren.Ein Beispiel eines Evolutions-
szenarios, wobei ein doppelter Hauptreihenstern über zwei Phasen von Einspiralisierung zu
einem doppelten Weissen Zwerg evoluiert, wird in Abbildung1.4auf Seite13gezeigt.
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